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1Federal Institute of Education Science and Technology of the North of Minas Gerais
IFNMG – Pirapora (MG), Brazil

2Center of Informatics (CIn)
Federal University of Pernambuco (UFPE)

Recife (PE), Brazil

luciano.souza@ifnmg.edu.br, {rbcp,fab}@cin.ufpe.br

Abstract. During the software testing process many test suites can be gener-
ated in order to evaluate and assure the quality of the products. In some cases,
the execution of all suites can not fit the available resources (time, people, etc).
Hence, automatic Test Case (TC) selection could be used to reduce the suites
based on some selection criterion. This process can be treated as an optimiza-
tion problem, aiming to find a subset of TCs which optimizes one or more objec-
tive functions (i.e., selection criteria). In this light, we developed mechanisms
for TC selection in context of structural and functional testing. The proposed
algorithms consider two objectives simultaneously: maximize branch coverage
(or functional requirements coverage) while minimizing execution cost (time).
These mechanisms were implemented by deploying multi-objective techniques
based on Particle Swarm Optimization (PSO). Additionally, we added the so-
called catfish effect into the multi-objective selection algorithms in order to im-
prove their results. The performed experiments revealed the feasibility of the
proposed strategies.

1. Introduction

During the software development process, the software testing activities has grown in
importance due to the need of high quality products. Software testing activities aim to
assure quality and reliability of the developed products. Nevertheless, this activity is
sometimes neglected, since it is very expensive, reaching up to 40% of the final software
development cost [Ramler and Wolfmaier 2006]. In this scenario, automation seems to
be the key solution for improving the efficiency and effectiveness of the software testing
process.

The related literature presents two main approaches for testing: White Box (struc-
tural) or Black Box (functional) testing. Structural testing investigates the behavior of the
software directly accessing its code. Functional testing, in turn, investigates whether the
software functionalities are responding/behaving as expected without using any knowl-
edge about the code [Young and Pezze 2005]. In both approaches, the testing process
relies on the (manual or automatic) generation and execution of a Test Suite (TS), that
is, a set of Test Cases. A Test Case (TC), consists of “a set of inputs, execution condi-
tions, and a pass/fail conditions” [Young and Pezze 2005]. The execution of the TS aims
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to provide a suitable coverage of an adopted test adequacy criterion (e.g., code coverage,
functional requirements coverage) in order to satisfy the test goals. In this scenario, both
automatic generated or manually created TS may be large. In general, they try to cover all
possible test scenarios in order to accomplish a good coverage of the adequacy criterion.
Although it is desirable to fully satisfy the test goals, the execution of large suites is a
very expensive task, demanding a great deal of the available resources (time and people)
[Harold et al. 1993].

It is possible identify that large test suites contain some redundancies (i.e., two or
more TCs covering the same requirement/piece of code). Hence, it is possible to reduce
the suite in order to fit the available resources. This task of reducing a test suite based on a
given selection criterion is known as Test Case selection [Borba et al. 2010]. TC selection
is not easy or trivial since there may be a large number of TC combinations to consider
when searching for an adequate TC subset.

Clearly, TC selection should not be performed at random, in order to preserve
the coverage of the testing criterion. In the absence of automatic tools, this task is usu-
ally manually performed in an ad-hoc fashion. However, manual TC selection is time-
consuming and susceptible to errors. Thus, the related literature focus on deploying auto-
matic tools for TC selection.

A promising approach for the TC selection problem is to treat it as a search based
optimization problem [Harman 2011]. This waym the search techniques explore the space
of possible solutions searching for a TC subset in order to optimize a given objective
function, i.e., the given selection criterion (see [Ma et al. 2005], [Yoo and Harman 2007],
[Barltrop et al. 2010], [de Souza et al. 2010], [de Souza et al. 2013]). In most of the test-
ing environments, there is not only a single selection criterion to be considered. In fact,
it is very common the need to take into account, during the selection process, more
than one criterion. Following this light, we can cite the use of multi-objective evo-
lutionary approaches [Yoo and Harman 2007, Yoo and Harman 2010b, Yoo et al. 2011b,
Yoo et al. 2011a] and the use of multi-objective Particle Swarm Optimization (PSO) tech-
niques [de Souza et al. 2011] (our previous work).

In [de Souza et al. 2011], we investigated the multi-objective TC selection consid-
ering both the functional requirements coverage (quality), and the execution effort (cost)
of the selected subset of TCs as objectives of the selection process. There, we developed
the Binary Multi-Objective PSO techniques for TC selection by combining: (1) the binary
version of PSO proposed in [Kennedy and Eberhart 1997]; and (2) the multi-objective
PSO algorithms MOPSO [Coello et al. 2004] and MOPSO-CDR [Santana et al. 2009].
Despite the good results of the implemented techniques (BMOPSO-CDR and BMOPSO)
on a case study, further improvements could be performed.

The use of the so-called “catfish” effect, for instance, has shown to improve
the performance of the single objective version of the binary PSO [Chuang et al. 2011].
Hence, in the current work, we investigate whether this catfish effect can im-
prove the performance of our former algorithms BMOPSO-CDR and BMOPSO
[de Souza et al. 2011]. For that, we created two new multi-objective strategies, the
CatfishBMOPSO-CDR and CatfishBMOPSO, by adding the catfish effect. We point out
that the use of catfish effect, to the best of our knowledge, was not yet investigated in the
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context of test case selection or in the context of multi-objective optimization.

Additionally, in order to measure the performance of the proposed strategies, we
performed experiments using two testing scenarios (structural and functional testing). For
structural testing, we used test suites from five programs from the Software-artifact Infras-
tructure Repository (SIR) [Do et al. 2005], and for the functional testing, we used two
unrelated test suites from the context of mobile devices. Each implemented algorithm
returns to the user a set of solutions (test suites) with different values of branch coverage
(for structural testing) or functional requirements coverage (for functional testing) ver-
sus execution cost. The user (tester) can then choose the solution that best fits into the
available resources. It is important to highlight that, although the focus of our research is
the multi-objective TC selection problem, the proposed techniques can also be applied to
binary multi-objective optimization in other contexts.

Finally, it is also important to highlight that, to the best of our knowledge, there
is no other work, in literature, that applied PSO techniques into the multi-objective TC
selection problem (besides our previous work [de Souza et al. 2011]). Furthermore, we
point out that no other multi-objective TC selection work performed both structural and
functional testing in the same work. Hence, this is an promising study area, and this work
aims to explore it a little further by creating new multi-objective strategies for test case
selection.

The next section briefly presents search based concepts for TC selection. Section
3 explains our approach of multi-objective PSO for TC selection. Sections 3.2, 3.3 and 3.4
detail the implemented selection algorithms. Section 4 details the experiments performed
to evaluate the proposed algorithms and presents the obtained results. Finally, Section 5
presents some conclusions and future work.

2. Search Based Test Case Selection

As discussed before, although testing is central in the software development process, it is
sometimes neglected due to its high cost. A primary way to reduce software testing costs
is by reducing the size of test suites, since TS execution is resource consuming, and this
approach is known as Test Case selection. Given an input TS, TC selection aims to find a
relevant TC subset regarding some test adequacy criterion (such as the amount of code or
functional requirements covered by the chosen TC subset, for instance). Clearly, this task
should not be performed at random, since a random choice seldom returns a representative
TC subset.

A very promising approach for TC selection is to treat this task as a search opti-
mization problem [Yoo and Harman 2010a]. In this approach, search techniques explore
the space of possible solutions (subsets of TC), seeking the solution that best matches the
test objectives.

When analyzing which search based approach to use, we initially disregard the
exhaustive (brute-force) search techniques, since we are facing an NP-complete problem
[Lin and Huang 2009]. We also disregard random search since, when dealing with large
search spaces, random choices seldom deliver a representative TC subset regarding the
adopted test adequacy criterion. In this scenario, more sophisticated approaches, as search
based optimization techniques, should be considered to treat this problem.
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As known, optimization techniques in general demand the use of one or more
objective (fitness) functions, which will determine the quality of each possible so-
lution (a TC subset) regarding some chosen search criterion. Each fitness func-
tion corresponds to a different search objective. Regarding single-objective search
techniques applied to test case selection, we highlight the use of Simulated Anneal-
ing [Mansour and El-Fakih 1999], conventional Genetic Algorithms [Ma et al. 2005],
[Mansour and El-Fakih 1999] and PSO [de Souza et al. 2010]. Regarding multi-
objective techniques, we highlight [Yoo and Harman 2007, Yoo and Harman 2010b,
Yoo et al. 2011b, Yoo et al. 2011a, de Souza et al. 2011].

In this work, we developed two new multi-objective algorithms (the
CatfishBMOPSO-CDR and CatfishBMOPSO) by adding the catfish effect into the
BMOPSO-CDR and BMOPSO (see [de Souza et al. 2011]). Furthermore, the proposed
algorithms were applied to select structural and functional test suites. The objective
functions to be optimized were the branch coverage (for structural testing) or functional
requirements coverage (for functional testing), and the execution cost (in time) of the
selected TCs (for both approaches), in such a way that we maximize the first function
(coverage) and minimize the second one (cost). The proposed algorithms return a set of
non-dominated solutions (a Pareto frontier) considering the aforementioned objectives.
By receiving a set of diverse solutions, the user can choose the best one taking into ac-
count its current goals and available resources (e.g., the amount of time available at the
moment to execute the test cases).

It is not the purpose of this work to enter into a discussion concerning which
objectives are more important for the TC selection problem. Irrespective of arguments
about their suitability, branch or functional requirements coverage are likely candidates
for assessing quality of a TS, and execution time is one realistic measure of cost.

Furthermore, we can point out some previous work that applied PSO in Soft-
ware Testing, particularly for test case generation [Windisch et al. 2007] and for regres-
sion testing prioritization [Kaur and Bhatt 2011]. We can observe that the literature lacks
works applying multi-objective PSO into the TC selection problem. For functional testing
selection, we can only can only point out our previous work (see [de Souza et al. 2011]),
and for structural testing selection, to the best of our knowledge, there is no previous
work. Moreover, the catfish effect was not yet applied into a multi-objective context or
into TC selection problem. Hence, this is an promising study area and we explore it a
little further in this work by deploying new strategies that take this into account.

Following, Section 3 presents details of our multi-objective approach for test case
selection, and Section 4 brings the experiments performed to evaluate the proposed algo-
rithms.

3. Multi-Objective PSO to Test Case Selection
In this work, we propose some Particle Swarm Optimization (PSO) based algorithms to
solve multi-objective TC selection problems. In contrast to single-objective problems,
Multi-Objective Optimization (MOO) aims to optimize more than one objective at the
same time.

A MOO problem considers a set of k objective functions f1(x), f2(x), ..., fk(x) in
which x is an individual solution for the problem being solved. The output of a MOO
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algorithm is usually a population of non-dominated solutions considering the objective
functions. Formally, let x and x′ be two different solutions. We say that x dominates
x′ (denoted by x � x′) if x is better than x′ in at least one objective function and x is
not worse than x′ in any objective function. x is said to be not dominated if there is no
other solution xi in the current population, such that xi � x. The set of non-dominated
solutions in the objective space returned by a MOO algorithm is known as Pareto frontier.

The PSO algorithm is a population-based search approach, inspired by the be-
havior of birds flocks [Kennedy and Eberhart 1995] and has shown to be a simple and
efficient algorithm compared to other search techniques, including for instance the
widespread Genetic Algorithms [Eberhart and Shi 1998]. The basic PSO algorithm starts
its search process with a random population (also called swarm) of particles. Each par-
ticle represents a candidate solution for the problem being solved and it has four main
attributes:

1. the position (t) in the search space (each position represents an individual solution
for the optimization problem);

2. the current velocity (v), indicating a direction of movement in the search space;
3. the best position (̂t) found by the particle (the memory of the particle);
4. the best position (ĝ) found by the particle’s neighborhood (the social guide of the

particle).

For a number of iterations, the particles fly through the search space, being in-
fluenced by their own experience t̂ and by the experience of their neighbors ĝ. Particles
change position and velocity continuously, aiming to reach better positions and to improve
the considered objective functions.

3.1. Problem Formulation
In this work, the particle’s positions were defined as binary vectors representing candidate
subsets of TCs to be applied in the software testing process. Let T = {T1, . . . , Tn} be a
test suite with n test cases. A particle’s position is defined as t = (t1, . . . , tn), in which
tj ∈ {0, 1} indicates the presence (1) or absence (0) of the test case Tj within the subset
of selected TCs.

As said, two objective functions were adopted. The coverage (code branches or
functional requirements) objective (to be maximized) represents the amount (in percent-
age) of code branches (or functional requirements) covered by a solution t in compari-
son to the amount of covered by T . Formally, let C = {C1, . . . , Ck} be a given set of k
branches/functional requirements covered by the original suite T . Let F (Tj) be a function
that returns the subset of branches/functional requirements in C covered by the individual
test case Tj . Then, the coverage of a solution t is given as:

C Coverage(t) = 100 ∗
|⋃tj=1{F (Tj)}|

k
(1)

In eq. (1),
⋃

tj=1{F (Tj)} is the union of branches/functional requirements subsets
covered by the selected test cases (i.e., Tj for which tj = 1).

The other objective function (to be minimized) is the execution cost (the amount
of time required to execute the selected suite). Formally, each test case Tj ∈ T has a cost
score cj . The total cost of a solution t is then defined as:
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Cost(t) =
∑
tj=1

cj (2)

Finally, the MOO algorithms will be used to find a good Pareto frontier regarding
the objective functions C Coverage and Cost.

3.2. The BMOPSO-CDR algorithm
The Binary Multi-objective Particle Swarm Optimization with Crowding Distance and
Roulette Wheel (BMOPSO-CDR) was firstly presented in [de Souza et al. 2011]. It uses
an External Archive (EA) to store the non-dominated solutions found by the particles
during the search process. See [de Souza et al. 2011] for more details of BMOPSO-CDR
algorithm.

The following summarizes the BMOPSO-CDR:

1. Randomly initialize the swarm, evaluate each particle according to the considered
objective functions and then store in the EA the particles’ positions that are non-
dominated solutions;

2. WHILE stop criterion is not verified DO
(a) Compute the velocity v of each particle as:

v← ωv + C1r1(̂t− t) + C2r2(ĝ− t) (3)

where ω represents the inertia factor; r1 and r2 are random values in the
interval [0,1]; C1 and C2 are constants. The social guide (ĝ) is defined as
one of the non-dominated solutions stored in the current EA.

(b) Compute the new position t of each particle for each dimension tj as:

tj =

{
1, if r3 ≤ sig(vj)
0, otherwise (4)

where r3 is a random number sampled in the interval [0,1] and sig(vj) is
defined as:

sig(vj) =
1

1 + e−vj
(5)

(c) Use the mutation operator as proposed by [Coello et al. 2004];
(d) Evaluate each particle of the swarm and update the solutions stored in the

EA;
(e) Update the particle’s memory t̂;

3. END WHILE and return the current EA as the Pareto frontier.

3.3. The BMOPSO algorithm
The BMOPSO algorithm was created by merging the Multi-Objective Particle Swarm
Optimization proposed by Coello Coello et. al [Coello et al. 2004] and the binary version
of PSO proposed by Kennedy and Eberhart [Kennedy and Eberhart 1997].

Instead of using of using the crowding distance concept on EA’s solutions, it gen-
erates hypercubes on EA’s objective space and locate each solution within those hyper-
cubes. Each hypercube has a fitness corresponding to the number of solutions located in
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it. Hence, when choosing the social guide ĝ, a Roulette Wheel is used in order to favor the
choose of a solution in a less crowded hypercube. For more details about the BMOPSO
algorithm see [de Souza et al. 2011].

3.4. The CatfishBMOPSO-CDR and CatfishBMOPSO algorithms
The catfish effect derives its name from an effect that Norwegian fishermen observed
when they introduced catfish into a holding tank for caught sardines. The introduction
of a catfish, which is different from sardines, into the tank resulted in the stimulation of
sardine movement, thus keeping the sardines alive and therefore fresh for a longer time
[Chuang et al. 2011].

Similarly, the catfish effect is applied to the PSO algorithm in a such way that
we introduce “catfish particles” in order to stimulate a renewed search by the rest of the
swarm’s particles (the sardines). Hence, these catfish particles helps to guide the particles,
which can be trapped in a local optimum, to new regions of the search space, and thus
leading to possible better areas [Chuang et al. 2011].

Chuang et al. [Chuang et al. 2011] proposed that, if the best value found by the
swarm does not change after some iterations, it is considered stuck in a local optimum.
Under such circumstances, 10% of particles with the worst fitness value are removed and
substituted by catfish particles. The catfish particles are randomly positioned at extreme
points of the search space, and stimulate a renewed search process for the particles of the
swarm.

As the BMOPSO-CDR is an multi-objective algorithm, we needed to adapt the
catfish effect in order to create the CatfishBMOPSO-CDR. For that, the following steps
were introduced into the main loop (2) after step (e) of the BMOPSO-CDR algorithm:

1. IF the EA is not updated for 24 consecutive iterations1 THEN
2. FOR the number of times equivalent of 10% of swarm size DO

(a) Create a new solution t
(b) IF r4 < 0.5 THEN

tj = 1, ∀tj ∈ t
(c) ELSE

tj = 0, ∀tj ∈ t
where r4 is a random number sampled in the interval [0,1]

3. Randomly replace 10% of swarm’s solutions by the catfish solutions.

In the single objective approach for the catfish effect (see [Chuang et al. 2011]),
the authors needed to compare all the current solutions in order to find the worst solutions
(particles) to be replaced by the new ones (catfish particles). Contrarily, as in our MOO
approach we use an EA to store all best solutions (non-dominated solutions), we decided
to keep the addition of the catfish effect as simple as possible by randomly choosing
particles of current swarm to be replaced, instead of making comparisons to find the worst
ones.

Additionally, the CatfishBMOPSO algorithm was created by adding the catfish
effect into the BMOPSO algorithm using the same process of the CatfishBMOPSO-CDR.

1In [Chuang et al. 2011] they verify if the best value was not updated for 3 consecutive iterations, but,
after preliminary trial and error parameter tuning, we discover that 24 is a better value for our context.
Nevertheless, some future work is necessary in order to find the best value for our context.
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4. Experiments and Results
This section presents the experiments performed in order to evaluate the search algorithms
implemented in this work. The proposed multi-objective catfish approaches were com-
pared whit their former algorithms in order to verify wether the addition of catfish effect
has impact in the performance. For the structural testing scenario, the experiments were
performed using 5 programs from SIR [Do et al. 2005]. In turn, the functional testing
scenario, used test suites from the context of mobile devices2.

4.1. Experiments Preparation

For the structural testing selection, initially we selected 5 programs from SIR: part of
the Siemens suite (printtokens, printtokens2, schedule, schedule2), and the program space
from the European Space Agency. These real world applications range from 374 to 6,199
lines of code. Since each program has a large number of available test suites we randomly
selected 4 suites (referred here as T1, T2, T3 and T4) for each program. In Table 1 we give
more information about the programs.

Table 1. Characteristics of the SIR programs

Program Lines of Code Avg. suite size
printtokens 726 16
printtokens2 570 17
schedule 412 10
schedule2 374 12
space 6199 157

The execution cost information was computed for each test case by us-
ing the Valgrind profiling tool [Nethercote and Seward 2003], as proposed in
[Yoo and Harman 2007]. The execution time of test cases is hard to measure accurately
due to the fact that it involves many external parameters that can affect the execution time
as different hardware, application software and operating system. In order to circumvent
these issues, we used Valgrind, which executes the program binary code in an emulated,
virtual CPU. The computational cost of each test case was measured by counting the
number of virtual instruction codes executed by the emulated environment and it allows
to argue that these counts are directly proportional to the cost of the test case execution.
Additionally, the branch coverage information was measured using the profiling tool gcov
from the GNU compiler gcc (also proposed in [Yoo and Harman 2007]).

On the other hand, for the functional testing selection, we selected 2 test suites
related to mobile devices: an Integration Suite (IS) and a Regression Suite (RS). Both
suites have 80 TCs, each one representing an functional testing scenario. The IS is fo-
cused on testing whether the various features of the mobile device can work together, i.e.,
whether the integration of the features behaves as expected. The RS, in turn, is aimed
at testing whether updates to a specific main feature (e.g., the message feature) have not
introduced faults into the already developed (and previously tested) feature functionali-
ties. Contrarily to the structural suites, where each suite is intended to testing the related

2These suites were created by test engineers of the Motorola CIn-BTC (Brazil Test Center) research
project.
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program almost as whole, the used functional suites are related to a much more complex
environment. Hence, just a little portion of the mobile device operational system is tested.

The cost to execute each test case of the functional suite was measured by the
Test Execution Effort Estimation Tool, developed by [Aranha and Borba 2008]. The effort
represents the cost (in time) needed to manually execute each test case on a particular
mobile device. Each TC has annotated which requirements it covers, thus we used this
information in order to calculate the functional requirements coverage.

4.2. Metrics
In our experiments, we evaluated the results (i.e., the Pareto frontiers) obtained by the
algorithms, for each test suite, according to four different quality metrics usually adopted
in the literature of multi-objective optimization. The following metrics were adopted in
this paper: Hypervolume (HV) [Deb and Kalyanmoy 2001], Generational Distance (GD)
[Coello et al. 2007], Inverted Generational Distance (IGD) [Coello et al. 2007] and Cov-
erage (C) [Deb and Kalyanmoy 2001]. Each metric considers a different aspect of the
Pareto frontier.

1. Hypervolume (HV) [Deb and Kalyanmoy 2001]: computes the size of the domi-
nated space, which is also called the area under the curve. A high value of hyper-
volume is desired in MOO problems.

2. Generational Distance (GD) [Coello et al. 2007]: The Generational Distance
(GD) reports how far, on average, one pareto set (called PFknown) is from the
true pareto set (called as PFtrue).

3. Inverted Generational Distance (IGD) [Coello et al. 2007]: is the inverse of GD
by measuring the distance from the PFtrue to the PFknown. This metric is com-
plementary to the GD and aims to reduce the problem when PFknown has very
few points, but they all are clustered together. So this metric is affected by the
distribution of the solutions of PFknown comparatively to PFtrue.

4. Coverage (C) [Deb and Kalyanmoy 2001]: The Coverage metric indicates the
amount of the solutions within the non-dominated set of the first algorithm which
dominates the solutions within the non-dominated set of the second algorithm.
Both GD and IGD metrics requires that the PFtrue be known. Unfortunately, for

more complex problems (with bigger search spaces), as the space program, it is impos-
sible to know PFtrue a priori. In these cases, instead, a reference Pareto frontier (called
here PFreference) can be constructed and used to compare algorithms regarding the Pareto
frontiers they produce [Yoo and Harman 2010b]. The reference frontier represents the
union of all found Pareto frontiers, resulting in a set of non-dominated solutions found.
Additionally, the C metric reported in this work refers to the coverage of the optimal set
PFreference, over each algorithm, indicating the amount of solutions of those algorithms
that are dominated, e. g. that are not optimal.

4.3. Algorithms Settings
All the algorithms are run for a total of 200,000 objective function evaluations. The
algorithms used 20 particles, ω linearly decreasing from 0.9 to 0.4, constants C1 and C2

of 1.49, maximum velocity of 4.0 and EA’s size of 200 solutions. These values were the
same used in [de Souza et al. 2011] and represent generally used values in the literature.
As previously said, the catfish effect is applied whenever the EA not changes for 24
consecutive iterations.
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4.4. Results

After 30 executions of each TC selection algorithm, the values of branch/functional re-
quirements coverage and execution cost observed in the Pareto frontiers were normalized,
since they are measured using different scales. All the evaluation metric were computed
and statistically compared using the Mann-Whitney U test.

The Mann-Whitney U test is a nonparametric hypothesis test that does not require
any assumption on the parametric distribution of the samples. It tests the null hypothesis
that two independent groups are equal. In the context of this paper, the null hypothesis
states that, regarding the observed metric, two different algorithms produce equivalent
Pareto frontiers. The α level was set to 0.95, and significant p-values suggest that the null
hypothesis should be rejected in favor of the alternative hypothesis, which states that the
Paretor frontiers are different.

For the Siemens programs (printtokens, printtokens2, schedule and schedule2) we
performed an exhaustive search and found the true optimal Pareto frontier. This frontier
was compared with those produced by the selection algorithms, and we observed that, for
all cases, the selection algorithms were capable to find the true Pareto frontier, thus the
null hypothesis could not be rejected and, for the Siemens programs, all algorithms were
statistically equivalent. This happened due to the fact of the search spaces of the Siemens
programs were small, allowing the algorithms to easily find the optimal solution.

Additionally, the values of the metrics for the Siemens programs were not pre-
sented here because, as the values were equal, no important information can be retrieved
from them. Contrarily, the space program has a bigger search space (an average of 2157

combinations) and the algorithms performed differently in some cases. Furthermore, for
both space and mobile suites we do not performed exhaustive search due to the high com-
putational cost.

Tables 2 and 3 present the average values of the adopted metrics (for the space
and mobile suites), as well as the observed standard deviations. Additionally, asterisks
(*) were used to indicate whenever two values are considered statistically equal (i.e. the
null hypothesis was not rejected).

Regarding HV, IGD and C metrics, we can observe that the CatfishBMOPSO-
CDR and CatfishBMOPSO outperformed the others. This means that: they dominated
bigger objective space areas; were better distributed comparatively to optimal Pareto set
(represented by the PFreference); and were less dominated by the optimal Pareto set. How-
ever, regarding the GD metric, the catfish approaches worsened the former algorithms. It
is possible to observe that, for the GD metric, the BMOPSO-CDR and BMOPSO out-
performed the catfish approaches in almost all cases (except for the mobile regression
suite where the CatfishBMOPSO was not outperformed). This means, that the former
algorithms produce Pareto frontiers with better convergence to the optimal Pareto set.

Performing a deeper analysis on the produced Pareto frontiers, we observed that
the frontiers produced by CatfishBMOPSO-CDR and CatfishBMOPSO had more solu-
tions and were bigger than the frontiers produced by BMOPSO-CDR and BMOPSO.
This happens because, when introducing the catfish particles into the extremities of the
search space, it is expected that the catfish algorithms can find more solutions as well as
find solutions near to the extremities. However, by introducing the catfish particles, the
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Table 2. Mean value and standard deviation for the metrics - Program space
Metric Suite BMOPSO-CDR BMOPSO CatfishBMOPSO-CDR CatfishBMOPSO

HV

T1
0.804 0.799 0.864* 0.861*

(0.008) (0.009) (0.010) (0.008)

T2
0.779* 0.776* 0.847** 0.844**
(0.007) (0.007) (0.006) (0.010)

T3
0.815* 0.812* 0.871 0.864
(0.007) (0.007) (0.008) (0.009)

T4
0.795 0.789 0.857 0.849

(0.007) (0.008) (0.008) (0.008)

GD

T1
0.005* 0.004* 0.012** 0.013**
(0.001) (0.001) (0.002) (0.001)

T2
0.004* 0.004* 0.005 0.004

(8.8E-4) (8.5E-4) (8.8E-4) (9.8E-4)

T3
0.004* 0.004* 0.005 0.004*
(0.001) (9.2E-4) (9.2E-4) (9.2E-4)

T4
0.003* 0.003* 0.003** 0.003**

(6.7E-4) (5.9E-4) (8.2E-4) (8.0E-4)

IGD

T1
0.030* 0.030* 0.004 0.005
(0.001) (0.001) (6.2E-4) (0.002)

T2
0.027* 0.027* 0.003 0.004
(0.001) (0.001) (7.4E-4) (7.4E-4)

T3
0.027* 0.027* 0.003 0.004
(0.001) (0.001) (5.7E-4) (7.0E-4)

T4
0.026 0.028 0.003 0.003

(0.001) (0.001) (5.0E-4) (6.8E-4)

C

T1
0.99* 0.97* 0.94** 0.95**
(0.01) (0.07) (0.03) (0.01)

T2
0.97* 0.98* 0.92** 0.92**
(0.04) (0.03) (0.02) (0.01)

T3
0.97 0.98 0.91* 0.91*

(0.04) (0.08) (0.03) (0.02)

T4
0.98* 0.98* 0.93** 0.92**
(0.02) (0.02) (0.02) (0.02)

Table 3. Mean value and standard deviation for the metrics - Mobile suites
Metric Suite BMOPSO-CDR BMOPSO CatfishBMOPSO-CDR CatfishBMOPSO

HV
IS 0.599 0.593 0.621* 0.621*

(0.005) (0.005) (0.003) (0.004)

RS 0.800 0.793 0.815* 0.815*
(0.008) (0.007) (0.005) (0.006)

GD
IS 0.002* 0.002* 0.003 0.002*

(3.2E-4) (2.5E-4) (2.4E-4) (1.8E-4)

RS 0.004* 0.004* 0.010** 0.011**
(6.1E-4) (5.1E-4) (0.002) (0.001)

IGD
IS 0.007 0.008 0.002 0.83

(8.6E-4) (8.9E-4) (2.1E-4) (0.01)

RS 0.014 0.016 0.005* 0.005*
(0.002) (0.002) (0.001) (0.001)

C
IS 0.98 0.97 0.96* 0.95*

(0.01) (0.02) (0.01) (0.01)

RS 0.98 0.97 0.96* 0.95*
(0.01) (0.03) (0.01) (0.02)
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algorithms seemed to lose some sort of capability to refine the already found solutions
(the convergence was affected) and this directly impacted the GD metric.

Comparing the CatfishBMOPSO-CDR and CatfishBMOPSO, it is not possible to
point out the best, since there is no clear domination between them. For most of the
metrics they are statistically equal and sometimes one outperforms the other. In turn,
the same can be said about the comparison between BMOPSO-CDR and BMOPSO. The
results presented in [de Souza et al. 2011] differs from the presented here as there, the
BMOPSO-CDR algorithm was never outperformed by the BMOPSO. This happened due
to the use of different metrics to evaluate the algorithms. A future work is planned in
order to address which metrics are the best for our context.

5. Conclusion
In this work, we propose the addition of the catfish effect into the binary multi-objective
PSO approaches for both structural and functional TC selection. The main contribution
of the current work was to investigate whether this effect can improve the multi-objective
PSO approaches, from [de Souza et al. 2011], for selecting structural and functional test
cases considering both branch/functional requirements coverage and execution cost. We
highlight that the catfish effect in a multi-objective PSO was not yet investigated in the
context of TC selection (or in any other context). We also point out that the developed
selection algorithms can be adapted to other test selection criteria and are not limited to
two objective functions. Furthermore, we expect that the good results can also be obtained
on other application domains.

Expecting that the addition of catfish effect into multi-objective PSO could im-
prove its performance, we implemented two catfish binary multi-objective PSO al-
gorithms. We compared them with our former multi-objective PSO algorithms (the
BMOPSO-CDR and BMOPSO). In the performed experiments, the CatfishBMOPSO-
CDR and CatfishBMOPSO outperformed the others for all the metrics (except for the GD
metric). Hence, we can conclude that the catfish effect indeed introduced improvements
to the algorithms, but more research is necessary in order to prevent the negative impact
to the algorithms’ capacity of refine solutions. As future work we pretend to investigate
the use of local search algorithms in order to deal with this drawback.

Another future work is to perform the same experiments on a higher number of
programs in order to verify whether the obtained results are equivalent to those presented
here and whether these results can be extrapolated to other testing scenarios other than
the presented. Furthermore, we plan to determine whether the adopted metrics are indeed
suitable to measure the quality of test suites.

Also, we will investigate the impact of changing the PSO’s parameters in its per-
formance on the TC selection problem. Besides, we intend to implement add the catfish
effect with other multi-objective approaches for a more complete comparison between
techniques and to determine the distinct advantages of using the BMOPSO-CDR and
BMOPSO as basis.
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