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Abstract. The knowledge of real software faults representativeness is 
important to allow the emulation of software faults in a more accurate way 
through software fault injection techniques. This paper presents a field data 
study to analyze the representativeness of Java software faults, including 
security faults. The faults are classified according to a previous field study of 
C faults representativeness and new types of faults are identified due to the 
specific characteristics of the Java language structure. Results are compared 
and show that the mistakes most commonly made by programmers follow a 
pattern, independently of the programming language. 

1. Introduction 
Modern society is increasingly dependent on computer services and, consequently, on 
the software executed to provide these services. According to Avizienis et al [2004], 
dependability of a system is the ability to avoid service failures that are more frequent 
and more severe than is acceptable. Assuring that software systems are dependable is 
important especially in critical systems, where faults can cause major damages or loss 
of human lives [Gage and McCormick 2004],[Pfleeger 2000]. 

 The current scenario of software production requires more complex elements 
involved in software production, frequent changes and cost constraints within a short 
limit of development time. These factors can lead to the insertion of faults into the 
software. Software faults are recognized as the main cause of computational defects 
[Kalyanakrishnam et al 1999], [Lee and Iyer 1995], [Sullivan and Chillarege 1992] and 
one of the main challenges in this context is to achieve dependability in these systems. 
Another demand on dependable systems arises from ubiquitous computation. They need 
to be universally accessed by users around the world (e.g., online trading and home 
banking). Most of these systems are web applications. In this scenario, the users may 
find it difficult to report the failures and the unsolved problems can lead them to put in 
check the organization credibility or allow hackers to attack the systems, which may 
have a highly negative impact on users. Although other potential causes for 
vulnerability do exist, the root cause of most security attacks are vulnerabilities created 
by software faults [Fonseca and Vieira 2008]. 
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 One way to ensure software dependability is to apply procedures for fault 
removal and fault prediction during the software validation process. These procedures 
enable, respectively, the reduction of the number of faults or the fault severity and the 
evaluation of the consequences of faults remaining in software products. Software fault 
injection techniques (i.e., deliberate faults insertion) have been very useful to help the 
software validation process [Durães and Madeira 2006]. Besides the well known 
usefulness of the technique for this purpose, the results are even more important if the 
fault emulation is done in a realistic way, which implies the knowledge of the kind of 
faults found and their distribution in the operational environment. This means that it is 
necessary to identify the fault representativeness. 

 This paper presents a field data study on Java systems in production phase (i.e., 
systems that have gone through several releases), aiming to identify Java specific fault 
representativeness. The Java programming language was selected for this field data 
study because it is widely used in current software applications, including web-based 
systems. The representativeness of a subset of security faults was also analyzed. 574 
faults were analyzed and 67 of them are recognized as security faults.  The results are 
compared with those from a previous field data study [Durães and Madeira 2006]. 

 The proposal of this paper is to evaluate if the fault representativeness of Java 
applications (based on object-oriented paradigm) follows a pattern similar to the 
software fault representativeness of C applications (based on structural paradigm); it is 
an important step for the development of a fault injection tool for Java applications.  

 Some injection tools have been developed [Barcelos et al 1999], [Carreira et al 
1995], [Martins et al 2002], [Neves et al 2006], and, however, there is no available 
injection tool to inject specific java software faults, it means, to change Java code 
structure. Evaluating fault representativeness of Java applications would enable the 
emulation of software faults in an accurate and realistic way, leading to useful results in 
the injection Java faults and, consequently, in the validation process. 

 In summary, we present a software fault classification based on a set of faults 
found in Java applications and propose an extension to the classification presented by 
Durães and Madeira [2006], specific to the object-oriented programming paradigm and 
the Java language.  

 The structure of the paper is as follows: Section 2 presents background on 
software faults; Section 3 describes the approach for analyzing and classifying the 
software faults; Section 4 contains the comparison with the other field study and 
presents new types of faults due to the Java language characteristics; Section 5 presents 
our conclusions and future work. 

2. Software faults 
Software faults are caused by mistakes made by software product programmers and 
remain in the program source code. The complete elimination of software faults is a 
difficult or even impossible goal to be achieved [Lyu 1996], [Musa 1996]. In many 
cases, waiting for the activation of these faults through normal use is not practicable 
because it rarely happens (otherwise, the faults would be identified and eliminated by 
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software tests). Fault injection techniques are one option for activation of these faults in 
order to evaluate the software behavior during the software validation process. 

 Knowledge of the software fault representativeness is essential for realistic fault 
injection and to ensure that results obtained during the experiments are very close to 
those of an operational environment. 

 To establish real software faults representativeness it is necessary to classify the 
most frequent software faults, to understand their origins and the way human mistakes 
occur in the programming task.  

 A well known classification of software faults is ODC (Orthogonal Defect 
Classification) [Chillarege 1995], [Chillarege et al 1992]. Durães and Madeira [Durães 
and Madeira 2006] extended this classification and refined their representation to a 
point that they can be emulated. The generic technique created by [Durães and Madeira 
2006] is the G-SWFIT (Generic Software Fault Injection Technique). This technique 
makes possible the emulation of the most frequently found software faults. It consists of 
modifying the compiled binary code of software modules by introducing specific 
changes which correspond to the code that would be generated by the compiler if the 
intended software fault were in the high level source code. The emulation is done by 
means of an emulation operator’s library. Each operator in this library consists of two 
binary code instructions. The first one represents a pattern corresponding to a specific 
fault and the second one represents the necessary changes for the adequate injection of 
the fault [Durães and Madeira 2006]. Although this technique is generic, the study was 
developed using the C language and additional investigation is necessary to extend it to 
other programming languages.  

 As software faults are strongly dependent on the paradigm and the programming 
language structure of the application, not all types of faults found in the present field 
study are represented in Durães and Madeira study [Durães and Madeira 2006]. Thus, it 
is necessary to define a new classification and a distribution including the new types of 
software faults which represent characteristics specific of the Java language. 

2.1. Java security software faults 

Nowadays, due to the widespread use of web applications, the security vulnerabilities in 
these systems are being more intensely explored by hackers. The work proposed by 
Fonseca and Vieira [2008] aims to improve this scenario by investigating security faults 
in applications developed using the PHP (Hypertext Preprocessor) programming 
language. They want to achieve an understanding of the relationship between certain 
software defects and security vulnerabilities.  

 The vulnerabilities analyzed were Cross Site Scripting (XSS) and SQL injection 
(see [Fonseca and Vieira 2008] for more details). To understand which code is 
responsible for the security problems the study was based on vulnerabilities correction 
patches. Comparison of these patches makes it possible to identify and classify real 
software faults that lead to security vulnerabilities. The authors also define rules to 
make the patches analysis coherent and to avoid mistakes during fault classification. 

 The methodology and patches analysis rules proposed by Fonseca and Vieira 
[2008] are used in our field data study as a basis for security faults identification.  
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3. Application analysis and fault identification  
The field data study reported in this paper aims to investigate software faults in Java 
applications in order to define faultloads. To determine these faultloads, Java 
applications source codes are analyzed; an essential condition for the study to be 
conducted is the availability of the source code of these applications. We also need 
previous releases of these applications to compare them and to analyze the corrections 
made and the programming structures which were used to perform these corrections. 
The analysis of these structures will indicate the types of faults and, consequently, the 
types of operators that can be used to emulate these faults making use of the G-SWFIT 
technique.  

 To identify faults that lead to security vulnerabilities additional information is 
necessary to link the vulnerability correction with the specific application release (e.g., 
information on which files or source code fragments were modified exclusively to 
correct a particular vulnerability).  

 In accordance with the necessary conditions above and considering their 
popularity, six open source applications were selected for the field study: Azureus 
(Vuze) [Vuze 2009], FreeMind [FreeMind 2009], JEdit [JEdit 2009], Phex [Phex 2009], 
Struts [Struts 2009] and Tomcat [Tomcat 2009]. 

 Azureus (Vuze) and Phex are client applications for sharing files; they use 
protocols that, briefly, allow content distribution through the web, optimizing the 
bandwidth consumption under traffic limitations. FreeMind helps on storing and 
organizing ideas, contributing, for example, to keep personal knowledge bases, 
recording information of meetings, brainstorms, presentations, planning, and so on. 
JEdit is a text editor for software systems programmers. Struts is a framework used to 
create Java web applications. And, finally, Tomcat is a very popular web application 
server. 

 To analyze the differences between the selected applications, a diff tool (i.e., a 
tool that compares two codes and shows their differences) is applied to the different 
versions of the same application; the changes introduced in the source code are 
highlighted. It makes possible to visualize the correction, and, consequently, to identify 
the software fault. The diff tool used is WinMerge 2.10.0.0 [WinMerge 2009]. A total 
of 14 versions of applications were analyzed. Table 1 shows the analyzed versions and 
the faults found through ODC type classification for each selected application.  

 The applications were selected considering the size (lines of code) and number 
of downloads. Azureus and Tomcat are in a higher maturity level; they are more 
popular, have more lines of code and more released versions available. So, they have 
more number of reported bugs and it implies in more number of faults.  

 The faults are identified through the comparison between bugs correction code 
of the current release and the source code of the immediately preceding released 
version. The bugs’ correction codes are identified trough changelog files and it is 
assumed that different code fragments do correct faults. 
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Table 1. Applications and analyzed versions 

Application Analyzed 
versions

ODC type Total 
Faults

Size 
(LOC)ALG ASG CHK FUN INT

Azureus 
(Vuze)

3.0.5.2 and
3.1.1.0 46 19 14 36 10 125 576958

FreeMind 0.7.1 and 0.8.0 42 10 2 26 10 90 19397

JEdit 4.2pre15 and 
4.3pre16 26 10 8 18 9 71 173798

Phex 3.2.6.106 and 
3.4.0.110 12 3 1 2 2 20 159206

Struts 1.2.7, 1.2.8 and 
1.2.9 48 18 9 4 20 99 158718

Tomcat 6.0.14, 6.0.16 
and 6.0.18 98 21 23 4 23 169 279298

 Declarations of new structures (i.e., new classes, new variable/object declaration 
including the “get” and “set” methods for them) were not identified as faults, because a 
simple structure declaration does not imply a fault correction. If they are associated 
with a fault correction, this will be seen in the code, and the fault would be properly 
classified.  

 For each fault, we attempt to understand the language construction and the 
program context around it. Then, we try to correlate the fault with a fault type observed 
in the previous study [Durães and Madeira 2006].  When it is not possible to classify a 
fault according to the previous study [Durães and Madeira 2006], a new fault type is 
created, in accordance with the methodology proposed [Durães and Madeira 2006]. 
Changes in configuration files (i.e., files with “xml” and “properties” extensions) were 
not considered. 

 Under the decisions and assumptions above, we were able to identify and 
classify all the faults found in this field data study. The final classification should be 
seen as a complementary extension to the previous classification [Durães and Madeira 
2006] and can be used to define specific fault emulation operators to inject faults in 
Java applications. 

3.1. Security vulnerabilities patches analysis 

Due to the importance of knowing the faults that lead to security vulnerabilities, a 
subset of security faults was identified. To identify this fault subset, additional decisions 
were made as explained in the next paragraph. These decisions are based on the 
methodology proposed by Fonseca and Vieira [2008]. 

 The Struts and Tomcat applications were selected to identify security faults 
because they are very popular and have many security vulnerabilities reported. For the 
other applications there was not security vulnerabilities reported, and, consequently, 
security faults were not analyzed for them. The vulnerability corrections are available in 
correction patches. Normally, these patches also present many corrections, including 
faults not linked to security. Thus, it is necessary to identify files and pieces of source 
code that were modified exclusively to correct a particular vulnerability. This detailed 
information was found through an internal control number called “number revision” in 
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the patches of the applications under analysis. From this number it was possible to 
identify the files that were modified exclusively to correct the particular vulnerability. It 
is understood that all the modified source code fragments in these files are connected to 
the present security faults and it does correct the corresponding security vulnerabilities. 

4. Results and discussions 
A set of 574 Java faults were analyzed. Table 2 presents the most frequent faults found 
considering the representative set of Java application shown in Table 1. These most 
frequent faults represent 78.4% of the total Java faults found. 

Table 2. Most frequent Java faults and corresponding ODC fault types 

Fault 
nature Specific fault types Faults ODC type

Missing 
construct

Missing functionality (MFCT) 87 Function
Missing If construct plus statements (MIFS) 85 Algorithm
Missing function call (MFC) 60 Algorithm
Missing if construct plus else plus statements around 
statements (MIEA) 20 Algorithm
Missing if construct around statements (MIA) 17 Checking
Missing parameter in function call (MPFC) 11 Interface

Wrong 
construct

Wrong function called with same parameters (WFCS) 30 Algorithm
Wrong value used in variable initialization (WVIV) 23 Assignment
Wrong data types or conversion used (WSUT) 19 Assignment
Wrong value used in parameter of function call 
(WPFL) 18 Interface
Wrong variable used in parameter of function call 
(WPFV) 17 Interface
Wrong logical expression used as branch condition
(WLEC) 15 Checking
Wrong algorithm - small sparse modifications (WALD) 13 Algorithm
Wrong return value (WRV) 12 Interface
Wrong algorithm - code was misplaced(WALR) 11 Algorithm

Extraneous 
construct Extraneous function call (EFC) 12 Algorithm
Total faults 450

 The most frequent fault types found in our field study are Missing Functionality 
(MFCT) and Missing if construct plus statements (MIFS). Both types present a 
percentage much higher than that of other fault types, accounting for 30% of the total of 
analyzed faults. The third most frequent is the Missing function call (MFC), 
representing 10.5% of the total faults. This rank is similar to that of a previous field 
study [Durães and Madeira 2006], where: MIFS is the most frequent type representing 
10.7% of the total of faults found in the C language; MFC is the third one, representing 
6.7%; and MFCT represents 3.2%. These results indicate that, despite some different 
frequencies, the mistakes most commonly made by programmers are common to both 
programming languages (C and Java). 
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4.1. General Java Faults 

From the most frequent fault types in Table 2, seven are also found as the most frequent 
fault types in Durães and Madeira´s study [Durães and Madeira 2006]. They are MIFS, 
MFC, MFCT, MIA, WSUT, WPFV and WLEC. Table 3 presents a comparison between 
the distribution of this field study and the distributions of Durães and Madeira´s field 
study [Durães and Madeira 2006]. 

Table 3. General fault distribution across ODC defect-type distribution and 
comparison with Durães and Madeira´s field study [Durães and Madeira 2006]. 

ODC 
defect-type 

General Java 
Faults (GJF) 

GJF ODC defect-type 
distribution (%) 

C faults distribution  [Durães and 
Madeira 2006] (%) 

Algorithm 272 47.4 40.1 
Assignment 81 14.1 21.4 
Checking 57 9.9 25 
Function 90 15.7 6.1 
Interface 74 12.9 7.3 
total 574   

 Results show that general Java faults distribution is similar from the tendency 
found in the study by Durães and Madeira [2006]. We observe that Assignment, 
Interface and Function faults have roughly the same frequency and Checking faults are 
the least frequent ones. There was a considerable increase of Function faults when 
compared to the study by Durães and Madeira [2006]. It is our belief that these 
differences are due to the specific characteristics of the programming language and 
paradigm; Java programming code tends to be more modularized and encapsulated, and 
requires more methods constructions to make the corrections. There was also a 
considerable increase of Interface faults. As Interface faults are faults that produce 
errors in the interaction among components, modules, device drivers, call statements or 
parameter lists, this increase may be due to the stronger importance assigned to the 
interfaces in Java applications and to the security vulnerabilities corrections, since 
attacks can be done especially through variables and values inputs. 

4.2. Security Java Faults 

From 574 investigated faults, 67 are found to lead to software vulnerabilities. Table 4 
shows the most frequent faults observed in security vulnerability correcting patches. 
These faults represent 73.2% of the total security faults observed and follow a pattern 
similar to that of the general Java faults, where the fault types MFC and MIFS are the 
most frequent ones. Table 5 presents the security Java faults distribution and a 
comparison with the distribution of Fonseca and Vieira´s field study [Fonseca and 
Vieira 2008]. 
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Table 4. Most frequent security Java faults and corresponding ODC fault types 

Fault Nature Specific fault types Faults ODC Type 
Missing 
construct 

Missing function call (MFC) 14 Algorithm 
Missing If construct plus statements (MIFS) 11 Algorithm 

Wrong 
construct 

Wrong variable used in parameter of function call 
(WPFV) 8 Interface 
Wrong value used in variable initialization (WVIV) 7 Assignment 
Wrong value used in parameter of function call 
(WPFL) 5 Interface 
Wrong algorithm - code was misplaced(WALR) 4 Algorithm 

Total faults 49 

 Table 5. Security fault distribution across ODC defect-type distribution and 
comparison with Fonseca and Vieira´s field study [Fonseca and Vieira 2008]. 

ODC defect-
type 

Security Java 
Faults (SJF) 

SJF ODC defect-
type distribution (%) 

PHP faults distribution (%) 
[Fonseca and Vieira 2008] 

Algorithm 36 53.7 86.01 
Assignment 11 16.4 6.04 
Checking 5 7.5 2.36 
Function 1 1.5 0 
Interface 14 20.9 5.6 
total 67   

 The security fault distribution follows a distribution pattern similar to that of 
general Java faults, except for Function faults. However, significant differences arise 
when we compare our security fault distribution with that presented by Fonseca and 
Vieira [2008]. Again, we believe these differences are due to the programming language 
specific characteristics (PHP faults were investigated in that study). 

 Table 6 shows, for each fault type, the security fault percentage relative to 
general Java faults. Interface faults have the highest percentage: 14 of the 74 Interface 
faults make the software vulnerable, meaning that 18.9% of the Interface faults are 
security faults.  

Table 6. Security fault percentage relative to general Java faults. 

ODC defect-type GJF SJF SJF / GJF (%) 
Algorithm 272 36 13.2 
Assignment 81 11 13.6 
Checking 57 5 8.8 
Function 90 1 1.1 
Interface 74 14 18.9 
total 574 67 11.7 

4.3. New fault types 

In our study new fault types were found due to the Java language specific characteristics 
and the object-oriented paradigm, representing 7.1% of the total Java faults. As they 
arise due to the Java language specificity, they must be considered in the creation of 
new operators and, consequently, in the development of a realistic Java injection fault 
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tool. Also, some of these new fault types are security faults. Table 7 presents a new Java 
fault types summary with the corresponding frequencies and the ODC type. A brief 
description for each new fault type follows. 

Table 7. New Java fault types 

Fault 
nature Fault specific type Faults ODC type 

Missing 
contruct 

Missing interface implementation (MII) 6 Interface 
Missing throw statement (MTS) 4 Algorithm 
Missing try/catch/finally statement around statements 
(MTCFAS) 4 Algorithm 

Missing try/catch/finally statement plus statements 
(MTCFS) 4 Algorithm 

Missing Synchronized statement around statements 
(MSAS) 2 Algorithm 

Missing throws specification in method (MTSM) 2 Algorithm 
Missing extended class (MEC) 1 Interface 
Missing Synchronized statement (MSS) 1 Algorithm 

Wrong 
construct 

Wrong extended class (WEC) 9 Interface 
Wrong parameter passed to an object constructor (WPOC) 5 Assignment 

Extraneous 
construct 

Extraneous try/catch/finally statement (ETCFS) 2 Algorithm 
Extraneous Synchronized statement (ESS) 1 Algorithm 

Total faults 41  

Interface faults 

 Missing interface implementation (MII): the omission of the interface 
specification that will be implemented by the class or even the implements clause. 

 Missing Extended class (MEC): the omission of the super class specification or 
even the extends clause. 

 Wrong extended class (WEC): the super class specified during the class 
declaration is wrong. 

Assignment faults 

 Wrong parameter passed to an object constructor (WPOC): a wrong parameter 
passed to a constructor method when an object is created by the new clause. 

Algorithm faults 

 Missing synchronized statement (MSS): the omission of a code fragment with 
synchronize instruction. 

 Missing synchronized statement around statements (MSAS): the omission of a 
synchronize instruction in the existing code fragments. 

 Missing throws specification in method (MTSM): the omission of the exceptions 
specification, which will be thrown by particular methods. 

 Missing throw statement (MTS): the omission of exception handling. 
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 Missing try/catch/finally statement plus statements (MTCFS): the omission of a 
code fragment with the corresponding exception handling 

 Missing try/catch/finally statement around statements (MTCFAS): the omission 
of exception handling in existing code fragments 

 Extraneous synchronized statement (ESS): a synchronized instruction used 
mistakenly. 

 Extraneous try/catch/finally statement (ETCFS): exception handling used in a 
wrong way. 

 Fault types relative to the try/catch/finally statements were classified in a generic 
way and some characteristics of the try/catch/finally block syntax must be explained. It 
is known that every try block requires at least one catch block or one finally block. For 
each try block several catch blocks are permitted. The missing construct faults relative 
to the try/catch/finally block can be the omission of one or more catch blocks 
corresponding to an existent try block; it can also be the omission of one finally block. 
The extraneous construct faults can be the wrong use of catch and finally blocks even 
separately. 

 To classify these new fault types the nomenclature proposed by Durães and 
Madeira [2006] was followed. Some structures are related to well known Java specific 
faults presented by Reilly [2009] (Top Ten Errors), but the majority of the new fault 
types do not represent that kind of mistakes. This can be due to the maturity level of the 
applications, where more stable versions do not present those common errors.   

Most representative faults 

The most representative new fault types are WEC, MII and WPOC, accounting for, 
respectively, 22%, 14.6% and 12.2% of the total new fault types. Their structures are 
exemplified in Table 8, where the missing or wrong code is marked with gray 
background. 

Table 8. Fault structure of the most representative new fault types 

MII 
…code before 
public class Class1 implements Interface1, Interface2 
… code after 

WEC 
…code before 
public class Class1 extends SuperClass1 
… code after 

WPOC 
…code before 
Class1 object1 = new Class1 (parameter) 
…code after 

 In the object-oriented paradigm an interface establishes a kind of contract which 
is fulfilled by a class that implements this interface. When a class implements an 
interface, it is ensured that all the functionalities specified by the interface will be 
offered by the class. Interfaces define only method and constants variables definitions 
and represent higher level abstraction than the classes do, i.e., it is possible to design 
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explicitly all the interfaces of an application before deciding on the more adequate 
implementation form. A class can implement several interfaces. 

 The new fault type MII occurs when the programmer misses the implements 
clause or misses the specification of the implementation of some interface. This fact 
can lead to missing some functionality necessary to the correct behavior of the 
application. This functionality will be included when the correction of this fault type is 
done. It also contributes to the increase of the MFCT fault type in this field study, 
because some interfaces may have several methods definitions that are called in some 
part of the code. 

 The WEC fault type occurs due to the concept of inheritance provided by the 
object-oriented paradigm. This concept permits characteristics common to various 
classes to be concentrated in only one class (superclass). Extending a wrong class 
means inheriting wrong characteristics and wrong functionalities to be used by the 
subclass.  

 The WPOC fault type is related to the constructor method. This method 
determines which actions must be executed when an object is created. In the Java 
language, the constructor is defined as a method whose name is the class name and that 
does not have a return type, neither void. The constructor is invoked only at the moment 
that the object is created by the new clause. The constructor can receive arguments and 
the same constructor can be defined with different numbers of arguments, using the 
overloading mechanism.  

 All the classes have at least one predefined constructor. If no one constructor is 
defined explicitly by the programmer, a default constructor, which does not receive 
arguments, is included in the class by the Java compiler. Thus, for the WPOC fault type, 
if the called constructor has an argument, it means that the programmer wants to write a 
piece of code to be executed when an object is created (he does not want to use the 
default constructor). Passing a wrong parameter as an argument means that the code to 
be executed in this constructor can create an object with wrong initialization values, for 
example.  

 Three security faults identified among the new fault types were found. They 
correspond respectively to the MTSM, MTCFAS and MTCFS fault types. These three 
fault types are related to the exceptions concept. The Java language offers mechanisms 
to detect and to treat exceptions.  

 The existence of an exception means that some exceptional condition has 
occurred during the code execution. Thus, exceptions are associated with faults that 
were not identified during the compilation. Catching the exceptional situation is 
necessary to treat them. For each exception that can occur during the code execution, an 
exception handler must be specified. The Java compiler verifies and enforces that 
exceptions have an associated treatment block.   

 The MSTM, MTCFAS, MTCFS fault types occur due to missing treatment 
blocks and missing statements related to them. It means that the exceptions can 
propagate and cause errors in the applications.  
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5. Conclusions 
The field data study reported in this paper analyzed 574 Java software faults. Among 
them, 67 lead to security vulnerabilities. The results show that the fault types found 
correspond largely to the fault types found in the field study using the C programming 
language. The fault representativeness also follows this tendency, meaning that the most 
frequent Java faults correspond to the most frequent C faults; this shows that mistakes 
made by computer systems programmers follow a similar pattern independently of these 
programming languages. 

 Concerning fault distribution, the Java field study shows a considerable increase 
of Function and Interface fault types; this increase can be due to Java language 
characteristics and object-oriented paradigm, security vulnerabilities corrections and a 
stronger importance assigned to the interfaces in the Java applications analyzed. 

 New fault types were identified according to Java language specific 
characteristics and the object-oriented paradigm. These new fault types are important 
for the validation process of the Java applications, mainly because some of them are 
security faults that must be considered. 

 As future work the authors’ aim is to develop a fault injection tool to automate 
the software fault injection process in Java applications. This tool will use the fault 
representativeness found in the present field study to create faultloads to be used during 
fault injection experiments, to obtain more realistic and useful results in the software 
validation process. 
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