
Deriving a Fault Resilience Metric for Real-Time Systems ∗

Flávia Maristela Nascimento1, George Lima2, Verônica Cadena Lima3

1Department of Technology in Electro-electronics
Federal Institute of Education, Science and Technology of Bahia (IFBA)

41.301-015 – Salvador – BA – Brazil
2Department of Computer Science – Federal University of Bahia (UFBA)

41.170-110 – Salvador – BA – Brazil
3Department of Statistics – Federal University of Bahia (UFBA)

41.170-110 – Salvador – BA – Brazil

flaviamsn@ifba.edu.br, {gmlima,cadena}@ufba.br

Abstract. Most real-time systems are required to comply with strict time and
logical requirements even in the presence of faults. Although scheduling poli-
cies and schedulability analyses have been extended to deal with fault tolerance,
not much attention has been given to measuring the fault resilience of such sys-
tems. Usually, worst-case error patterns are artificially assumed and system
correctness is checked. However, such patterns do not represent the capacity
of the system to tolerate faults, nor consider the overall system behavior in the
presence of faults. In this paper we define a fault resilience metric and present
a simulation-based analysis. Then we show how simulation results can be sta-
tistically analyzed.

1. Introduction

1.1. Motivation

Real-time systems are characterized by their need to meet both logical and timing re-
quirements. On the assumption that any system potentially fails [Avizienis et al. 2004] it
is necessary to ensure that such requirements will be met even in the presence of faults
[Burns and Wellings 2001]. For example, an error or deadline miss in a flight control
system may incur in loss of human life.

In order to guarantee that deadlines are met in a real-time system, all tasks have
their execution ordered according to some heuristics, namely scheduling policy, taking
into consideration their timing requirements. Given a scheduling policy, timing correct-
ness can be checked by means of schedulability analysis. If fault-tolerant techniques are
considered both scheduling policy and schedulability analysis have to be adapted to take
their execution into account. In general, schedulability analysis is built up on the assump-
tion that the system behavior is known in the worst-case and this has also been true when
fault tolerance aspects are considered.

Despite the difficulty in incorporating fault tolerance mechanisms into schedula-
bility analysis, several scheduling techniques have been developed. Most of them are

∗The second author is supported by FAPESB under grant 7320/2007.

10º Workshop de Testes e Tolerância a Falhas 129



based on time redundancy, which can be achieved by providing error detection and re-
covery. Models such as recovery blocks or exception handlers [Burns et al. 1996] are
particularly useful for real-time uniprocessor systems. In both techniques, upon the de-
tection of an error, a recovery task is scheduled to provide the actions necessary to keep
the system correctness. This approach has been extensively used since it is particularly
suitable for dealing with transient faults, which has been pointed out as the most frequent
one [Ghosh et al. 1998] or permanent software faults.

The usual approach to taking the effects of recovery tasks into schedulability anal-
ysis is to artificially assume a given worst-case pattern for error occurrences. For example,
some approaches consider that errors take place periodically in worst case. The recovery
scheme is based on re-executing of the faulty task or executing an alternative version of
it [Lima and Burns 2003, Burns et al. 1996]. Other authors fix a maximum number of er-
rors per system task and recovery is carried out based on the execution of an alternative
task [Aydin 2007, Liberato et al. 2000].

Although such approaches are important, since they allow to consider error oc-
currences in real-time systems, they assume a worst-case error pattern, which may not
reflect the real system capacity to tolerate faults. Indeed, considering error patterns as
fault resilience metrics may not be suitable due to two main reasons: (a) the assumed
error patterns are usually linked to specific system and/or fault models and (b) they do not
take the overall system behavior into account, focusing on worst-case scenarios. Thus,
deciding which technique best suits an application may not be straightforward. Indeed,
applications that do not share the system or fault models cannot be compared straight-
away. This means that if one is deciding to implement a system, he/she might not be
able to choose the best approach from the fault resilience view point because they are not
comparable.

This paper presents a fault resilience metric derived based on some desirable re-
quirements and assumptions. Such a metric is independent of the assumed system model
and/or error pattern and can be used to subsidize the system designer decisions when
choosing the fault-tolerant mechanisms that best suit their systems. We also present a
means of deriving the defined metric using simulation. Statistical analysis is then applied
so that the overall system behavior can be derived. Experimental results indicate the dif-
ferences of two well known scheduling policies from the viewpoint of fault resilience,
demonstrating that our approach is reasonably independently of the system model.

The remainder of this paper is organized as follows. Some related work, the as-
sumed fault model and notation used throughout this paper are detailed in Section 2.
Section 3 outlines some fault resilience metric requirements and assumptions. Section 4
presents the simulation environment built to compute the proposed metric. The derived
metric is used to compare two different scheduling approaches for real-time systems and
these simulation results are presented in Section 5. Our final comments are given in Sec-
tion 6.

2. Background and Related Work
2.1. Background
Real-time systems are usually structured as a set of tasks Γ = {τ1, τ2, . . . , τn}, where each
task represents an execution unit. A task may be activated several times during the system

10º Workshop de Testes e Tolerância a Falhas 130



execution. Each task activation is usually called a job. Some important task attributes are
period, relative deadline, worst-case execution time and recovery execution time, which
can be described by T = (T1, . . . , Tn), D = (D1, . . . , Dn), C = (C1, . . . , Cn) and
C̄ = (C̄1, . . . , C̄n), respectively.

Meeting all task deadlines is an important requirement for hard real-time systems.
Indeed, when such a requirement can be met the system is said schedulable. In order to
guarantee timeliness requirements for a given system, all tasks in Γ have to be ordered
according to some scheduling policy. The most popular scheduling policies are priority
oriented. Two well-known are Rate Monotonic (RM) and Earliest Deadline First (EDF)
[Liu and Layland 1973]. The former is a fixed-priority scheduling algorithm according to
which task priorities are assigned in inverse order of their periods. The later is a dynamic
policy and assigns priority to jobs so that the most urgent ones gets the highest priority.

Given a task set Γ and scheduling policy the role of the schedulability analysis is
to check whether tasks meet their deadlines. For example, it is well known that under RM
a task set is schedulable if the relation in Equation (1) holds.

n�

i=1

Ci

Ti

≤ n(2
1
n − 1) (1)

For EDF, schedulability is ensured if and only if
n�

i=1

Ci

Ti

≤ 1 (2)

Usually, the system schedulability is assessed in fault-free scenarios, although
these kinds of equations have been extended to take the effects of errors into account
[Pandya and Malek 1998, Han et al. 2003]. For example, considering a task set scheduled
by RM in which a single error occur during the hyperperiod, which is the least common
multiple of task periods, Equation (1) could be easily adapted to

n�

i=1

Ci + C̄i

Ti

≤ n(2
1
n − 1)

Assuming that a task is released at time t, its absolute deadline is given by t + Di.
In this work, we consider that the relative deadline Di of each task τi ∈ Γ is not greater
than its period Ti. Also, tasks are assumed to be independent of each other and their worst-
case execution time (Ci) are known and not greater than min(Ti, Di). Fault tolerance
is provided by executing recovery actions upon error detection. These actions actually
represent the execution of any extra code. A recovery action associated to a given error
in τi can be the re-execution of τi or the execution of an alternative task. If errors are
detected during the recovery of τi, other recovery actions can be released.

It is interesting to note that this model is in line with most fault toler-
ance techniques based on temporal redundancy such as recovery blocks or excep-
tion handlers [Burns et al. 1996], which have been widely applied to real-time systems
[Lima and Burns 2003, Liberato et al. 2000] and can be implemented at the task level.
More severe types of errors require spatial redundancy, usually implemented with a dis-
tributed/parallel architecture, which is beyond the scope of this work.

10º Workshop de Testes e Tolerância a Falhas 131



2.2. Related Work
In order to consider the possibility of errors in real-time systems some worst-case error
pattern is assumed. Then, timeliness assessment is considered under such circumstances.
For example, in some approaches errors are assumed to occur once in the hyperperiod
[Han et al. 2003, Pandya and Malek 1998], which is defined as the least common mul-
tiple of task periods. For others, the minimum time between errors are assumed to be
known [Ghosh et al. 1998, Lima and Burns 2003, Burns et al. 1996]. All these assump-
tions are used to make it possible to incorporate the effects due to errors into the analysis.
Nonetheless, they are not suitable to represent the fault resilience of the system. Indeed,
the system may cope with more than what was assumed since only worst-case scenar-
ios were considered for schedulability analysis purposes. Some other approaches fix a
maximum number of errors per system task [Liberato et al. 2000, Aydin 2007]. Also, de-
terministic assumption is not in line with the random nature of errors [Pereira et al. 2004].

Fault resilience has been analyzed by some authors via checking whether what has
been assumed in the worst case is violated. For example, considering a Poisson distribu-
tion for error occurrence, an upper bound on the probability that error take within less than
what is assumed has been derived [Burns et al. 1999]. In other approaches, the assumed
maximum number of errors was considered to be a function of both a probabilistic fault
model and a desired probability threshold [Burns et al. 2003, Broster and Burns 2004].
Nonetheless, since worst-case scenarios hardly occur, these approaches may also be pes-
simistic. Also, the assumed error patterns are usually strongly linked with the system
scheduling model. Thus, it makes it difficult or even impossible to compare different
systems from the fault resilience perspective. For example, consider a system that can
deal with one error occurrence per hour and other that can cope with N errors within its
hyperperiod. Which one is better? Answering this question may not be possible due to
the reasons mentioned above.

Unlike these results, we propose a more general metric which is not specific for a
given error pattern or system model. Indeed, it aims at measuring the system resilience for
different systems and fault models. Although we do not assume a particular scheduling
policy, we restrict ourselves to those policies whose scheduled jobs have fixed priorities,
such as Rate Monotonic and Earliest Deadline First. A simulation environment was de-
veloped to simulate the system during specific time windows and compute, for each of
them, the fault resilience metric. Although there are other simulation-based scheduling
approaches [Wall et al. 2003, Huselius et al. 2007], fault tolerance aspects have not been
considered.

3. On the Fault Resilience Metric
In order to give some intuition on the need for a fault resilience metric, consider the
following example.
Example 3.1. Let Γ be a task set composed of two periodic tasks Γ = {τ1, τ2}. Assume
T = (2, 5), C = (1, 1), D = T and C̄ = (1, 1). Also, consider that Rate Monotonic
is used to schedule the tasks and so τ1 is the highest priority task. Figure 1 shows the
schedule for this task set, considering that no error occurs, for intuition means. Up arrows
mean tasks release time.

The hyperperiod for this task set is given by h = lcm(T1, T2) = 10. Notice that τ1

has five jobs within h, which are released at times 0, 2, 4, 6 and 8, while τ2 has two jobs

10º Workshop de Testes e Tolerância a Falhas 132



2 4 6 8 100

1

2

1 3 5 7 9

Figure 1. Illustration of a RM schedule for the task set described in Example 3.1

released at times 0 and 5. Because of its priority, the first job of τ2 begins to execute at
time 1. The dotted line indicates that τ2 awaits until higher priority jobs finish executing.

Assume that recovery is based on the re-execution of the faulty jobs. Figure 2
shows the schedule for the task set shown in Example 3.1. Notice that after the moment
the error takes place, at time 2, 6 and 8, the recovery job (shown in gray) executes to keep
system correctness. Also, observe that task τ2 can deal with different number of errors
within 5 time units. In the time interval [0, 5) the job of τ2 can deal with only a single
error, while from time 5 to time 10 such a job can timely recover from at most two errors
and still meet its deadline.

2 4 6 8 100

1

2

1 3 5 7 9

Figure 2. Illustration of τ2 in Example 3.1 subject to errors within h

The schedules shown in Figure 2 give the intuition that the fault resilience metric
must reflect the number of faults the system can tolerate. Thus, assuming that one wishes
to analyze the behavior of a given system Γ when it is subject to faults, the analysis
method must use some fault resilience metrics. We understand that such metrics must
take the following assumption into consideration.
Assumption 3.1. The fault resilience of a system is proportional to the number of errors
it can deal with.

Indeed, fault resilience metrics must reflect the system ability to sur-
vive, or keep its correct behavior, after error occurrences. Most authors are
aware of that [Lima and Burns 2003, Pandya and Malek 1998, Liberato et al. 2000,
Ghosh et al. 1995], despite assuming specific error patterns. Also, from designers’ view
point it is important to determine how many errors can occur before a system failure.

In several situations, the number of error occurrences accounted for when analyz-
ing a system must be a function of time. The intuition is that the expected number of
errors increases with time assuming that they are not co-related. Although some authors
do not consider such assumption [Pandya and Malek 1998, Han et al. 2003], some fault
models in real-time systems that are in line with this observation can be mentioned, as
for example Poisson distribution [Burns et al. 2003] and minimum time between errors
[Burns et al. 1996, Burns et al. 1999]. Based on that, we assume the following:
Assumption 3.2. The expected number of error occurrences increases with time.

10º Workshop de Testes e Tolerância a Falhas 133



Since the system we are considering is composed of n tasks and each of them may
have a different level of criticality, the fault resilience metric must be determined for each
individual task so that system designers can deal with the peculiarities of each of them.
Figure 3 shows the maximum number of errors that two different tasks from the same
system can cope with.

2 4 6 8 100

1

2

1 3 5 7 9

(a) Maximum number of errors for τ1 ∈ Γ
2 4 6 8 100

1

2

1 3 5 7 9

(b) Maximum number of errors for τ2 ∈ Γ

Figure 3. Illustration of two different tasks of Γ subject to errors within h

Considering Example 3.1, τ1 can timely recover from at most 1 errors within 2
time units, while τ2 can deal with one or two errors within 5 time units. This is shown in
Figures 3(a) and 3(b), respectively. Note that in the figure errors take place at the end of
the job execution, the worst-case scenario. Thus, as tasks may have different criticality
levels, it is interesting to consider the following requirement:
Requirement 3.1. Fault resilience must be given for individual tasks of the analyzed
system.

Further, the resilience of a given task τi ∈ Γ depends on how its jobs behave when
errors take place. For example, two jobs of τi might be capable of tolerating different
number of error occurrences during their executions, due to the different interferences
they suffer. Observe in Figure 3(b) that the first instance of τ2 can deal with only a single
error. Since τ1 interferes in its execution, there is not enough time to recover the system
from two errors. On the other hand, the second job of τ2 can timely recover from two
errors, since the interference it suffers from τ1 is smaller, considering that this job is not
affected by errors. Indeed, scheduling decisions or the set of interfering jobs may not be
the same for all jobs of τi. In order to capture the behavior of τi as a whole, therefore,
different jobs of the analyzed task must be taken into consideration. This motivates the
following requirement:
Requirement 3.2. The fault resilience of a task must account for the overall behavior of
its jobs.

Based on the assumptions and requirements stated above, we give the following
definition of fault resilience metric:
Definition 3.1. The fault resilience of a job is measured as the minimum number of er-
rors that make it miss its deadline divided by its relative deadline. The fault resilience
distribution of a task is given by the fault resilience of its jobs.

According to the above definition, error occurrences are considered for each task
in a per-job basis, which is in line with Requirements 3.1 and 3.2. Also, the time windows
in which jobs execute (relative deadlines) are taken into consideration. Indeed, the longer
the execution of a job the more likely errors occur, which complies with Assumption 3.2.
Finally, observe that Assumption 3.1 is also considered.

Obviously, different metrics can be given. Some assumptions/requirements may
not be suitable for all systems while new assumptions/requirements may be needed for

10º Workshop de Testes e Tolerância a Falhas 134



others. For example, if Requirement 3.2 is not needed, usual analysis based on worst-
case scenarios may suffice. Further, if Assumption 3.2 is removed, counting the minimum
number of errors per task in worst-case scenarios is enough [Lima and Burns 2005]. In
any case, we stress here that we use a metric which is in line with Definition 3.1 as a
means of fault resilience assessment.

Motivated by the above requirements and assumptions, we derive a fault resilience
analysis based on simulation, as will be explained in the following section.

4. Simulation Environment
The simulation scheme illustrated in Figure 4 is based on modeling the analyzed system
with two main components: the scheduler and the error generator. The former follows
a given scheduling policy while the goal of the latter is to generate errors so that jobs
deadlines are missed. No particular error pattern is assumed. A role of the error generator
is to derive the worst-case error pattern for each simulation. These two components are
named simulation engine.

TASK SET

ERROR

GENERATOR

SIMULATION

SCENARIOS

SCHEDULER

ERROR PER

SCENARIO

SCENARIO

GENERATOR

S
IM

U
L

A
T

IO
N

E
N

G
IN

E

Figure 4. Simulation Environment

The general idea of the simulation-based analysis is to generate possible tuples
of tasks release time, which we call simulation scenarios and for each tuple compute the
minimum number of errors that make a specific job miss its deadline. Then, considering
this number of errors per scenario and the simulation time interval, the fault resilience
metric is computed. Finally this simulation data can be statistically analyzed to infer the
system behavior.

Unlike existing simulation-based analysis, the simulation environment in Figure
4 does not need to simulate the whole system execution (e.g. system hyperperiod), which
might be too time consuming in the general case. Instead, it uses simulation scenarios to
define the simulation time interval. Formally, simulation scenarios are defined as follows:
Definition 4.1. Tuple S = (S1, . . . , Sn) is a simulation scenario of a periodic task set
Γ = {τ1, . . . , τn} if the following predicate holds:

scenario(Γ,S)
def
= ∃w ∈ R,∀Si :(Si + w) mod Ti = 0 ∧ max(S) − Si < Ti

Both conditions defined by the above predicate mean that: (a) S is a tuple of
tasks release times; and (b) only the closest jobs, released before the last released job, are
considered. As illustration, consider Example 4.1.
Example 4.1. Consider Γ = {τ1, τ2, τ3} a set of three periodic tasks and let their periods
be T = (10, 15, 20) and define h = lcm(T1, T2, T3) = 60 the hyperperiod of this task set.
Figure 5 shows an Earliest Deadline First schedule for this task set.

10º Workshop de Testes e Tolerância a Falhas 135



10 20 30 40 50 600

1

2

5 15 25 35 45 55

3

Figure 5. Illustration of an EDF schedule for Example 4.1

Notice that there are h/Ti simulation scenarios for task τi since these are the num-
ber of its jobs released within the system hyperperiod. Considering Example 4.1, tuples
(0, 0, 0), (20, 15, 20) and (40, 30, 40) are simulation scenarios according to Definition 4.1.
However, tuple S = (40, 15, 40), say, is not. In this example, although Si is a possible
release time of τi (i = 1, 2, 3), the release time of τ2 should be 30 instead of 15 to make
S a simulation scenario for this task set example. Simulation scenarios, its properties and
generation procedures have been recently discussed [Lima and Nascimento 2009]. Here
we assume that procedures to generate non-biased sets of simulation scenarios are avail-
able.

As long as simulation scenarios have been generated the simulation engine com-
putes the fault resilience metric for each scenario. Considering that fS

i is the minimum
number of errors that make a task τi unschedulable in a given simulation scenario S, the
effort value is defined as follows:
Definition 4.2. Let Γ = {τ1, τ2, . . . , τn} be a task set and consider S a simulation sce-
nario of Γ. The effortEi made by the error generator to make a task τi ∈ Γ unschedulable
in S is:

Ei =
fS

i

Di

(3)

Notice that the effort definition is in accordance with Definition 3.1. Also, consid-
ering the effort for several simulation scenarios allows one to infer the overall behavior
of jobs from fault resilience view point, as stated in Requirement 3.2. Intuitively, the
higher the effort Ei made by the error generator, the higher the resilience of τi regarding
scenario S. Note that the found values of Ei can be statistically analyzed. Also, one may
be interested in other parameters, such as the effort mean value Ēi or the minimum effort
Emin

i necessary to make a given system task unschedulable.

For complex systems, determining Ei or any function of it may be too time con-
suming since the total number of simulation scenarios is a function of the hyperperiod
of the task set. This simulation environment is able to study Ei through sampling. The
following section briefly presents this procedure through an illustrative example.

Assume that one wishes to evaluate the effort for a task τi in Γ = {τ1, . . . , τn},
considering a specific simulation scenario S = (S1, . . . , Sn). The job of this task, released
at Si, namely Ji, is called hereafter the analyzed job. Figure 6 sketches the simulation
process and will be used for illustration purposes. Scenario S and a previous scenario S�

are indicated in the gray area of the figure. Release times are indicated by the vertical
arrows. The first release time of jobs in S whose priorities are greater than that of the

10º Workshop de Testes e Tolerância a Falhas 136



priority of Ji is denoted r ≤ Si in the figure. These jobs must be considered when
analyzing the effects of errors in the execution of Ji, since they can interfere in Ji.

r Sitb

i

j

S + Di i

k

S’ S

Backlog computation Error generation

{ Simulation time for S

Figure 6. Two-step simulation procedure used by the Simulation Engine

The simulation of the system regarding S involves two problems: (a) determining
the execution backlog at r, which is related to jobs released before r; and (b) generating
the minimum number of errors from r onwards so that the analyzed job misses its dead-
line. Nonetheless, exact solutions to problems (a) and (b) may be computationally too
expensive. Thus, our approach to solving them is to derive an upper bound for (a) and
a lower bound for (b) so that the effort of the error generator is not overestimated. The
simulation procedure has two steps, as illustrated in Figure 6.

The approach to estimating an upper bound on the backlog at r is based on (a)
going back to a previous scenario S� and (b) forcing the release time of all tasks in Γ be at
time tb, as indicated by the dotted arrows in Figure 6. Then the remainder task execution
time after simulating the system within [tb, r) should give the desired upper bound. It
is worth mentioning that ideally S� should be a scenario which gives a good trade-off
between simulation time and backlog estimation. In the context of this work, though, we
follow a simple approach to computing S�, which is backtracking to the closest simulation
scenario.

The simulation during [r, Si + Di) is carried out with the error generator active.
The strategy is to generate errors in the job which causes the highest interference in the
analyzed job. Since the goal is to estimate a lower bound on the minimum number of
generated errors that make the analyzed job miss its deadline, the faulty jobs are allowed
to execute beyond its deadline. In other words, the optimization problem of determining
which jobs fail during simulation is circumvented. According to this approach the found
number of errors is guaranteed not to be overestimated but can be underestimated.

As mentioned before, when simulating a scenario S for a given analyzed job Ji,
the error generator must not let Ji meet its deadline. Hence, every time t at which Ji would
successfully finish its execution (i.e t ≤ Si + Di), an error must be generated in some job
Jj . The recovery of this faulty job must be such that it maximizes the interference in the
execution of Ji, so that fS

i is actually the minimum number of errors necessary to make
a task miss its deadline in scenario S. To do so, the error generator considers either jobs
released before or after Si to generate an error.

10º Workshop de Testes e Tolerância a Falhas 137



To make things clear, consider S = (50, 45, 40) a simulation scenario for Example
4.1. In this scenario let us analyze the job of τ3 released at t = 40. For such a scenario,
S� = (40, 30, 40) and the simulation time interval is [30; 60). Figure 7 shows the whole
scheduling for S, including the backlog computation and error generation.

10 20 30 40 50 600

1

2

5 15 25 35 45 55

3

Backlog
computation

Error
generation

S’

Figure 7. Illustrative simulation Example considering Example 4.1

Observe that, in this case, system simulation starts at tb = 30. At this time, an
instance of τ3 is artificially included (dotted arrow in Figure 7). As mentioned before, this
is done for deriving an upper bound on the backlog. Notice that at t = 40, a backlog job
from previous scenario (from task τ2) is still executing. It is worth mentioning that in the
actual schedule shown in Figure 5 the backlog is null.

At time instant t = 40 the analyzed job is released and starts executing at t = 54
due to the interference of higher priority jobs. When the error generator realizes that this
job is going to finish its execution successfully, it generates an error so that this job miss
its deadline, making the system unschedulable. The choice of the faulty job is done so that
the error generator effort is minimized. Hence, any active job in [40, 60) can be chosen
as the faulty job provided that it causes the highest interference in the analyzed job. It
is important to notice that during the time interval [40, 60), if any other job released at
this time interval misses its deadline, the system is still considered schedulable. Only the
timeliness of the analyzed job (J3) is observed. According to Definition 4.2, the effort
value for S is given by E3 =

fS
3

D3
= 1

20
= 0.05.

In the following section we present some simulation results showing how the de-
rived fault resilience metric can be used to compare different systems.

5. Simulation Results
In this section we present two examples to illustrate how the simulation-based approach
works. First, we consider the same fixed-priority system used by other researchers
[Burns et al. 1996] to compare the results obtained by our analysis with the ones obtained
previously.
Example 5.1. Let Γ = {τ1, . . . , τ4} be a task set of four independent periodic
tasks scheduled by Rate Monotonic. Task attributes are C = (30, 35, 25, 30), T =
(100, 175, 200, 300) andD = T.

Since this task set is considerably small, it is possible to generate all possible
scenarios for any task τi ∈ Γ. In this case, we focus on task τ4. When all simulation
scenarios of τ4 are submitted to the simulation engine, the number of errors that make τ4

10º Workshop de Testes e Tolerância a Falhas 138



miss its deadline can be 2, 3 or 4 with probabilities 0.282, 0.571 and 0.143, respectively.
It is worth mentioning that the analysis by Punnekkat et al. [Burns et al. 1996] gives
min(f4) = 2 but the distribution of f4 gives more information about the system fault
resilience. Indeed, based on this distribution, we can compute the effort whose mean for
this example is Ēi = 0.0044.

The derived metric can also be used to compare different scheduling policies from
fault resilience view point. In order to carry out this kind of evaluation, we randomly
generated ten task sets, each one with ten tasks. Both Ci and C̄i were set to one time
unit. Task periods were randomly generated so that processor utilization was bounded in
[0.6; 0.8). The scheduling for each generated task set was simulated considering both RM
and EDF. We computed the mean effort Ēi that makes their tasks τi miss their deadlines,
i = 1, 2, . . . 10.

Using a procedure to randomly generate simulation scenarios
[Lima and Nascimento 2009], we took a sample of simulation scenarios for each
analyzed task. In order to determine the sample size, standard statistical sampling proce-
dures were used [Triola 2008]. The maximum assumed error was |Ē∗

i − Ēi| = 5x10−3,
where Ē∗

i and Ēi stand for the mean values for the effort related to the sample and to
the population (not necessarily known), respectively. The result is presented in Table 1,
where CI stands for the confidence interval.

Table 1. Ēi with 95% of confidence
RM EDF

i Ē∗
i CIi Ē∗

i CIi

1 1.000 [1.000,1.000] 0.998 [0.995,1.000]
2 0.613 [0.470,0.750] 0.675 [0.601,0.780]
3 0.500 [0.450,0.630] 0.576 [0.412,0.639]
4 0.413 [0.378,0.560] 0.487 [0.333,0.605]
5 0.397 [0.335,0.516] 0.432 [0.276,0.564]
6 0.360 [0.295,0.490] 0.359 [0.275,0.507]
7 0.278 [0.210,0.378] 0.321 [0.247,0.428]
8 0.235 [0.196,0.356] 0.280 [0.187,0.399]
9 0.221 [0.190,0.300] 0.277 [0.198,0.399]
10 0.110 [0.089,0.200] 0.169 [0.215,0.212]

As can be seen, EDF has a better overall performance in terms of fault resilience.
Although this behavior was expected due to the optimality of EDF in terms of schedu-
lability [Liu 2000, Aydin 2007], it is important to emphasize that now the difference is
being measured.

It is worth mentioning that τ1 has approximately the same fault resilience for both
schedulers. Since no other task interferes in the execution of τ1 according to RM and only
in a few simulation scenarios there are other tasks with priority greater than the priority
of τ1 by EDF, this behavior was also expected. On the other hand, for all other tasks, EDF
is visibly superior to RM in terms of fault resilience. Obviously, we are not considering
here problems such as possible overloads caused by admission of recovery actions, which
could make EDF degrade. Nonetheless, the goal of the analysis is to point out to what

10º Workshop de Testes e Tolerância a Falhas 139



extent the system support errors and is not on evaluating overload conditions. Hence, we
are not concerned with scheduling anomalies.

6. Conclusions

In this paper we presented a metric which aims at measuring fault resilience of real-time
systems. Such systems are characterized by their need to meet both logical and timing
application requirements, even in the presence of faults. However, since errors are random
events and cannot be predicted, most approaches assume a worst-case error pattern to
analyze whether the system is timely under fault scenarios. We intend to measure the
fault resilience of real-time systems, an issue not addressed before. Our analysis is not
based on a specific error pattern and is independent of the system model. Indeed, we
showed that our analysis can be used to compare different scheduling policies. Moreover,
our analysis can also be used to subsidize system designers for choosing the scheduling
mechanism that best suit their system.

Some aspects must be further investigated. For example, considering less strict
task models, where not all tasks are periodic, may be interesting. Also, taking spacial re-
dundancy into account would enrich the analysis described here. In any case, the concept
of simulation scenario and/or the simulation procedure described here must be extended.
We believe that the results presented here are a step towards these challenging research
issues.

References

[Avizienis et al. 2004] Avizienis, A., Laprie, J.-C., Landwehr, C., and Randell, B. (2004).
Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33.

[Aydin 2007] Aydin, H. (2007). Exact fault-sensitive feasibility analysis of real-time
tasks. IEEE Transactions on Computers, 56(10):1372 – 1386.

[Broster and Burns 2004] Broster, I. and Burns, A. (2004). Random Arrivals in Fixed
Priority Analysis. In Proc. of the 1st International Workshop on Probabilistic Analysis
Techniques for Real-time and Embedded Systems.

[Burns et al. 2003] Burns, A., Bernat, G., and Broster, I. (2003). A Probabilistic Frame-
work for Schedulability Analysis. In Proc. of the Third International Conference on
Embedded Software, pages 1 – 15.

[Burns et al. 1996] Burns, A., Davis, R., and Punnekkat, S. (1996). Feasibility Analysis
of Fault-Tolerant Real-Time Task Sets. In Proc. of the 8th Euromicro Conference on
Real-Time Systems, pages 29 – 33.

[Burns et al. 1999] Burns, A., Punnekkat, S., Strigini, L., andWright, D. R. (1999). Prob-
abilistic Scheduling Guarantees for Fault-Tolerant Real-Time Systems. In Proc. of
the International Working Conference on Dependable Computing for Critical Applica-
tions, pages 361 – 378.

[Burns and Wellings 2001] Burns, A. and Wellings, A. J. (2001). Real-Time Systems and
Programming Languages. Addison-Wesley, 3rd edition.

[Ghosh et al. 1995] Ghosh, S., Melhem, R., and Mossé, D. (1995). Enhancing Real-Time
Schedules to Tolerate Transient Faults. In Proc. of the 16th IEEE Real-time Systems
Symposium, pages 120–129.

10º Workshop de Testes e Tolerância a Falhas 140



[Ghosh et al. 1998] Ghosh, S., Melhem, R., Mossé, D., and Sarma, J. S. (1998). Fault-
tolerant rate monotonic scheduling. Real-Time Systems, 15(2):149–181.

[Han et al. 2003] Han, C., Shin, K., and Wu, J. (2003). A fault-tolerant scheduling algo-
rithm for real-time periodic tasks with possible software faults. IEEE Transactions on
Computers, 52(3):362–372.

[Huselius et al. 2007] Huselius, J., Kraft, J., Hansson, H., and Punnekkat, S. (2007).
Evaluating the Quality of Models Extracted from Embedded Real-Time Software. In
Proc. of the 14th Annual IEEE International Conference and Workshops on the Engi-
neering of Computer-Based Systems, pages 577–585.

[Liberato et al. 2000] Liberato, F., Melhem, R., and Mossé, D. (2000). Tolerance to mul-
tiple transient faults for aperiodic tasks in hard real-time systems. IEEE Transactions
on Computers, 49(9):906–914.

[Lima and Burns 2003] Lima, G. and Burns, A. (2003). An optimal fixed-priority as-
signment algorithm for supporting fault-tolerant hard real-time systems. IEEE Trans-
actions on Computers, 52(10):1332–1346.

[Lima and Burns 2005] Lima, G. and Burns, A. (2005). Scheduling Fixed-Priority Hard
Real-Time Tasks in the Presence of Faults. In Proc. of the 2nd Latin-American Sym-
posium on Dependable Computing, volume LNCS 3747, pages 154–173. Springer-
Verlag.

[Lima and Nascimento 2009] Lima, G. and Nascimento, F. (2009). Simulation Scenar-
ios: a Means of Deriving Fault Resilience for Real-Time Systems. In Proc. of the 11th
Workshop on Real-Time and Embedded Systems.

[Liu and Layland 1973] Liu, C. L. and Layland, J. W. (1973). Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal of the ACM, 20(1):46–61.

[Liu 2000] Liu, J. W. S. W. (2000). Real-Time Systems. Prentice Hall PTR, Upper Saddle
River, NJ, USA.

[Pandya and Malek 1998] Pandya, M. and Malek, M. (1998). Minimum achievable uti-
lization for fault-tolerant processing of periodic tasks. IEEE Transactions on Comput-
ers, 47(10):1102–1112.

[Pereira et al. 2004] Pereira, N., Tovar, E., Batista, B., Pinho, L. M., and Broster, I.
(2004). A few what-ifs on using statistical analysis of stochastic simulation runs to
extract timeliness properties. In 1st International Workshop on Probabilistic Analysis
Techniques for Real-time and Embedded Systems (PARTES ’2004), Pisa, Italy.

[Triola 2008] Triola, M. F. (2008). Elementary Statistics. Pearson.
[Wall et al. 2003] Wall, A., Andersson, J., and Norstrom, C. (2003). Probabilistic
simulation-based analysis of complex real-time systems. In Proc. of the Sixth IEEE In-
ternational Symposium on Object-Oriented Real-Time Distributed Computing, pages
257–266.

10º Workshop de Testes e Tolerância a Falhas 141


