
Modeling Communication Semantics for Distributed Systems
in Event-B∗

Fernando Luı́s Dotti 1 , Leila Ribeiro 2

1Faculdade de Informática - PUCRS - Porto Alegre - Brazil
fernando.dotti@pucrs.br

2Instituto de Informática - UFRGS - Porto Alegre - Brazil
leila@inf.ufrgs.br

Abstract. During the development of algorithms for distributed systems, one
has to adopt clear assumptions about the semantics offered by the underlying
communication platform in order to show that the algorithms under construc-
tion fulfill the expected liveness and safety properties. In this paper we propose
a library of reusable formal specifications defining several classic communica-
tion semantics. The specification of each communication semantics is presented
along with the proofs of the expected main properties of each model. The library
was build using Event-B and properties were shown using the theorem proving
approach with the Rodin system. While modeling a distributed application one
can reuse models from the proposed library (by refinement or extension) without
having to redo all the proofs related to the communication platform. Moreover,
existing proofs can be used to show desired properties of the application.

1. Introduction

Building dependable systems is not a trivial task and several means are employed to en-
hance system dependability. Fault-prevention [Laprie et al. 2004] through the use of for-
mal specification and analysis is one of those means.

When specifying and reasoning about distributed algorithms the assumptions
about the semantics of the communication platform should be clearly defined such that (i)
the desired properties of the algorithm are proven considering the appropriate communi-
cation semantics; (ii) the kind of target environment for the algorithm becomes explicit.
The use of formal specification and analysis methods for distributed systems is not re-
cent. Most commonly, specification languages support classic notions of processes and
synchronization. However, there are several possible communication models available to
build distributed algorithms. These models emerge from the combination of basic aspects
of the message passing mechanism such as one-to-one or group communication, reliable
or lossy, and several possible delivery orders (e.g.: unordered, FIFO, absolute, total and
causal). The specification of a distributed algorithm requires the modeling of the underly-
ing communication model, which is a non trivial task, as well as the distributed algorithm
itself. Therefore, a library of reusable formal specifications of relevant communication
models is highly desirable. This is the contribution of this paper, that provides formal
definitions of several communication semantics in the asynchronous model of computa-
tion, both for point-to-point as well as for group communications. More specifically, we
present 3 models for point-to-point communication: unordered, unordered lossy, and or-
dered message delivery; and 5 for group communication: unordered, fifo, total, absolute

∗This work is partially supported by FAPERGS and CNPq.

XIII Workshop de Testes e Tolerância a Falhas 101



and causal orders of message delivery. The specification of each model is characterized
by its main properties, that are then proven using the theorem proving approach.

Most of the approaches to formalize and reason about distributed systems are
based on model-checking, which is usually more amenable to non-theoreticians if com-
pared to theorem proving. One of the main advantages of model checking is that the pro-
cess of proving properties is fully automatic. However, there are some drawbacks of this
approach. One of them is the impossibility to handle infinite (or very large systems). An-
other relates to how model checkers are typically used. The common approach is to trans-
late a specification/program to the input language of the model checker and then verify the
properties using the tool. However, in most of the cases, there is no proof of correctness of
this translation. Such proofs are usually very involved (see e.g. [Ribeiro et al. 2011]), but
are absolutely necessary to ensure that the properties shown to hold by the model checker
will actually hold in the actual specification or implementation.

In the approach proposed in this paper, we use the theorem proving approach, rely-
ing on the Event-B method [Abrial 2010]. Event-B is based on B [Abrial 2005], but adds
the concepts of machine and events, that make the language very well-suited to the spec-
ification of distributed and concurrent systems. While analysis through theorem proving
is not fully automatic, it allows to consider infinite state systems or systems with arbi-
trary size. The refinement technique supported by Event-B allows stepwise developing of
systems, by gradually introducing implementation details. This way, the transformation
step from a very concrete Event-B specification (after a series of refinements) to code in
a programming language is easier to perform (and consequently less error prone). One
of the potential reasons for this increase of use of Event-B is the current tool support for
specification and theorem proving offered by the RODIN platform[DEPLOY Project ].

This paper is organized as follows: in Section 2 we present informally the several
communication models defined in the library; in Section 3 we review the Event-B formal
method; in Section 4 the library of communication models is presented, starting with basic
data structures, followed by models for point-to-point and group communication. Section
5 presents a discussion on how to use the proposed library, and Section 6 comments on
related work, future directions and conclusions.

2. Communication Models

In this contribution we focus on message passing communication. Within this scope, we
can classify communication according to the number of processes involved and the several
delivery orders. In the first dimension we have point-to-point1 or group communication;
and in the second dimension we have: unordered, fifo, causal and total (the last two
applicable only to group communication) [Birman 1996]. Combining these dimensions,
the following communication models for point-to-point communication were modeled:

• unordered, lossy channel: communication is among a producer and a consumer
part and messages can be delivered2 out of order as well as be lost;

• unordered, reliable: same as above, but all messages are delivered;
• FIFO: all messages are delivered in the order they are created.

1In this text also referred to as one-to-one.
2In the Distributed Systems literature message “delivery” means the arrival of a message at the destina-

tion and that the message can be consumed according to the communication criteria in use.

102 Anais



Note that we enumerate communication models according also to their non-determinism,
the former models exhibit a reacher behavior than the next ones. Regarding group com-
munication, the following orders were modeled:

• unordered: messages are delivered at the group members in any order;
• FIFO: any two messages from the same source are delivered at each member in

the order they were sent by the source. However, messages from different sources
may be delivered in different orders at different members;

• causal: message delivery is according to the “happened-before” (or ) relation-
ship by Lamport [Lamport 1978]; Any messagem delivered at processps before
it sendsm′ has to be delivered at processpr beforem′ is delivered. The causal
relation is transitive (ifm m′

 m′′ thenm m′′) and partial.
• total: messages are delivered in the same order within a group. This order is not

restricted to the order in which the messages were created, the important fact is
that delivery is identical in all processes belonging to the same group.

3. Event-B

Event-B [Abrial 2010] is a state-based formalism closely related to Classical B
[Abrial 2005].

Definition 1 (Event-B Model, Event) An Event-B Model is defined by a tuple
EBModel = (c, s, P, v, I, RI, E) wherec are constants ands are sets;v are the model
variables3; P (c, s) is a collection of axioms constrainingc and s; I(c, s, v) is a model
invariant limiting the possible states ofv s.t. ∃c, s, v · P (c, s) ∧ I(c, s, v) - i.e. P andI

characterise a non-empty set of model states;RI(c, s, v
′) is an initialisation action com-

puting initial values for the model variables; andE is a set of modelevents.

Given statesv, v′ an event is a tuplee = (H, S) whereH(c, s, v) is the guard and
S(c, s, v, v′) is the before-after predicate that defines a relation between current and next
states. We also denote an event guard byH(v), the before-after predicate byS(v, v′) and
the initialization action byRI(v

′).

A model has a set of possible initial states, defined by the initialization action, that
by construction satisfy the model’s invariantI. Given a states satisfyingI, an enabled
event ons leads to another states′ which also satisfiesI. The existence of such an enabled
event and the invariant non-violation are assured by construction trough a series of proof
obligations on each event of the model. The behavior of the model is obtained by the
application of every possible event to every valid state, starting from the set of states valid
according to the initialization action, giving rise to a state transition system.

To refine modelM we construct a new modelM ′ that is behaviorally related to
the old one. In Event-B, this is achieved by constructing a refinement mapping between
M ′ andM and by discharging a number of refinement proof obligations.

4. Formalizing Communication Semantics using Event-B

Now we present the library of formal specifications that represent the several communi-
cation semantics listed in Section 2. They were developed in Event-B, using a refinement

3For convenience, as in [Abrial 2005], no distinction is made between a set of variables and a state of a
system.

XIII Workshop de Testes e Tolerância a Falhas 103



approach. The invariants and variants are used to characterize and prove the main proper-
ties of each of these models.

The most abstract specification,M0, is the less restricted one in terms of possible
computations, and models basic elements of unordered reception in a lossy channel.M1
refinesM0 introducing the sender part and restricting the behavior to reliable channels.
M1loss refinesM0 analogously toM1, but allowing message loss.M2 refinesM1
including an order in message generation. In this model the order is not respected in the
reception,M2 models reliable unordered reception.M2ordered refinesM2 restricting
its computations to ordered reception of messages, modeling FIFO communication.

The most abstract group communication specification,M3, refinesM2 introduc-
ing: multiple processes with unique identifications; the concept of process group; message
addressing using groups; and multiple message reception (at each process in the destina-
tion group).M3 thus presents all basic elements to model unordered group communica-
tion. M3fifo, M3total andM3causal each refineM3 to restrict possible computations
representing, respectively FIFO, total, and causal orders in group communication.

Section 4.1 describes the data structures of the models; Sections 4.2 and 4.3
present the point-to-point and group communication models, respectively.

4.1. Basic Data Structures

The first step to construct a model using Event-B is to define the main types of elements
that play important roles in the reality being modeled. These types are defined asSets

in an Event-B context. Special elements of these types as well as basic operations to
manipulate them can be defined asConstants, the behavior of the operations is restricted
by stating suitableAxioms.

In the following, we present the main types used in our description of communi-
cation models. First, we present general structures that will be used both in point-to-point
as well as in group communication, and then we list the structures that are specific to
group communication. To ease understanding and save space, we will not use strictly the
Event-B syntax here. We will rather list the main sets, operations and axioms together
with informal explanations4. We also list some auxiliary theorems that were proven.

4.1.1. General Communication Structures

The basic data type in our communication models is a set of messages (Msgs). The
intuition is that this set should contain all messages that should be delivered in a system
in some period of time. We assume that this set is finite because in a any (finite) time
interval, it is not possible that an infinite number of messages is delivered. The number
of messages in this set is arbitrary, this is not stated in the model. We use two operations
on messages:idmsg, that returns the message identifier (modeled by a natural number),
andnext, that, given a set of messages, returns the one with the smallest identifier. These
structures can be seen in Figure 1. The operationidmsg is a total injective function,
guaranteeing that all messages have unique identifiers, whereasnext is a total function
mapping each non-empty subsetmsgs of Msgs to one of its messages, this function is

4In Event-B, names of operations are declared as constants and their types as axioms.

104 Anais



defined in axiomax1 by using the inverseidmsg−1 over the number that is the minimum
of all numbers in the range of a function obtained by restrictingidmsg to those pairs
whose domain is in the setmsgs. Theoremthe1 states that the identifier of thenext of a
group of messages is really the least one in this set. The fact that this theorem could be
proven assures that our definition of thenext operation is correct.

SETS

Msgs

OPERATIONS

idmsg: Msgs֌N

next: P1(Msgs) → Msgs

AXIOMS

ax1 : ∀msgs·msgs ⊆ Msgs ∧ msgs 6= ∅ ⇒ next(msgs) = idmsg−1(min(ran(msgs ⊳
idmsg)))

THEOREMS

the1 : ∀msgs·∀m·msgs ⊆ Msgs ∧ m ∈ msgs ⇒ (m 6= next(msgs) ⇒ idmsg(m) >
idmsg(next(msgs)))

Figure 1. Basic Data Structures

4.1.2. Group Communication Structures

To specify group communication, additionally to the set of messages we define the sets
of processes (Proc) and groups (Groups). These sets are also required to be finite. We
define 4 operations:idproc, that assigns a unique identifier to each process (a natural
number);source, that assigns a source process to each message;target, that assigns
a target group to each message; andmembers, that assigns a set of processes to each
group. These structures can be visualized in Figure 2.

SETS

Procs, Groups

OPERATIONS

idproc: Procs֌N

target: Msgs→ Groups
source: Msgs → Procs
members: Groups → P1(Procs)

Figure 2. Group Data Structures

4.2. Point-to-Point Communication

The behavior of each communication model will be described by corresponding Event-B
machines. A machine is defined by a set of variables, describing states; a set of invariants,
used to define the types of variables and state properties that should remain the same
throughout execution; a variant, that is an expression used to prove termination; and a set
of events, that actually define which state changes may occur. In the following, we start
with a very abstract machine, representing a system that might behave well, but might
also lose messages, and refine it further until we get a model in which we can guarantee
that all messages arrive in the same order they were generated.

XIII Workshop de Testes e Tolerância a Falhas 105



Again, we will not follow strictly the Event-B syntax. We willdescribe the set
of variables of each machine, together with the corresponding types (instead of declaring
the types using invariants), the relevant invariants/variant and all events. The initialization
event will be omited because it is typically trivial.

4.2.1. Model M0

We start with a very simple machine with one variable (deliveredMsgs) that describes
the set of messages that have been successfully delivered. This set is of course a subset of
the set of all messages that should be delivered (Msgs). The guard of theRECEIVEor-
LOSEevent assures that it may only happen if there is a messagem that has not yet been
delivered. The action is to update the set of delivered messages. However, at this abstract
level, the action is a non-deterministic assignment modeling the fact that this message
may either be delivered or not. Figure 3 presents this model.

MACHINE M0
VARIABLES

deliveredMsgs ⊆ Msgs

EVENTS

Event RECEIVEorLOSÊ=

any m
where

grd1 : m /∈ deliveredMsgs
grd2 : m ∈ Msgs

then
actDeliv : deliveredMsgs :∈ {deliveredMsgs, (deliveredMsgs ∪ {m})}

Figure 3. Machine Model 0

4.2.2. Model M1

In the previous model, it was not possible to guarantee that all messages would eventually
be delivered. Actually, it was possible that messages get lost (or that the event deliver do
nothing). Now, we will add a set of messages that have been generated in the network
and have not yet been delivered (calledcurrentMsgs). The main invariant is that there
is no message that can be currently in the network and have been delivered (invMsgs).
We included an event that generates messages (eventSEND, it just picks a message that
has not yet been generated and includes it in thecurrentMsgs set. Invariant,invEnable
assures that the occurrence of eventSENDenables the occurrence of eventRECEIVE(it
makes the guard ofRECEIVEtrue). The eventRECEIVEwas then refined to actually
remove the message from thecurrentMsgs set and include it in thedeliveredMsgs set.
The variant assures that, if we consider just the deliver event, the set of delivered messages
always grows (formally, this is represent by the fact that the number of elements of set
Msgs minus setdeliveredMsgs decreases). Since the set of all messages that should
be delivered is finite, this variant guarantees that eventually all messages will reach their
destinations. The statusconvergent in the description of an event means that this event
should be considered to prove the variant. Since all occurrences of eventSENDenable
an occurrence ofRECEIVE, the former can be seen as an intermediate step to deliver

106 Anais



messages. This model is shown in Figure 4. Note that, since this model is a refinement of
M0, we only present in Figure 4 the newly introduced variables and invariants, as well as
new guards and new/modified actions in the events.

MACHINE M1
REFINESM0
VARIABLES

currentMsgs ⊆ Msgs

INVARIANTS

invMsgs : deliveredMsgs ∩ currentMsgs = ∅

invEnable : (∃m·m ∈ currentMsgs⇒ (m ∈ Msgs ∧ m /∈ deliveredMsgs))

VARIANT

Msgs \ deliveredMsgs

EVENTS

Event SEND =̂

any m
where

grd1 : m ∈ Msgs
grd2 : m /∈ currentMsgs
grd3 : m /∈ deliveredMsgs

then
actCurrent : currentMsgs := currentMsgs ∪ {m}

Event RECEIVE1=̂ refines RECEIVE
status CONVERGENT

any m
where

grd3 : m ∈ currentMsgs
then

actDeliv : deliveredMsgs := deliveredMsgs ∪ {m}
actCurr : currentMsgs := currentMsgs \ {m}

Figure 4. Machine Model M1

4.2.3. Model M1loss

Alternatively, RECEIVEevent could be refined in two different events, one delivering
a message and another losing it (removing fromcurrentMsgs and not including it in
deliveredMsgs). In this case, it is possible to prove that eventually all messages would
either be delivered or lost. Due to space limitations, this model will not be shown here.

4.2.4. Model M2

To be able to show that messages arrive in the same order in which they were generated,
the first step is to assume a generation order. This will be done in this model, called M2,
that refines model M1. We used an auxiliary variable calledgeneratedMsgs, that is just
the union of the sets of current and delivered messages. To generate messages in some
order, we assume that each message in the set of messages to be delivered (setMsgs)
has a unique message identifier (given by functionidmsg). This identifier is a natural
number, and the order in which messages are generated will obey theless order between

XIII Workshop de Testes e Tolerância a Falhas 107



natural numbers (that is a total order). The invariant that guarantees the generation order
(invGenOrder) states that all messages that have been generated in the network must
have identifiers that are less than identifiers of non-generated messages. This model is
depicted in Figure 5. Note that, with respect to model M1, only eventSENDis refined, and
therefore the variant remains true (assuring that all messages will be eventually delivered).
In the SEND2event we require, additionally to the guards ofSEND1, that the message
that was chosen to be generated has the least identifier among all non-generated messages.

MACHINE M2
REFINESM1
VARIABLES

generatedMsgs ⊆ Msgs

INVARIANTS

invGen : deliveredMsgs ∪ currentMsgs = generatedMsgs
invGenOrder: ∀mc·∀md·mc ∈ generatedMsgs ∧

md ∈ Msgs \ (generatedMsgs) ⇒ idmsg(md) > idmsg(mc)

EVENTS

Event SEND2=̂ refines SEND

any m
where

grd4: m = next(Msgs \ generatedMsgs)
then

actGen: generatedMsgs := generatedMsgs ∪ {m}
Event RECEIVE2=̂ RECEIVE1

Figure 5. Machine Model M2

4.2.5. Model M2ordered

To be able to prove that messages are delivered in the same order in which they were
generated, we need, additionally to the invariantinvGenOrder of the previous model, to
guarantee that any message that have been delivered has an identifier that is less than all
identifiers of messages currently in the network. This is stated by invariantinvOrder ,
that is satisfied by model M2ordered, that is a refinement of model M2.

MACHINE M2ordered
REFINESM2
INVARIANTS

invOrder : ∀mc·∀md·mc ∈ currentMsgs ∧ md ∈ deliveredMsgs ⇒ idmsg(mc) >
idmsg(md)

EVENTS

Event SEND2order̂= SEND2

Event RECEIVE2order̂= refines RECEIVE2
status CONVERGENT

any m
where

grd4 : m = next(currentMsgs)

Figure 6. Machine Model M2ordered

108 Anais



4.3. Group Communication

To model group communication, we use both the general as well as the group data struc-
tures (Figures 1 and 2). Now, each message in theMsgs set has the information about its
source process and its target group. Therefore, when one message from this set is chosen
to be delivered, one copy is generated for each of the processes belonging to the target
group, building thecurrentGMsgs set. When messages are delivered to one of the pro-
cesses of the group, they are transferred to thedeliveredGMsgs set. Only when the last
copy of the same message is delivered, the message is transferred from thecurrentMsgs

to the deliveredMsgs (refining the eventRECEIVEfrom the previous models). The
invariants that describe the different group communication models are defined over the
currentGMsgs anddeliveredGMsgs sets. In the following we present the basic model
for group communication (model M3), and then refine it to generate 3 different models,
corresponding to FIFO order, causal order and total order of message delivery.

4.3.1. Model M3

As discussed above, the variables introduced in this model arecurrentGMsgs and
deliveredGMsgs sets, that are similar to their counterparts in the point-to-point commu-
nication, but have several copies of the same message, one for each of its target processes.
Instead of just messages, these sets contain pairs of message and target process. This
model is constructed as a refinement of model M2, assuring that all messages are even-
tually delivered. A number of invariants were included that guarantee the consistency
between the existing and the new variables. For example, invariantinvCons1assures that
only copies of messages that are in thecurrentMsgs set can be in thecurrenGMsgs set.
InvariantinvCons2guarantees that for any messagem that is incurrentMsgs, all copies
of m (described by restricting the setcurrentGMsgs to the domain{m}) are actually
addressed to targets ofm. Analogous invariants exist for delivered messages. Finally,
invariantinvCon6 states that for any messagem that was generated in the network, there
is one copy for each of its target processes (this copy can be either in thecurrentGMsgs

set or in thedeliveredGMsgs set). Moreover, there can be no copy of this message to
any process that does not belong to the members of the target group. The variant assures
that the set of copies of messages that should be delivered is always becoming smaller
(and thus eventually all messages will be delivered). There is still an event that describes
the complete delivery of one message (the delivery of the last of the copies), and this
event refines the one of the more abstract level. We include a new event that model the
delivery of messages that are not the last one. The guards are practically the same, except
of guardgrd7, that checks whether the copy is the last one or not. The behavior of the
event, considering the setscurrentGMsgs anddeliveredGMsgs is the same, but the
partial receive event does not update other variables (and therefore, is not observable at
the abstract level). The next three models are refinements of this model.

4.3.2. Model M3fifo

To model FIFO communication, we defined invariantinvFIFO . This invariant states that
whenever there are two different messagesmc and md having the same processp as

XIII Workshop de Testes e Tolerância a Falhas 109



MACHINE M3
REFINESM2
VARIABLES

currentGMsgs ⊆ (currentMsgs × Procs)

deliveredGMsgs ⊆ (generatedMsgs× Procs)

INVARIANTS

invDelCurr : deliveredGMsgs ∩ currentGMsgs = ∅

invCons1 : currentMsgs = dom(currentGMsgs)
invCons2 : ∀m·m ∈ currentMsgs ⇒ {m} ⊳ currentGMsgs ⊆ ({m} ×

members(target(m)))
invCons3 : deliveredMsgs ⊆ dom(deliveredGMsgs)
invCons4 : ∀m·m ∈ deliveredMsgs⇒ m /∈ dom(currentGMsgs)
invCons5 : ∀m·m ∈ deliveredMsgs⇒{m}×members(target(m)) ⊆ deliveredGMsgs
invCons6 : ∀m·m ∈ generatedMsgs ⇒ ({m} ⊳ currentGMsgs) ∪ ({m} ⊳

deliveredGMsgs) = ({m} × members(target(m)))

EVENTS

Event SEND3=̂ refines SEND2

any m
then

actCurrentG : currentGMsgs := currentGMsgs ∪ ({m} ×
members(target(m)))

Event RECEIVE3=̂ refines RECEIVE2
status CONVERGENT

any m, p
where

grd4 : p ∈ Procs
grd5 : p ∈ members(target(msg))
grd6 : p /∈ ran({m}⊳ deliveredGMsgs)
grd7 : ran({m}⊳ deliveredGMsgs) ∪ {p} = members(target(msg))

then
actCurrentG : currentGMsgs := currentGMsgs \ {(m 7→ p)}
actDeliverG : deliveredGMsgs := deliveredGMsgs ∪ {(m 7→ p)}

Event PART-RECEIVE3̂=
status CONVERGENT

any m, p
where

grd1 : msg /∈ deliveredMsgs
grd2 : msg ∈ Msgs
grd3 : msg ∈ currentMsgs
grd4 : p ∈ Procs
grd5 : p ∈ members(target(msg))
grd6 : p /∈ ran({m}⊳ deliveredGMsgs)
grd7 : ran({m}⊳ deliveredGMsgs) ∪ {p} ⊂ members(target(msg))

then
actCurrentG : currentGMsgs := currentGMsgs \ {(m 7→ p)}
actDeliverG : deliveredGMsgs := deliveredGMsgs ∪ {(m 7→ p)}

Figure 7. Machine Model M3

110 Anais



target, one of them currently in the network (mc) and the other already delivered (md),
and the source of these two messages is the same process, the identifier of messagemc

must be greater than the one ofmd (remind that messages with smaller identifier are
always generated before messages with greater ones). This assures that a process can not
receive messages from another process in an order that was different from the one they
were generated. Note that this invariant does not restrict the order in which messages
from different processes are received. To implement this model, we just need to include
one extra guard in the receipt events (guardgrd8), that assures that the message being
chosen to be delivered (m) has the least identifier among all messages from the same
source process that are currently in the network. Due to lack of space, we will only depict
eventRECEIVE3fifo, eventPART-RECEIVE3fifois analogous.

MACHINE M3fifo
REFINESM3
INVARIANTS

invFIFO: ∀p·∀mc·∀md·p ∈ Procs ∧ (mc 7→ p) ∈ currentGMsgs ∧ (md 7→ p) ∈
deliveredGMsgs ∧ source(mc) = source(md)
⇒ idmsg(mc) > idmsg(md)

EVENTS

Event SEND3fifo=̂ SEND3

Event RECEIVE3fifô= refines RECEIVE3
status CONVERGENT

any m
where

grd8: ∀msg ·msg ∈ currentMsgs ∧ source(m) = source(msg)
⇒ idmsg(m) < idmsg(msg)

Figure 8. Machine Model M3fifo

4.3.3. Model M3total

Total order is achieved by invariantinvTOTAL requiring that if a messagem1 has been
delivered for processp1 and there is another messagem2 for p1 currently in the network,
if m2 has already been delivered for any other processp2 that is also in the target group of
messagep1, thanm1 must have also been delivered forp2. This assures that messages to
the same targets arrive in the same order. The implementation of this behavior occurs in
the receive events, that must have an additional guard (grd8) guaranteeing that, whenever
messagem is chosen to be delivered to processp, p has already received all messages that
all other processes that have alsom as target have received.

4.3.4. Model M3causal

Finally, to model causal order we included a new variable calledorder, that records the
causal order in which messages are delivered. This order is built incrementally during
execution: once a message is generated, it causally depends on all messages that the
source process of this message have received. This is described by actionactOrder in the
eventSEND3causal. The invariant that describes causal order isinvCAUSAL , that states
that if a processp received a messagem1 and did not receivem2 yet, thanm2 can not be a

XIII Workshop de Testes e Tolerância a Falhas 111



MACHINE M3total
REFINESM3
INVARIANTS

invTOTAL: ∀p1·∀p2·∀m1·∀m2·
((m1 7→ p1) ∈ deliveredGMsgs ∧ (m2 7→ p1) ∈ currentGMsgs) ⇒
((m2 7→ p2) ∈ deliveredGMsgs ⇒ (m1 7→ p2) ∈ deliveredGMsgs)

EVENTS

Event SEND3total̂= SEND3

Event RECEIVE3total̂= refines RECEIVE3
status CONVERGENT

any m
where

grd8: ∀p1·p1 ∈ members(target(msg)) ⇒ (∃m1·(m1 7→ p1) ∈
deliveredGMsgs ∧ p ∈ members(target(m1)) ⇒
(m1 7→ p) ∈ deliveredGMsgs)

Figure 9. Machine Model M3total

cause ofm1. Upon reception of a message, we have to make sure that all possible causes
of this message have already been received (guardgrd8). In Figure 10 we omitted some
invariants about the causal order (assuring that is is irreflexive, antisymmetric, transitive,
and that the causal order is compatible with the order of identifiers).

MACHINE M3causal
REFINESM3
VARIABLES

order ⊆ generatedMsgs× generatedMsgs

INVARIANTS

invCAUSAL: ∀p·∀m1·∀m2·((m1 7→ p) ∈ deliveredGMsgs ∧
(m2 7→ p) ∈ currentGMsgs) ⇒ (m2 7→ m1 /∈ order)

EVENTS

Event SEND3causal̂= refines SEND3

any m
then

actOrder : order := order ∪ ((dom(deliveredGMsgs⊲ {source(m)})
∩ dom(target⊲ {target(m)})) × {m})

Event RECEIVE3total̂= refines RECEIVE3
status CONVERGENT

any m, p
where

grd8: ∀msg ·msg 7→ p ∈ currentGMsgs ∧ m 6= msg ⇒ msg 7→ m /∈ order

Figure 10. Machine Model M3causal

5. Using the Library of Communication Models
With the proposed library of communication models, a developer of a distributed algo-
rithm would first choose the appropriate communication model specification, matching
the assumptions of the algorithm in terms of communication type (group or point-to-
point) and message ordering, and then would refine that specification to represent the
specific aspects of the distributed algorithm.

112 Anais



As an example, we have modeled a mutual exclusion distributedalgorithm based
on the one proposed by [Ricart and Agrawala 1981]. That algorithm defines how a group
of processes should collaborate to assure deadlock- and starvation-free mutual exclusion.
A process that wants to enter the critical section sends a request to all group members.
Each member has to eventually answer the request giving permission to the originator.
When the originator receives permissions from all the processes, then it is allowed to
enter the critical section. The access is assured to be linearized because a process in the
critical section or processes that compete for the critical section, and have priority over
others, do not send back permissions until they leave their critical session. Priority is
decided homogeneously using a message sequence number scheme.

In our exercise, instead of dealing with sequence numbers, we choose the group
communication system to offer the total order delivery and build a mutual exclusion pro-
tocol based on that. To entry the critical session the procedure is the same as above. Now,
relying on the total ordering of messages, when the originator process receives its own
request it delays answers to requests by others until it leaves its own critical section. Any
request by other processes that arrives prior to its own request is answered with permis-
sion. This example is interesting because the fundamental properties of the algorithm are
built relying on the communication semantics which is explicitly stated and proved in the
library. Due to space restrictions a detailed presentation of the example is not possible.

6. Final Considerations

As mentioned before, formal specification and analysis of distributed algorithms is not
recent. Most commonly, one can observe the use of specification languages such as
Pi-calculus [Milner 1999], CSP [Hoare 1985], I/O Automata [Lynch and Tuttle 1989],
PROMELA [Holzmann 1997], that support notions of processes and communication
channels. PROMELA, for instance, supports channels suited to model one to one com-
munication. I/O Automata and some process calculi languages allow the synchronization
of multiple processes in a channel. While this can be used as an abstraction to group com-
munication, it does not represent important details in an asynchronous distributed setting
where arbitrary communication delays may happen between any two pairs of processes
and give rise to several possible delivery orders.

Efforts for a formal representation of middleware and some available communica-
tion mechanisms can be witnessed in the literature. For instance, in [Bryans et al. 2009]
the authors model middleware behavior to assess its impact in the design of distributed
applications. As a part of that, some aspects of the communication platform are mod-
eled. However, only a restricted subset of communication models is considered. In
[Hoang et al. 2009] the authors propose the use of specification patterns as means to foster
the reuse of specifications and proofs. As example, they model some one-to-one commu-
nication mechanisms as patterns. A system designer could then adopt one such pattern in
a guided refinement step, what would ease the integration of communication mechanisms
to the design of a system. Despite these contributions, we could not find support for a
more comprehensive set of communication models in a way that would enable reuse of
specifications and proofs when designing and reasoning about distributed algorithms.

Differently of building a specific distributed algorithm, in this paper we have pro-
posed a library of specifications, for several communication semantics, with their main

XIII Workshop de Testes e Tolerância a Falhas 113



properties proven. Approximately 170 proof obligations were generated by the platform
and proved interactively. A developer of a distributed algorithm can reuse the specification
that matches the assumptions of the algorithm in terms of type, ordering and reliability of
the communication mechanism. This reuse includes the reuse of all existing proofs.

This was the first step towards the construction of a formal framework for the ver-
ification of distributed algorithms using theorem proving. Ongoing work is the modeling
and verification of distributed algorithms as case studies. Future work includes extending
modeling abstractions to other features of group communication.

References
Abrial, J. R. (2005).The B-Book: Assigning Programs to Meanings. Cambridge Univer-

sity Press.

Abrial, J.-R. (2010).Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edition.

Birman, K. P. (1996).Building secure and reliable network applications. Manning Pub-
lications, USA.

Bryans, J., Fitzgerald, J., Romanovsky, A., and Roth, A. (2009). Formal modelling and
analysis of business information applications with fault tolerant middleware. InPro-
ceedings of the 2009 14th IEEE International Conference on Engineering of Complex
Computer Systems, ICECCS ’09, pages 68–77. IEEE Computer Society.

DEPLOY Project. Event-b and the rodin platform. http://www.event-b.org/ (last accessed
April 2nd 2012).

Hoang, T. S., Fürst, A., and Abrial, J.-R. (2009). Event-B patterns and their tool sup-
port. In Hung, D. V. and Krishnan, P., editors,SEFM, pages 210–219. IEEE Computer
Society.

Hoare, C. A. R. (1985).Communicating Sequential Processes. Prentice Hall.

Holzmann, G. J. (1997). The model checker SPIN.IEEE Trans. on Soft. Eng., 23(5):279–
295.

Lamport, L. (1978). Time, clocks and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565.

Laprie, J.-C., Randell, B., Avizienis, A., and Landwehr, C. (2004). Basic concepts and
taxonomy of dependable and secure computing.IEEE Trans. Dependable Secur. Com-
put., 1(1):11–33.

Lynch, N. and Tuttle, M. (1989). An introduction to input/output automata.CWI-
Quarterly, 2(3):219–246.

Milner, R. (1999). Communicating and mobile systems: theπ-calculus. Cambridge
University Press, USA.

Ribeiro, L., dos Santos, O. M., Dotti, F. L., and Foss, L. (2011). Correct transformation:
From object-based graph grammars to promela.Science of Computer Programming,
In Press, Corrected Proof:–.

Ricart, G. and Agrawala, A. K. (1981). An optimal algorithm for mutual exclusion in
computer networks.Commun. ACM, 24(1):9–17.

114 Anais




