

Embedded Critical Software Testing for Aerospace
Applications based on PUS

Rodrigo P. Pontes1, Eliane Martins2, Ana M. Ambrósio3, Emília Villani1

1Instituto Tecnológico de Aeronáutica (ITA)
Vila das Acácias, CEP 12.228-900 – São José dos Campos – SP – Brazil

2Instituto de Computação – Universidade Estadual de Campinas (Unicamp)
Avenida Albert Einstein, 1251, CEP 13083-970, Campinas – SP – Brazil

3Departamento de Sistemas e Solo – Instituto Nacional de Pesquisas Espaciais (INPE)
Avenida dos Astronautas, 1758, CEP 12227-010, São José dos Campos – SP – Brazil

{rpastl,evillani}@ita.br, eliane@ic.unicamp.br, ana@dss.inpe.br

Abstract. This paper discusses the practical experience of verifying an On-
Board Data Handling (OBDH) software to be used in a future satellite
application at INPE using the CoFI testing methodology. This technique is
proper for aerospace applications and is based on modeling the system under
test as finite state machines. The test cases are automatically generated from
the developed models. The OBDH software considered in this paper follows
the PUS standard from European Cooperation for Space Standardization,
which is being adopted in Brazil. Among the important issues analyzed by this
practical experience are the errors found, the time required for the modeling
activity, the time required for testing, the reusability of the test cases, among
others.

1. Introduction

During last decades, the software role in space embedded systems has increased.
However, the attention and efforts dedicated to its design and verification have not
increased in the same way. Hardware is still the main concern of the development of
embedded systems. When the project resources are limited, the efforts are addressed to
hardware issues rather than software. As a consequence, software is also playing a
significant role in accidents, Leveson (2005).

 Considering this scenario, this work analyzes one specific technique for the
verification of space embedded software: the CoFI (Conformance and Fault Injection),
Ambrosio (2005). CoFI is a model based testing methodology that uses state machines
to represent the behavior of the system under different assumptions. The test cases are
generated automatically from these models and they are applied to the system under
test.

 The main purpose of this work is not to compare this methodology to others, but
to identify the advantages and the limits of its utilization through a practical experience,
a practical case study. The comparison among others testing methodologies were
performed in Ambrosio(2005).

XI Workshop de Testes e Tolerância a Falhas 119

 This work discusses the results of the application of the CoFI testing
methodology into a case study in the space area: the on-board data handling (OBDH)
software to be used in a future satellite application at INPE. This OBDH is being
developed using an object-oriented implementation, Arias et al. (2008).

 The OBDH software is based on the PUS (Package Utilization Standard), a
proposal of the European Cooperation on Space Standardization (ECSS) that have also
been adopted in Brazil. The use of standards in space area has been motivated by time-
saving and dependability-improvement of the software development. The application of
a testing methodology based on models that are derived from a standard will
consequently reduce the cost with tests. The modeling process performed in this work is
general, because it is developed from the PUS standard.

 For this case study, important issues related to the CoFI applicability are
discussed, such as the size of the models, the time spent on modeling the system, the
time spent on the application of the tests, the number of errors detected, how critical the
detected errors are, among others.

 This work is organized as follows: Section 2 introduces the CoFI methodology
and the Condado tool. Section 3 discusses previous works developed with the CoFI.
Section 4 presents the PUS standard and details the telecommand verification service.
This service is used is Section 5 to present the application of CoFI to the OBDH
software including the models, the test cases and the results. The Section 6 brings some
conclusions and discusses the contributions of this work.

2. CoFI Testing Methodology and the Condado Tool

The CoFI Testing Methodology consists of a systematic way to create test cases for
space software. The CoFI is comprised of steps to identify a set of services. Each
service is represented in finite state machines. The models represent the behavior of the
System Under Test (SUT) under the following classes of inputs arriving: (i) normal, (ii)
specified exceptions, (iii) inopportune inputs and (iv) invalid inputs caused by hardware
faults.

 The software behavior is represented by small models taking into account the
decomposition in terms of: (i) the services provided by software and (ii) the types of
behavior under the classes of inputs. The types of behavior defined in the context of the
CoFI are: Normal, Specified Exception, Sneak Path, and Fault Tolerance. These
behaviors are respectively associated to the following inputs: normal, specified
exceptions, inopportune and invalid inputs. More than one model can be created in
order to represent a type of behavior for a given service.

 After the creation of the partial models, each model is submitted to the Condado
tool that is able to tour the model, Martins (1999). The Condado tool generates the test
cases from these models combining different sequences of inputs. Each test case is a
sequence of inputs and its expected output(s) associated to the transitions of a tour.
Each tour ends in the final state, if the final state is the initial state, the application of
the test cases is performed without restarting the system. The CoFI test case set is the
union of the test cases generated from each model and must cover all the transitions of
the finite state machine models.

120 Anais

The main reasons of choosing the Condado tool are: the generation of
independent test cases; the cover of all transitions of the model; availability of the tool;
and the validity of all test cases. The latter is justified by the fact that all test cases are a
sequence of inputs that starts in an initial state and they are led to a final state. The
disadvantage is the generation of possible repeated test cases.

The generation of the test cases manually, besides being a tough task, might
introduce errors during the process. Thus, as there was already an automatic tool for
generating test cases, it was used.

It is not crucial the utilization of the Condado tool. Other tools can be used,
provided that it covers, at least, all the transitions of the model and it accepts partial
finite state machines.

3. Other CoFI Applications

In Ambrosio et al. (2008), the CoFI testing methodology was applied in the context of
an independent software verification and validation process of the Quality Software
Embedded in Space Missions (QSEE) Project carried on at INPE. The software under
test in the QSEE Project is the software embedded in the Payload Data Handling
Computer, which is part of a scientific X-ray instrument onboard of a scientific satellite
under development at INPE. The CoFI methodology served as a guideline to focus the
tester‟s attention on the faults and exceptions that occur during the software‟s operation,
leading to situations that the developers had not thought of.

 Pontes et al. (2009) compares two different verification techniques: model
checking and the CoFI Test methodology. It uses an automatic coffee machine example
as a case study to show the contributions of each technique. Because of weak points
identified in both techniques, the work conclusion is that the two techniques are
complementary to each other. The main contributions of the techniques are the
detection of incomplete and inconsistent requirements, the introduction of testability
requirements and an adequate treatment of all exceptions.

 In Morais and Ambrosio (2010), an adaptation of the CoFI is proposed to be
applied in the initial phases of the software development, as a new approach to refine
software requirements. The new approach is applied to precisely define the operation
requirements of a satellite.

4. Application with PUS standard

This section introduces the PUS Standard and details the “Telecommand Verification
Service”. This service is used as an example in the next section to illustrate the
application of CoFI to the OBDH software.

4.1. The PUS Standard

The PUS (Packet Utilization Standard) is one of the standards of the ECSS (European
Cooperation for Space Standardization), released in January 2003. The ECSS is an
effort of European national agencies and European industrial associations to develop
and maintain common standards. The main benefits of these standards are the costs and
efforts reduction regarding conception and development of space missions, ECSS
(2003).

XI Workshop de Testes e Tolerância a Falhas 121

 The PUS, or the ECSS-E-70-41A standard, focuses on the ground and systems
operations related to the utilization of telecommand and telemetry packets. It
standardizes these packets and describes sixteen services which the OBDH (On-Board
Data Handling) should provide. Figure 1 shows these sixteen services. The underlined
service is the one used in this work.

 Each service has an identification called “Type”. Depending on the type of the
service, there are specific activities, called “Subtypes”, which are responsible for
performing the user´s request. Therefore, the telecommand and telemetry packets are
variable: they may correspond to the chosen type and subtype. Figure 2 shows the fields
of a telecommand packet, highlighting the field “Data Field Header”, where the type
and subtype are defined in the request. The PUS addresses the shaded fields, although
some of the white fields, such as “Packet ID Type” and “Packet ID Data Field Header
Flag”, have also been defined in PUS with default values.

Telecommand
Verification
Service

Event Reporting
Service

On-Board
Operations
Scheduling
Service

On-Board Storage
and Retrieval

Service

Device Command
Distribution
Service

Memory
Management

Service

On-Board
Monitoring
Service

Test Service

Housekeeping
and Diagnostic
Data Reporting

Service

Function
Management

Service

Large Data
Transfer
Service

On-Board
Operations
Procedure
 Service

Parameter
Statistics

Reporting Service

Time
Management

Service

Packet
Forwarding
Control
 Service

Event-Action
Service

Figure 1. PUS Services.

122 Anais

Packet
Length

Packet Header (48 Bits) Packet Data Field (Variable)

Packet ID
Packet Sequence

Control

Version
Number

(=0)

Type
(=1)

Data
Field

Header
Flag

Application
Process ID

Sequence
Flags

Sequence
Count

3 Bits 1 Bit 1 Bit 11 Bits 2 Bits 14 Bits

16 Bits 16 Bits 16 Bits

Data
Field

Header

Variable

Application
Data

Variable

Spare

Variable

Packet
Error

Control

16 Bits

Enumerated
(8 Bits)

Service
Type

Enumerated
(8 Bits)

Service
Subtype

Boolean
(1 Bit)

CCSDS
Secondary

Header
Flag

Enumerated
(3 Bits)

TC Packet
PUS Version

Number

Enumerated
(4 Bits)

Ack

Enumerated
(n Bits)

Source ID
(Optional)

Fixed BitString
(n Bits)

Spare
(Optional)

Figure 2. PUS Telecommand Packet.

4.2. Telecommand Verification Service

According to ECSS (2003), The Telecommand Verification Service provides the
capability of checking the execution of the each telecommand packet, from its
acceptance through to its completion of execution. There are four different stages for
the telecommand verification. Although providing the verification of the telecommand,
it is not necessary that every telecommand should be verifiable at each stage. The stages
are:

- Telecommand acceptance

- Telecommand execution started

- Telecommand execution progress

- Telecommand execution completion

 Within the range between the telecommand acceptance and the telecommand
completion of execution, the user can request an execution success report, which allows
him to follow the exact point of the execution. The success report is requested through
the “Ack” field of the telecommand packet. This field is shown in Fig. 2 above.

 When a failure occurs at any stage, this service must send a failure report to the
user containing the error code and some additional information regarding the cause of
this failure. It helps the user to understand the main reason of such failure.

 In short, each stage should have two reports: Success Report and Failure Report.
It results in eight reports that the telecommand verification service shall provide.

 The type number of this service is 1. The subtype numbers of each report are
listed in Table 1. For this work, only the “Telecommand Acceptance” and
“Telecommand Execution Completion” stages were used.

XI Workshop de Testes e Tolerância a Falhas 123

Table 1. Telecommand verification reports and its subtypes identification.

Report (Type , Subtype)

Telecommand Acceptance Report - Success (1 , 1)

Telecommand Acceptance Report – Failure (1 , 2)

Telecommand Start of Execution Report – Success (1 , 3)

Telecommand Start of Execution Report – Failure (1 , 4)

Telecommand Progress of Execution Report – Success (1 , 5)

Telecommand Progress of Execution Report – Failure (1 , 6)

Telecommand Completion of Execution Report – Success (1 , 7)

Telecommand Completion of Execution Report – Failure (1 , 8)

5. Application of CoFI to Telecommand Verification Service of an OBDH

In this section the telecommand verification service is used as an example to illustrate
the application of the CoFI testing methodology to the OBDH software of a satellite that
follows the PUS standard. This service is chosen because it is a mandatory service for
any OBDH software that follows the PUS. The strategy used in this work is summarized
in Fig. 3.

Figure 3. Strategy.

 From the description of the service provided by the PUS standard, finite state
machines are specified to represent the behavior of specific scenarios. This step uses the
CoFI testing methodology to develop the models. It is important to note that this is not
done automatically. Then, the test cases are obtained from these state machines using
the Condado tool.

 The next step is to execute manually the test cases against the OBDH and
observe the responses of the OBDH. Both of these activities use a TET (Test Execution

ECSS - E - 70 - 41A Standard

Test Cases Generation

Service Modeling

Application of the Test Cases

Analysis of the results

124 Anais

Tool), which is also under development. These steps are shown in
Fig. 4. Finally, the errors found with the test cases application are used to analyze the
contribution of the testing methodology.

 One important point to highlight is that, differently from the works discussed in
Section 2, in this work the starting point for the development of the finite state machines
is not the requirement specification, but a standard, the PUS, which is used as basis to
develop on-board computer software. As a consequence, one of the issues analyzed in
this work is the viability of reusing these test cases for any other software that follows
this same standard.

 Figure 4. Test application activities.

5.1. Service Modeling in Finite States Machine

After the analysis and understanding of the PUS standard, the telecommand verification
service was modeled in finite state machines.

 Following the CoFI methodology, four different classes of state machines should
be developed: (i) normal, (ii) specified exceptions, (iii) inopportune inputs and (iv)

XI Workshop de Testes e Tolerância a Falhas 125

invalid inputs caused by hardware faults. However, hardware faults are not addressed
by the PUS standard. As a consequence, only classes (i) to (iii) could be modeled.

 In the case of the telecommand verification service, each class is modeled by
one finite state machine. The first model represents the normal behavior of this service
and it is shown in Fig. 5. Four states represent the current stage of the service depending
on the event associated to the transition. The events “TC_Arrival” and “TC_OK” are
events from the embedded software, and thus, the person who is applying the test cases
cannot observe their occurrences.

 The responses of the system are within the telemetry packets. They contain the
reports mentioned in section 4.2. The responses “RepSucAcc” (Success Report of
Telecommand Acception) and “RepSucCompExec” (Success Report of Telecommand
Completion of Execution) are only sent if their respective bits, „3‟ and „0‟ in the
telecommand “Ack” field, are set to „1‟. Otherwise, they are not sent. The “Ack” field of
the telecommand is represented by the four bits “0123” inside the brackets in the events
“Acc_OK[0123]” and “CompExec[0123]”.

Telecommand Verification Service –

Normal Behavior Model

Without
TC

Waiting for TC
Execution

Conclusion

Checking
TC

Waiting for
Acceptance

TC_OK /
Send_TC_to_Process

TC_Arrival / -

Acc_OK [---0] / -

CompExec_OK[1---] /
RepSucCompExecCompExec_OK[0---] / -

Acc_OK [---1] /
RepSucAcc

Figure 5. Telecommand Verification Normal Behavior model.

126 Anais

 As a second example, the model developed for the Specified Exceptions
Behavior is presented in Fig. 6. This class encompasses the events that the standard has
defined for specified types of failure or abnormal functioning of the system. In this case,
the PUS defines six failures that may occur in the acceptance stage and their respective
codes. For other stages, the errors are mission-specific. The codes “X1” and “X2” in
Fig.6 show that these errors are not in the standard. Also, it is important to note that the
“Ack” bits are represented by this configuration “[----]”. It means that the
corresponding failure report must be sent regardless the value of these bits.

Telecommand Verification Service –

Specified Exceptions Behavior Model

Without
TC

Waiting for TC
Execution

Conclusion

Checking
TC

Waiting for
Acceptance

TC_Arrival / -

TC_OK /
Send_TC_to_Process

Acc_OK [---0] / -

C
om

pE
xec_N

O
K

[----] /
R

epF
alC

om
pE

xec(C
ode=

X
2)

A
cc_N

O
K

 [----] /
R

epF
alA

cc(C
ode=

X
1)

A
P

ID
_N

O
K

[----] /
R

epF
alA

cc(C
ode=

0) Le
ng

th
_N

O
K

[-
--

-]
 /

R
ep

F
al

A
cc

(C
od

e=
1)

C
kS

um
_N

O
K

[-
--

-]
 /

R
ep

F
al

A
cc

(C
od

e=
2)

T
ip

o_
N

O
K

[-
--

-]
 /

R

ep
F

al
A

cc
(C

od
e=

3)

S
ub

tip
o_

N
O

K
[-

--
-]

 /

R
ep

F
al

A
cc

(C
od

e=
4)

D
A

pp
_N

O
K

[-
--

-]
 /

R

ep
F

al
A

cc
(C

od
e=

5)

Figure 6. Telecommand Verification Specified Exceptions Behavior model.

XI Workshop de Testes e Tolerância a Falhas 127

 The third, and last state machine developed, is the Sneak Paths Behavior, shown
in Fig. 7. This model consists in the expected events occurring in inopportune moments.
In this model, when the OBDH software is in the acceptance state, waiting for the
acceptance event from the process application, if it receives the event
“CompExec_OK[----]”, the service software shall send a failure report regarding this
failure, and return to its initial state. Analogously, when the service software is in
execution completion state, if it receives the event “Acc_OK[----]”, it shall send the
failure report to inform the failure. Note also that, as well as the model of Fig.6, the
“Ack” field has the configuration “[----]”, meaning that regardless its bits values, if the
those events occur, the report must be sent and the service software must return to its
initial state. The error codes are mission-specific.

Telecommand Verification Service –
Sneak Paths

Without
TC

Waiting for TC
Execution

Conclusion

Checking TC

Waiting for
Acceptance

TC_Arrival / -

TC_OK /
Send_TC_to_Process

Acc_OK [---0] / -

C
om

pE
xe

c_
O

K
[-

--
-]

 /
R

ep
F

al
A

cc
(C

od
e=

X
3)

A
cc_O

K
[----] /

R
epF

alC
om

pE
xec(C

ode=
X

4)

Figure 7. Telecommand Verification Sneak Paths Behavior model.

128 Anais

 In general, the size of the finite state machine models is considered small. The
biggest model has only four states and eleven transitions.

5.2. Generation of Test Cases

Sixteen test cases were generated from the three developed models. The Tables 3, 4 and
5 show, respectively, some test cases from Normal Behavior Model, Specified
Exceptions Behavior Model and Sneak Paths Behavior Model. A test case is a sequence
of inputs and outputs.

Table 3. Test cases for Normal Behavior Model.

CASE NUMBER INPUT OUTPUT

 TC_Arrival -

2 TC_OK Send_TC_to_Process

 Acc_OK[---1] RepSucAcc

 CompExec_OK[---0] -

 TC_Arrival -

4 TC_OK Send_TC_to_Process

 Acc_OK[---1] RepSucAcc

 CompExec_OK[---1] RepSucCompExec

Table 4. Test cases for Specified Exceptions Behavior Model.

CASE NUMBER INPUT OUTPUT

7 TC_Arrival -

 APID_NOK RepFalAcc(Code=0)

8 TC_Arrival -

 Length_NOK RepFalAcc(Code=1)

9 TC_Arrival -

 Checksum_NOK RepFalAcc(Code=2)

10 TC_Arrival -

 Type_NOK RepFalAcc(Code=3)

XI Workshop de Testes e Tolerância a Falhas 129

Table 5. Test cases for Sneak Paths Behavior Model.

CASE NUMBER INPUT OUTPUT

 TC_Arrival -

15 TC_OK Send_TC_to_Process

 Acc_OK[---0] -

 CompExec_OK[---1] RepFalAcc(Code=X4)

 TC_Arrival -

16 TC_OK Send_TC_to_Process

 CompExec_OK[---1] RepFalAcc(Code=X3)

5.3. Application of Test Cases and Analysis of the Results

The test cases application to the OBDH software was characterized by the following
events and results.

 Initially, only nine of the test cases were applied to the OBDH software. The
other seven test cases could not be applied because the TET did not allow to generate
telecommand packets containing the following errors: invalid checksum, invalid packet
size and, invalid sequence count. The first consequence of the application of the CoFI
testing methodology was a request to modify the TET, improving its flexibility and
usability.

 As a response to this request, a new version of the TET was generated and three
other test cases were applied in a second moment. The remaining four test cases could
not be applied because the modeled events are internal to the on-board software. They
are related to the communication between the PUS service and the application
processes. These events cannot be generated by the TET. These test cases are related to
the Sneak Paths Behavior model and basically represent the situations when the
application process gives input events to the telecommand verification service in the
wrong stages. This functionality may eventually be considered in the future for
incorporation in the testability environment of the OBDH.

Regarding the detection of errors in the OBDH software, two test cases resulted
in erroneous output. The first one is the application of a test case with one specified
exception. In this case, the OBDH software stopped receiving telecommand packets and
sent telemetry packets indicating the error code for “acceptance failure”, even if the
telecommand packet was a correct one. The second error is related to the reception of
two inconsistent telemetry packets. These errors are considered critical, because they
can cause the systems‟ blockage, compromising the whole mission.

 After the presentation of the results, the development team corrected the OBDH
software and a new application of the test cases resulted in no error.

130 Anais

 The process of modeling, generating and applying the test cases set spent forty
hours. This time includes also the time intervals spent by the development team on
modifying the TET and the OBDH software, and the second application of the test cases
by the testing team.

6. Conclusions

This paper analyzes the contributions of one specific verification technique for the
development of space embedded software. The verification technique is the CoFI
testing methodology and it is applied to the OBDH software of a satellite that follows
the PUS standard.

 The main conclusions of this work are the following.

 This is a new methodology that is still in its fourth practical experimental
application. The results of the utilization of this methodology are being evaluated. Its
main limitations are that it does not cover system performance tests, it does not cover
tests regarding combination of services, and it does not guarantee the coverage of the
code, because it is a black-box testing methodology. However, it has shown itself as a
good method to cover tests at system level for acceptance purposes, in which source
code is not available.

 The CoFI guides the decomposition of the system behavior in different classes
of behavior for each different service the system provides. The model of each class of
behavior contains only the events related to that class. As a consequence, the models are
small. They can be easily understood and analyzed by the development and testing
teams. The equivalence of the set of test cases generated from the state machine of the
complete system behavior and the set of test cases from the partial models of the
system, i.e. smaller state machines, is proven in Ambrosio (2005).

 One important contribution of the CoFI methodology is on the specification of
the Test Execution Tool (TET). In the case study, the application of CoFI resulted in the
elaboration of some requests for providing flexibility of this tool.

 Based on the results of the execution of the generated test cases, the relevant
contribution of CoFI was in the detection of errors in the OBDH software, which were
considered as critical ones. This detection resulted in important corrections of the
OBDH software.

 All the activities related to the generation of the testing models, the generation
of the test cases and the execution of the test cases, described in this paper, was
performed by a team independent of the development team. All the models were created
based on a standard (the PUS), and not based on the requirement specification of the
software under test. This approach shows the reusability of the test cases. The same set
of test cases can be applied to any other OBDH software that is based on the same
standard.

 The next activities are related to the extension of this work to other PUS
services, using the same methodology. The On-Board Operations Scheduling Service is
being considered due to its complexity.

XI Workshop de Testes e Tolerância a Falhas 131

7. Acknowledgements

The authors would like to thank the collaboration and support of Fabrício Kucinskis,
Ronaldo Arias and Thiago Pereira of the Aerospace Electronics Department (DEA) of
INPE. The authors would also like to thank the financial support of the Project Sistemas
Inerciais para Aplicações Aeroespaciais (SIA), from the FINEP/CTA/INPE.

References

Ambrosio, A. M. (2005) “CoFI – uma abordagem combinando teste de conformidade e
injeção de falhas para validação de software em aplicações espaciais”, Tese de
doutorado, INPE, São José dos Campos(Brazil).

Ambrosio, A. M.; Mattiello-Francisco, M. F; Martins, E. (2008) “An Independent
Software Verification and Validation Process for Space Applications”, Proceedings
of the 9th Conference on Space Operations (SpaceOps). Heidelberg (Germany).

Arias, R.; Kucinskis, F. N.; Alonso, J. D. D. (2008) “Lessons Learned from an Onboard
ECSS PUS Object-Oriented Implementation”, Proceedings of the 9th Conference on
Space Operations (SpaceOps). Heidelberg (Germany).

ECSS – European Cooperation for Space Standardization (2003) “ECSS-E-70-41A –
Ground systems and operations: telemetry and telecommand Packet Utilization”,
Noordwijk: ESA publication Division. Available online in: <http://www.ecss.nl>.

Leveson (2005), “N. Role of Software in Spacecraft Accidents”, Journal of Spacecrafts
and Rockets, Vol. 41, No. 4, pages 564-575.

Martins, E.; Sabião, S.B.; Ambrosio, A.M. (1999) “ConData: a Tool for Automating
Specification-based Test Case Generation for Communication Systems”, Software
Quality Journal, Vol. 8, No.4, pages 303-319.

Morais, M.H.E; Ambrosio, A.M. (2010) “A new model-based approach for analysis and
refinement of requirement specification to space operations”, Proceedings of the
10th Conference on Space Operations (SpaceOps). Huntsville (Alabama, USA).

Pontes, R. P. et al. (2009) “A Comparative Analysis of two Verification Techniques for
DEDS: Model Checking versus Model-based Testing” ,Proceedings of 4th IFAC
Workshop on Discrete Event System Design (DEDes), Spain, pages 70-75.

132 Anais

