
A Database Framework for Expressing and Enforcing
Personal Privacy Preferences

Tania Basso1, Leandro Piardi1, Regina Moraes1, Mario Jino1, Nuno Antunes2,
Marco Vieira2

1 – State University of Campinas (UNICAMP) – Brazil 
2 – University of Coimbra (UC) – Portugal

{taniabasso@ft, lpiardi@ft, regina@ft, jino@dca.fee}.unicamp.br,
{nmsa,mvieira}@dei.uc.pt

Abstract. Nowadays, privacy protection in web applications and services is
done, most times, through privacy policies that are presented to users and give
them only the options of agreeing or disagreeing. So, it is not possible for
users to express, in a detailed manner, their privacy preferences. Having this
flexibility would allow users to make more thoughtful choices about the use of
their personal information online. This paper proposes a database framework
that allows users express their privacy preferences in detail, so that web
applications can protect data privacy and manage personal information more
securely. We tested the framework and results showed that it can be a simple
and effective alternative, avoiding using complex and expensive solutions.

1. Introduction

Web applications are a quite relevant technology nowadays because they provide
a wide range of online services. Usually, to use these services, users need to provide
personal private information. Once this information is available, they are no longer
under control of their owner in respect to how they are used and the consequences of
their indiscriminate availability, raising privacy concerns.

Currently, there is a growth of technologies to guarantee security and privacy of
information manipulated by web applications and services. This is mainly due to
regulation laws (the companies that hold private data have the obligation and
responsibility to protect them) and competitive differentials (the more a company
protects the privacy of its users, the better is its reputation). In this context, a highly
used resource is privacy policy.

Internet privacy policies describe an organization’s practices on information
collection, use, and disclosure. Consumers use the stated website policies to guide
browsing and transaction decisions [Earp et al. 2005]. Nowadays, to make a purchase or
use certain online services, the privacy policy is displayed and gives the users only the
option to agree or disagree with this policy. If they do not agree, they cannot perform
the desired task. Most of the times it is not possible to users express their privacy
preferences. This leads to the possibility of the user private data being accessed with
purposes different from the ones intended by the users (the real data owners).

To assist data owners and collectors to communicate their privacy concerns,
researchers have proposed various privacy policy frameworks and languages such as
P3P [P3P 2013] and EPAL [EPAL 2014]. Although these technologies allow users
express their preferences, it is done in a very general way, defining, for example, for

9999

which goal their information can be used or who can view their information. Privacy
protection based only in these definitions is frequently limited or insufficient. More
rules and elements can be necessary to describe protection information decisions. For
example, to allow users to express their preferences for each piece of personal
information individually, it is necessary to define rules that address this purpose.

This paper presents a database framework for expressing and enforcing personal
privacy preferences. The goal is to allow users to express their preferences in a more
complete way, where the privacy preference of each piece of their personal information
can be defined, based on predefined criticality levels. With this, users can make more
thoughtful choices about the use of their personal information online. The framework
provides a mechanism to enforce these policies, guaranteeing that the user’s privacy
preferences will be fulfilled and, thus, contributing to privacy protection.

The policy enforcement is done through an access control mechanism that,
based on the predefined policies and the user preferences, allows or denies the
information to the person who requests them. This mechanism is integrated in the
relational database system and provides an algorithm constructed through database
packages. Basically, the algorithm verifies if the data being requested can be retrieved,
comparing its associated preference level (set by the user) with the access control policy
(specifies the preference level each requester – role – can access). The underlying
policies are defined using the policy model proposed in Basso et al. (2013). This model
allows users to define the policies without requiring specific or in-depth knowledge
about the web application because, instead of the rules defined by other standards, it
follows a more user-friendly approach, enabling the users to express preferences about
their personal information and even to distinguish among the information they provide.

To evaluate the proposed database framework effectiveness, a prototype tool
was implemented and an experimental evaluation was conducted, both in terms of
performance and scalability. We used the test process proposed by Mello et al. (2014)
and results show that, in practice, the proposed approach allows collecting the user
preferences (criticality levels) and enforcing access control considering these
preferences. This is done in a non-intrusive way and with an acceptable performance
overhead. This suggests that the framework can be used as a simple and effective
solution.

The paper is organized as follows. Section 2 introduces related work. Section 3
presents the proposed database framework and Section 4 presents the experimental
evaluation. Finally, Section 5 shows the conclusions and future work.

2. Background and Related Work

P3P (Platform for Privacy Preferences Project) [P3P 2013] is a protocol that allows
websites to declare, in a standard format, privacy policies with the intended use of the
information they collect about users, such as what data is collected, who can access
those data and for what purposes, and for how long the data will be stored. This
information can be retrieved automatically and is easily interpreted. EPAL (Enterprise
Privacy Authorization Language) [EPAL 2014] allows enterprises to formalize their
privacy promises into policies. These policies can define the categories of users and

100100

data, the actions being performed on the data, the business purposes associated with the
access requests, and obligations incurred on access. However, as aforementioned, these
both technologies do not describe each personal information protection level neither
provide mechanisms to enforce the privacy policies.

Agrawal et al. (2003) proposed a server-centric architecture, based on P3P, for
matching preferences against policies at the database level. The goal is to establish the
infrastructure necessary for ensuring that web sites act according to their stated policies.
Byun and Li (2008) proposed a privacy preserving access control model based on P3P
purposes (elements that defined the intended use of data) for relational databases.
Accesses are granted if the access purpose defined by the requestor is among the
allowed ones (previously defined by the user). Nevertheless, for this both works
[Agrawal et al. 2003, Byun and Li 2008], access decisions based only in the P3P are
frequently insufficient and more rules and elements are needed to describe disclosure
decisions.

The P-RBAC (Privacy-Aware Role-Based Access Control) [Ni et al. 2007] is a
model for access control that supports privacy policies. In P-RBAC, permissions are
assigned to roles and users obtain such permissions by being assigned to these roles. It
implements a structure of privacy permissions, which explicitly states the intended
purpose, along with the conditions under which the permission can be given, and the
obligations that are to be finally performed. Although P-RBAC is powerful, user
preferences are limited and do not specify different levels of protection that each piece
of information should have.

Probably, one of the reasons why these patterns (P3P, EPAL, P-RBAC) do not
express individual privacy information preference are due to their user friendliness.
Some researches try to improve the P3P user agent interface, in order to make the user
agents more user-friendly and more effective when communicating the summary and
policy warnings [Cranor et al. 2002, Kolter and Pernul 2009]. Obviously, users'
interaction with applications that offers finer-grained options is more complicated due to
the difficulty in explaining the options and the consequences of choosing them.
However, our solution tries to deal with this through a more user-friendliness interface.

When comparing with the alternatives, the presented framework presents the
following advantages: (i) instead of guarantee the same amount of privacy to every user,
the finer-grained access control gives more flexibility to each user to express their
preferences, once each user has different perception of their privacy; (ii) the user
interface helps in user-friendliness of the solution. Although we have not yet performed
studies about its usability, we believe that it is a first step to facilitate the understanding
of the consequences of each privacy choice; (iii) the policies and the mechanism
implementation are within the database so, the access control is done without
application changes or application awareness of the implementation.

With respect to the validation of the proposed solution, we decided to adopt the
process proposed by Mello et al. (2014) because it has already been applied to the
evaluation of a privacy solution integrated in a web application. Furthermore, it
supports the definition of tests scenarios, their execution and the comparison of the tests
results, especially when using and not using the privacy solution.

101101

3. The Database Framework

The database framework is based on the referred privacy policy model described in
Basso et al. (2013). This model was selected due to its simplicity and the fact that it was
constructed through an extensive study based on the literature and IT professional
interviews. Thus, it is based on real needs that a policy model should tackle considering
the requirements relevant for implementing a good access control mechanism. However,
the model itself does not propose a mechanism to enforce the policies, especially in the
persistence layer, which helps improving private information security. Our goal is to
define a solution to perform this policy enforcement.

In a broad view, the framework consists of a set of independent tables that can
be added to the application’s database. These tables will contain the necessary
information to perform the access control according to predefined privacy policies,
which consider users preferences related to each piece of personal information (i.e.,
address, credit card number, etc.) to be collected, stored or managed. During the design
of the solution, one of the goals was to avoid the introduction of new security or privacy
concerns related to the new enforcement system. The access control is performed by
implemented database packages and has the advantage of filtering the data directly in
the database, contributing to security against possible attacks to the web application or
the network. Figure 1 shows a general view of the solution, where the Database
Framework is composed by the Framework tables and a Package engine.

�

Figure 1. General view of the database framework solution.

Privacy policies are defined in textual manner and presented to the user. Part of
the privacy policy usually addresses who can access private dada. Access control
policies can restrict unauthorized access to data and thus, protect data privacy. This
access control policy is defined through XML files. It expresses the criticality level that
each role can access. The XML policies are mapped into the Framework tables to
address which profile can access certain piece of user information. Based on the privacy
policy, the users/visitors can express their privacy preferences through the web
application interface, classifying each piece of the personal information with criticality
levels (the higher the level, the higher the protection – the criticality levels are explained
in section 3.2). The preferences are stored in the Framework tables, which are
associated to the Application Tables (i.e., the tables that stores the users’ information).

102102

When some profile tries to access some users’ information, the Package engine masks
this information according to the privacy policies and the users’ preferences. More
details of this process are given in the next subsections.

3.1. Privacy Policies

In Figure 1, privacy policies are defined through XML files, based on the policy model
described in Basso et al. (2013). In summary, the model defines who can access certain
piece of information, when, from where, and how the required information can be
accessed, as well as the criticality level of each piece of information. It has an offshoot
called Profile, with a set of tags that were designed to represent groups and conditions
requirements. Among these tags, the Role tag represents the user groups. Also, the
model has the Data Access offshoot, whose set of tags allows determining the
restrictions of information in table’s columns and rows. The Level tag is part of this
offshoot and represents the criticality level of the information (see Basso et al. (2013)
for more details). For sake of simplicity, we focused on using information about the
profiles allowed to access data and the criticality levels of data, disregarding other types
of information defined by the model (e.g. from where the required information can be
accessed).

Besides the simplicity, the model and its respective type of derived file (XML)
was adopted because it: (i) allows that policy specifications can be kept under control;
(ii) requires less specific knowledge from the person responsible for specifying the
policies; (iii) allows easy integration with existing technology.

The XML privacy policies must be created based on textual privacy policies. It
is known that natural language is the more adequate manner of communicating users
about the privacy policy, but it consists in high-level statements that are difficult to be
machine readable. Some works propose methodologies to map policy in natural
language to a more low-level and formal representation [Breaux and Rao 2013, Breaux
and Anton 2005]. However, this is not the focus of this work and details will not be
addressed.

The XML files contain information about the system profiles and the personal
data (associated with criticality levels) each profile can access or modify. These
criticality levels are a scale of values to define how the information can be protected and
will be further explained. Also, updates or new XML policies files can be added to the
application: a job (i.e., a combination of a schedule and a program, along with any
additional arguments required by the program) is executed periodically to verify,
automatically, in a specific application directory, the input of new policies. Then, the job
maps these policies to the set of framework’s tables, as explained in detail in the section
3.4.

3.2. Criticality Levels

A typical database application manages data with different requirements in terms of
security, ranging from non-critical data to data that has to be extremely protected
against unauthorized access. These requirements can be represented through data
criticality levels. These levels can be configured, added or even removed. In order to
identify the different levels of criticality we established, for our study, the 4 levels
described in the work of Vieira and Madeira (2005). They are:

103103

• Level 1: non-critical data, i.e., data that does not represent any confidential
information.

• Level 2: data in this level must be protected against unauthorized modification (for
this class of data unauthorized read is less critical than unauthorized modification).
One typical example is the list of products in an online retail store. This information
has to be protected against modification (because it is used by the customers to
perform orders) and should be open to all users.

• Level 3: data in this level must be protected against unauthorized read and
modification. Most of the data in typical database applications is in this criticality
level. Some examples are: clients’ orders, costumers’ information, and employees’
information.

• Level 4: critical data that has to be extremely protected against unauthorized read and
modification. This data must not be understandable even if someone is able to access
the database using a valid username/password (i.e., this data has to be stored
encrypted in the database). Typical examples are: usernames/passwords, credit card
numbers, patients’ files in hospitals, and bank accounts.

The levels we adopted are a good option to represent commercial online
applications, but companies and organizations can establish their own levels according
to their necessities.

3.3. User Preferences

After defining privacy policies, the normal process used by most companies is to
present them to users and visitors, to inform them about company’s privacy rules. To
allow users and visitors to express their preferences about privacy of each of their
personal information, the application must implement some controls while the user
interacts with the application during the collection of this personal information.
Obviously, this part is a little intrusive in the application, but it is a more intuitive way
for users to express their preferences, giving them more flexibility to protect the privacy
of their information.

To help users in this process we implemented an interface with simple text box
or combo box informing, for each piece of data, the criticality levels that can be chosen.
Also, to facilitate the users understanding about the criticality levels and the
consequences of their choices, we placed some hints when hovering over them with the
mouse, providing an easy visualization of the description.

As suggestions, default values of criticality level are set at first and then can be
changed by data owners, via application. For greater security, data that must be
extremely protected (as passwords and credit card numbers, for example) have the
criticality level set to level 4 and this level must not be changed.

So, according to Figure 1, the user or visitor express his privacy preferences
through the web application and information are mapped in the Application tables and
Framework tables, which are explained in the next subsection.

104104

It is important to mention that this is a first implementation of the user interface.
Complementary studies about usability and user friendliness, regarding user’s point of
view, must be developed in order to improve this part of the solution.

3.4. Framework Tables

The Framework tables in Figure 1 represent a set of tables to store information about
the privacy policies, including the users and visitors preferences. Figure 2 shows the
Entity-Relationship Diagram to express the relationship between this set of tables.

�

Figure 2. Entity-Relationship Diagram of the database framework.

In Figure 2, the information in the XML policies is mapped to the Policy table,
addressing the levels of criticality of the information that the profiles can access (e.g.
system administrator can access information with levels 1 to 4; trainees can access
information with level 1 and 2). The users preferences are stored in the Tables_Levels,
addressing the criticality level for each information to be protected (e.g. if a user defines
the phone number as level 3, this value can be accessed only by the system
administrator). More details of the mapping of the policy to the framework and the
collection of users’ preferences are given along this section. Also, the functions of each
of the tables are explained below.

• Profiles: stores all the different system profiles existing in the organization as, for
example, administrator, customer, vendor, etc.

• Criticality_Levels: stores criticality levels, i.e., the default values adopted by the
company or organization according to their needs. The definition of such criticality
levels must be done in a thoughtful way because they will be associated to each user
personal data.

• Policy: associates the profiles and criticality levels, specifying, through criticality
levels, the information each profile can access. This table stores, in the form of data,
the privacy policies defined through XML files and presented to users and visitors.

• Tables_Filter: stores the name of the tables whose fields will have the access
controlled. Typically, these tables are the ones that stores data that pertains to profiles
which express their privacy preferences (e.g. customers) and associated tables (e.g.
address, country, phone numbers, etc.)

105105

• Tables_Fields: stores the fields of the tables (specified at Tables_Filter) that will have
restricted access.

• Tables_Levels: stores the users (data owners) preferences. Typically, Tables_Levels is
associated to the table that stores the data of the person or profile subject to data
privacy (e.g. customers and its associations).

The mapping from XML policy files to tables is done as follows: the Profiles
and Criticality_Levels tables must be pre-fulfilled according to the company’s criteria.
As the policies establish the profiles and the levels of criticality of the information that
these profiles can access, the content of the Role tag in XML is checked to exist in the
Profiles table. The same verification is done to the criticality level, i.e., the job checks if
the content of the Criticality_Level tag in XML exists in the Criticality_Levels table. If
both information are in their respective tables, the Policy table is fulfilled,
characterizing the privacy policy. If they are not, a message is sent notifying the policy
incompatibility.

For collection of users (data owner) preferences, the tables Tables_Filter and
Tables_Levels must also be pre-fulfilled according to the company’s criteria. The user
specifies her privacy preferences for each piece of data to be collected and managed
through the criticality levels and these preferences are stored in the Table_Levels table.
The records of this table specify the criticality level for each field of each table to be
protected. Default values can be set at first and then changed by users, via application,
to express their preferences. In Figure 2, Table_Levels has a relationship represented by
a dashed line, not associated with another table. This line represents the relationship that
Table_Levels has with the applications tables. These applications tables store the fields
that should be protected.

As we mentioned before, during the design of the solution it was a priority to
avoid the introduction of new security or privacy concerns related to the new
enforcement system. This way, besides placing the enforcement system right inside the
database management system, we also plan that the presented tables must be
“implemented” following the best security practices. For instance, a dedicated user
should be created with the sole function of write on these tables and he should be the
only one with permissions for that. This can mitigate the probability of the privilege
escalation and tampering with the system.

 3.5. Policy Enforcement

To guarantee the enforcement of privacy policies and, consequently, to respect users
privacy preferences, a mechanism was developed and integrated to the framework. This
mechanism is an algorithm integrated to the infrastructure of a relational database
system to enforce disclosure control. It provides constructs that allow masking personal
information according to the privacy policies and users preferences.

The mechanism was implemented using database packages. Database package is
a resource to encapsulate related procedures, functions, associated cursors and variables
together as a unit in the database. The packages were used because they provide
advantages in terms of performance, since the entire package is loaded into memory
when an object from the package is called for the first time. It is also aligned with our

106106

privacy and security concerns, as it does not require additional communication between
the database management system and the application level.

The Package engine in Figure 1 represents the implemented mechanism.
Basically, its operation is: when a query is executed from the application, the Package
obtains the criticality levels of particular fields returned by this query. Then, the data are
masked and presented to the requestor.

To mask the data and, consequently, enforce the policies, the Package
implements an algorithm, which is based on the following steps:

1. Obtain the identifier of the user that is requesting the private data, the role of
this user, and the data that is being requested.

2. From this information (received on step 1), the table that stores the privacy
policies (Policy table) is consulted to identify the criticality levels this user,
with respective role, can access.

3. Obtain the data owner preferences, i.e., the criticality level the owner
classified the private data that is being requested (Table_Levels is consulted).

4. Verifies if the criticality level that the user (role) can access is higher than the
criticality level of the data,
a. If true, the data is provided to the user who is requesting them.
b. If false, the data is masked in order to enforce the policies and respect the

data owner preferences.

This algorithm is applied to each data request. Obviously, if the user that is
requesting the data is the owner of the data, all the information is provided. The package
can be easily adapted to different web applications through changes in parameters as the
main query that loads the cursor and the variables associated to the new query. For the
sake of reducing unnecessary cost performance, the level 1 were not stored in the
Tables_Levels table, once the corresponding data is non-critical and do not need to be
protected.

4. Validating the framework: a case study

To better understand the potential of the proposed solution, a case study to validate it
was developed. The tests campaign applied validated the access rules and evaluate the
scalability and performance impact of the proposed framework. Scalability is expressed
in terms of the number of records being processed by the mechanism, i.e., the goal is to
understand how much the number of records in the database application affects the
performance. The performance impact can determine the disadvantage of using the
mechanism. For these experiments, the performance was characterized by the average
response time and throughput.

4.1 . Experimental Setup

The web application used in the experiments is a Java implementation of a TPC-W
[TPC 2015], which is a benchmark for web-based transactional systems where several
clients access the website to browse, search, and process orders. To this study, the TPC-
W implementation simulates a retail online book store. The components of the TPC-W
database are defined to consist of a minimum of eight separate and individual base
tables (Customer, Address, Country, Orders, Order_Line, Author, Item, CC_Xacts) [TPC

107107

2015]. The proposed framework was integrated with the TPC-W database through the
association of the Tables_Levels table (from the framework) with the Customer table
(from the TPC-W). The database used in the experiments is Oracle Database 10g
Express Edition Release 10.2.0.1.0 [Oracle 2015] and the mechanism was implemented
using PL-SQL (a procedural language extension for SQL). The metrics were collected
using the JMeter tool [Jmeter 2015].

 The application use scenario to perform the tests simulates a third-party user
(that represents a user trying to access unduly data or even a potential attacker) trying to
obtain data of a registered customer through a search process. Privacy policies were
implemented and the criticality level of each piece of data of each customer was
randomly generated through a database script. We performed, previously, independent
tests that evaluated the correctness of policy enforcement, respecting the customer’s
preferences.

For our experimental evaluation it was used, respectively, 500, 5000 and 50000
records in the database. The simulations of threads, that simulate concurrent
connections to the server application, ranged from 1 to 128 users for each set of records.
Also, in order to understand the performance impact, the tests were performed without
the database framework in place (to obtain baseline indicators). For each run of the
experiment, the whole system is returned to its initial state in order to avoid cached data.

 4.2. Overall Results Analysis

Figure 3 presents the overall results of the study. It shows the average processing time
of all requests for the customer search scenario. This average time is given in
milliseconds and is presented in Figures 3a, 3b and 3c. Also, Figure 3 shows the
throughput results. Throughput is calculated as requests divided by unit of time. The
time is calculated from the start of the first sample to the end of the last sample,
including any intervals between them, as it is supposed to represent the load on the
server. The throughput results are presented in Figures 3d, 3e and 3f. Figures 3a, 3b and
3c shows the tests performed with, respectively, 500, 5000 and 50000 customers
recorded in the database. The same for throughput: Figures 3d, 3e and 3f shows the tests
performed with, respectively, 500, 5000 and 50000 customers. It is important to
evaluate the framework with these different amounts of records because the table
Table_Levels (Figure 2) has a proportional growth in relation to the amount of
customer’s records. Also, this growth is related to the amount of fields that the
Customer table has, including its associations (for example, the Address table, whose
fields are part of the customer register). To the experiments, the TPC-W customers have
17 fields and address has 7 fields, totaling 24 fields.

 Analyzing the processing time requests in terms of performance impact, Figures
3a, 3b and 3c shows that the proposed solution has very low impact when few users are
using the web application. Although in some cases the increased time represents a high
percentage (for example from 10 to 20 represents a 100% increase), the time is
milliseconds and this difference is practically derisive. So, the average time without the
database framework is very similar to the other results until around 16 users. As the

108108

number of users increases, little differences arise. The inclusion of the framework
affects the performance for higher number of users but the system performance
increases in a linear tendency and it is acceptable for high demand.

!

Figure 3. Experiments average time and throughput.

 Figures 3d, 3e and 3f show the throughput variation. The samples are given by
the number of users multiplied by the number of the requests of the application scenario
use. The performance impact in the throughput analysis is also similar to average
processing time results: about the 16 first samples the results with and without the
proposed database framework are similar and the differences arise as it increases. We
believe the differences between the throughputs (for different number of records) arise

109109

due to the randomness of criticality levels, which may not have a realistic distribution of
the values.

Through the analysis of the average processing time requests it is possible to
observe that, also, the proposed solution is scalable in terms of numbers of records. The
use of large number of records can be necessary due to different quantities of
information in the databases for different companies or organizations sizes. Figure 4
consolidates the scalability evaluation experiments, aggregating the average time
response results presented in Figures 3a, 3b and 3c, all implementing the framework.

!

Figure 4. Average time response for different amounts of records implementing
the database framework.

In Figure 4 it is possible to observe that the number of records barely affects the
system performance for smaller threads. For higher threads, the performance is affected
in an expected way (the more records, the more processing cost). As the average time of
experiments is in milliseconds, the small variation of values between the data
representing 500, 5000 and 50000 customer records, respectively, is acceptable. The
proximity of values of 5000 and 50000 records for 64 and 128 threads can be, again,
due to the different amount of criticality levels, once they are generated randomly and
exclude the level 1. So, the less level 1 generated the more level are recorded and the
more processing time is necessary to protect the data .

5. Conclusions and Future Works

This paper proposed a practical solution for privacy policies enforcement, respecting
user privacy preferences. It consists in a database framework that stores the privacy
policies and the user’s preferences (criticality level of protection) and implements a
procedure to allow or deny the access to third-party accesses considering these
preferences.

 This solution has some important features such as allowing users express their
privacy preferences in a very flexible way, defining preferences for each piece of

110110

personal information (avoiding limited options like “agree or disagree”, which are still
used by many applications) and a proposed interface to this fine-grained preference.
Also, executing the access control directly within the database management system
makes the solution more secure from attacks and malicious users. The solution is free
and easy to implement and use.

 We implemented the framework in a TPC-W web application and evaluated its
scalability and performance using a predefined process to ensure privacy. The tests
results showed that scalability is high because the high number of records did not affect
significantly the performance. In terms of the performance impact, it becomes greater as
the number of users (threads) increases. We believe that our PL/SQL implementation
can present some performance bottlenecks and we are working on identifying and
improving it. Also, the randomness of criticality levels can have some influence on the
results. However, although we have this performance impact, it can be considered
acceptable front of the importance of protecting privacy information, especially
considering users privacy preferences in detail and giving them more flexibility while
dealing with their personal information.

 As future work, we intend to complement the tests, evaluating the solution in
large scale applications. Also, we intend to integrate this solution in a more complex
environment, where attacks are identified and the information, even under attack, is
permitted or denied according to privacy policies. It helps to avoid false positive results
from the attack detection tools. This is one of the areas that we are currently working
on. Another important future work is to perform studies that consider, in a practical
context, the user’s point of view about the usability of the solution. These studies can
help improving its user-friendliness and user’s privacy choices.

Acknowledgment. This work has been partially supported by the project DEVASSES -
DEsign, Verification and VAlidation of large-scale, dynamic Service SystEmS, funded
by the European Union's Seventh Framework Programme for research, technological
development and demonstration under grant agreement no PIRSES-GA-2013-612569.
We also thank the CAPES – Brazilian Federal Agency for Support and Evaluation of
Graduate Education within the Ministry of Education of Brazil – and FAPESP – São
Paulo Research Foundation process n. 2013/17823–0 – for the support.

References

Agrawal, R., Kiernan, J., Srikant, R., Xu, Y. (2003). "Implementing P3P using database
technology," Proceedings of the 19th International Conference on Data Engineering”,
pp.595,606.

Basso, T., Antunes, N., Moraes, R., Vieira, M. (2013). " An XML-Based Policy Model
for Access Control in Web Applications". In proceedings of 24th International
Conference on Database and Expert Systems Applications - DEXA, pp. 274-288.

111111

Breaux, T. D., Rao, A. (2013). "Formal analysis of privacy requirements specifications
for multi-tier applications," 21st IEEE International Requirements Engineering
Conference (RE), pp.14,23.

Breaux, T.D., Anton, A. I. (2005). "Deriving semantic models from privacy policies,".
Sixth IEEE International Workshop on Policies for Distributed Systems and
Networks, pp.67,76 (2005).

Byun, J.-W. and Li, N. (2008). “Purpose Based Access Control for Privacy Protection in
Relational Database Systems”, VLDB J., vol. 17, no 4, p. 603–619.

Cranor, L., Arjula, M., Guduru, P. (2002). "Use of a P3P User Agent by early adopters,"
in Proceedings of 9th ACM Workshop on Privacy in the Electronic Society,
Washington, DC.

Earp, J. B., Antón, A. I., Member, S., Aiman-smith, L., Stufflebeam, W. H. (2005).
“Examining Internet Privacy Policies Within the Context of User Privacy Values”,
IEEE Trans. Eng. Manag., vol. 52, pp. 227–237.

EPAL (2014). “Enterprise Privacy Authorization Language (EPAL 1.2)”. [Online].
Available: http://www.zurich.ibm.com/security/enterprise-privacy/epal/
Specification/. [Accessed: 23-jan-2014].

Jmeter (2015). “Apache JMeter - Apache JMeterTM”. [Online]. Available: http://
jmeter.apache.org/. [Accessed: 09-jan-2015].

Kolter, J. and Pernul, G. (2009). "Generating user understandable Privacy Preferences".
Proceedings of IEEE International Conference on Availability, Reliability and
Security. Fukuoka, pp.299-306.

Mello, V., Basso, T., Moraes, R. (2014). “A Test Process Model to Evaluate
Performance Impact of Privacy Protection Solutions”. In: XV Workshop de Testes e
Tolerância a Falhas (WTF 2014), 2014, Florianópolis. XXXII Simpósio Brasileiro de
Redes de Computadores e Sistemas Distribuídos.

Ni, Q., Trombetta, A., Bertino, E., Lobo, J. (2007). “Privacy-aware Role Based Access
Control”, in Proceedings of the 12th ACM Symposium on Access Control Models
and Technologies, New York, NY, USA, 2007, p. 41–50.

Oracle (2015). “Oracle | Hardware and Software, Engineered to Work Together”.
Available: http://www.oracle.com/index.html. Accessed: 24-jan-2015.

P3P (2013). “P3P: The Platform for Privacy Preferences”. [Online]. Available: http://
www.w3.org/P3P/. [Accessed: 04-set-2013].

TPC (2015). “TPC-W - Homepage”. Available: http://www.tpc.org/tpcw/. Accessed: 08-
jan-2015.

Vieira, M., Madeira, H. (2005). “Towards a security benchmark for database
management systems”, in Proceedings, of International Conference on Dependable
Systems and Networks, DSN 2005. p p. 592–601.

112112

