

An Investigation of Java Faults Operators Derived from a
Field Data Study on Java Software Faults

Tania Basso1, Regina L. O. Moraes2, Bruno P. Sanches2, Mario Jino1

1Faculdade de Engenharia Elétrica e de Computação
Universidade Estadual de Campinas (UNICAMP) – Campinas, SP, Brazil

2Faculdade de Tecnologia
Universidade Estadual de Campinas (UNICAMP) – Campinas, SP, Brazil

{taniabasso,brunopsanches}@gmail.com, regina@ceset.unicamp.br,
jino@dca.fee.unicamp.br

Abstract. The knowledge of real software faults representativeness is
important to allow the emulation of software faults in a more accurate way
through software fault injection techniques. This paper presents a field data
study to analyze the representativeness of Java software faults, including
security faults. The faults are classified according to a previous field study of
C faults representativeness and new types of faults are identified due to the
specific characteristics of the Java language structure. Results are compared
and show that the mistakes most commonly made by programmers follow a
pattern, independently of the programming language.

1. Introduction
Modern society is increasingly dependent on computer services and, consequently, on
the software executed to provide these services. According to Avizienis et al [2004],
dependability of a system is the ability to avoid service failures that are more frequent
and more severe than is acceptable. Assuring that software systems are dependable is
important especially in critical systems, where faults can cause major damages or loss
of human lives [Gage and McCormick 2004],[Pfleeger 2000].

 The current scenario of software production requires more complex elements
involved in software production, frequent changes and cost constraints within a short
limit of development time. These factors can lead to the insertion of faults into the
software. Software faults are recognized as the main cause of computational defects
[Kalyanakrishnam et al 1999], [Lee and Iyer 1995], [Sullivan and Chillarege 1992] and
one of the main challenges in this context is to achieve dependability in these systems.
Another demand on dependable systems arises from ubiquitous computation. They need
to be universally accessed by users around the world (e.g., online trading and home
banking). Most of these systems are web applications. In this scenario, the users may
find it difficult to report the failures and the unsolved problems can lead them to put in
check the organization credibility or allow hackers to attack the systems, which may
have a highly negative impact on users. Although other potential causes for
vulnerability do exist, the root cause of most security attacks are vulnerabilities created
by software faults [Fonseca and Vieira 2008].

10º Workshop de Testes e Tolerância a Falhas 156

 One way to ensure software dependability is to apply procedures for fault
removal and fault prediction during the software validation process. These procedures
enable, respectively, the reduction of the number of faults or the fault severity and the
evaluation of the consequences of faults remaining in software products. Software fault
injection techniques (i.e., deliberate faults insertion) have been very useful to help the
software validation process [Durães and Madeira 2006]. Besides the well known
usefulness of the technique for this purpose, the results are even more important if the
fault emulation is done in a realistic way, which implies the knowledge of the kind of
faults found and their distribution in the operational environment. This means that it is
necessary to identify the fault representativeness.

 This paper presents a field data study on Java systems in production phase (i.e.,
systems that have gone through several releases), aiming to identify Java specific fault
representativeness. The Java programming language was selected for this field data
study because it is widely used in current software applications, including web-based
systems. The representativeness of a subset of security faults was also analyzed. 574
faults were analyzed and 67 of them are recognized as security faults. The results are
compared with those from a previous field data study [Durães and Madeira 2006].

 The proposal of this paper is to evaluate if the fault representativeness of Java
applications (based on object-oriented paradigm) follows a pattern similar to the
software fault representativeness of C applications (based on structural paradigm); it is
an important step for the development of a fault injection tool for Java applications.

 Some injection tools have been developed [Barcelos et al 1999], [Carreira et al
1995], [Martins et al 2002], [Neves et al 2006], and, however, there is no available
injection tool to inject specific java software faults, it means, to change Java code
structure. Evaluating fault representativeness of Java applications would enable the
emulation of software faults in an accurate and realistic way, leading to useful results in
the injection Java faults and, consequently, in the validation process.

 In summary, we present a software fault classification based on a set of faults
found in Java applications and propose an extension to the classification presented by
Durães and Madeira [2006], specific to the object-oriented programming paradigm and
the Java language.

 The structure of the paper is as follows: Section 2 presents background on
software faults; Section 3 describes the approach for analyzing and classifying the
software faults; Section 4 contains the comparison with the other field study and
presents new types of faults due to the Java language characteristics; Section 5 presents
our conclusions and future work.

2. Software faults
Software faults are caused by mistakes made by software product programmers and
remain in the program source code. The complete elimination of software faults is a
difficult or even impossible goal to be achieved [Lyu 1996], [Musa 1996]. In many
cases, waiting for the activation of these faults through normal use is not practicable
because it rarely happens (otherwise, the faults would be identified and eliminated by

10º Workshop de Testes e Tolerância a Falhas 157

software tests). Fault injection techniques are one option for activation of these faults in
order to evaluate the software behavior during the software validation process.

 Knowledge of the software fault representativeness is essential for realistic fault
injection and to ensure that results obtained during the experiments are very close to
those of an operational environment.

 To establish real software faults representativeness it is necessary to classify the
most frequent software faults, to understand their origins and the way human mistakes
occur in the programming task.

 A well known classification of software faults is ODC (Orthogonal Defect
Classification) [Chillarege 1995], [Chillarege et al 1992]. Durães and Madeira [Durães
and Madeira 2006] extended this classification and refined their representation to a
point that they can be emulated. The generic technique created by [Durães and Madeira
2006] is the G-SWFIT (Generic Software Fault Injection Technique). This technique
makes possible the emulation of the most frequently found software faults. It consists of
modifying the compiled binary code of software modules by introducing specific
changes which correspond to the code that would be generated by the compiler if the
intended software fault were in the high level source code. The emulation is done by
means of an emulation operator’s library. Each operator in this library consists of two
binary code instructions. The first one represents a pattern corresponding to a specific
fault and the second one represents the necessary changes for the adequate injection of
the fault [Durães and Madeira 2006]. Although this technique is generic, the study was
developed using the C language and additional investigation is necessary to extend it to
other programming languages.

 As software faults are strongly dependent on the paradigm and the programming
language structure of the application, not all types of faults found in the present field
study are represented in Durães and Madeira study [Durães and Madeira 2006]. Thus, it
is necessary to define a new classification and a distribution including the new types of
software faults which represent characteristics specific of the Java language.

2.1. Java security software faults

Nowadays, due to the widespread use of web applications, the security vulnerabilities in
these systems are being more intensely explored by hackers. The work proposed by
Fonseca and Vieira [2008] aims to improve this scenario by investigating security faults
in applications developed using the PHP (Hypertext Preprocessor) programming
language. They want to achieve an understanding of the relationship between certain
software defects and security vulnerabilities.

 The vulnerabilities analyzed were Cross Site Scripting (XSS) and SQL injection
(see [Fonseca and Vieira 2008] for more details). To understand which code is
responsible for the security problems the study was based on vulnerabilities correction
patches. Comparison of these patches makes it possible to identify and classify real
software faults that lead to security vulnerabilities. The authors also define rules to
make the patches analysis coherent and to avoid mistakes during fault classification.

 The methodology and patches analysis rules proposed by Fonseca and Vieira
[2008] are used in our field data study as a basis for security faults identification.

10º Workshop de Testes e Tolerância a Falhas 158

3. Application analysis and fault identification
The field data study reported in this paper aims to investigate software faults in Java
applications in order to define faultloads. To determine these faultloads, Java
applications source codes are analyzed; an essential condition for the study to be
conducted is the availability of the source code of these applications. We also need
previous releases of these applications to compare them and to analyze the corrections
made and the programming structures which were used to perform these corrections.
The analysis of these structures will indicate the types of faults and, consequently, the
types of operators that can be used to emulate these faults making use of the G-SWFIT
technique.

 To identify faults that lead to security vulnerabilities additional information is
necessary to link the vulnerability correction with the specific application release (e.g.,
information on which files or source code fragments were modified exclusively to
correct a particular vulnerability).

 In accordance with the necessary conditions above and considering their
popularity, six open source applications were selected for the field study: Azureus
(Vuze) [Vuze 2009], FreeMind [FreeMind 2009], JEdit [JEdit 2009], Phex [Phex 2009],
Struts [Struts 2009] and Tomcat [Tomcat 2009].

 Azureus (Vuze) and Phex are client applications for sharing files; they use
protocols that, briefly, allow content distribution through the web, optimizing the
bandwidth consumption under traffic limitations. FreeMind helps on storing and
organizing ideas, contributing, for example, to keep personal knowledge bases,
recording information of meetings, brainstorms, presentations, planning, and so on.
JEdit is a text editor for software systems programmers. Struts is a framework used to
create Java web applications. And, finally, Tomcat is a very popular web application
server.

 To analyze the differences between the selected applications, a diff tool (i.e., a
tool that compares two codes and shows their differences) is applied to the different
versions of the same application; the changes introduced in the source code are
highlighted. It makes possible to visualize the correction, and, consequently, to identify
the software fault. The diff tool used is WinMerge 2.10.0.0 [WinMerge 2009]. A total
of 14 versions of applications were analyzed. Table 1 shows the analyzed versions and
the faults found through ODC type classification for each selected application.

 The applications were selected considering the size (lines of code) and number
of downloads. Azureus and Tomcat are in a higher maturity level; they are more
popular, have more lines of code and more released versions available. So, they have
more number of reported bugs and it implies in more number of faults.

 The faults are identified through the comparison between bugs correction code
of the current release and the source code of the immediately preceding released
version. The bugs’ correction codes are identified trough changelog files and it is
assumed that different code fragments do correct faults.

10º Workshop de Testes e Tolerância a Falhas 159

Table 1. Applications and analyzed versions

Application Analyzed
versions

ODC type Total
Faults

Size
(LOC)ALG ASG CHK FUN INT

Azureus
(Vuze)

3.0.5.2 and
3.1.1.0 46 19 14 36 10 125 576958

FreeMind 0.7.1 and 0.8.0 42 10 2 26 10 90 19397

JEdit 4.2pre15 and
4.3pre16 26 10 8 18 9 71 173798

Phex 3.2.6.106 and
3.4.0.110 12 3 1 2 2 20 159206

Struts 1.2.7, 1.2.8 and
1.2.9 48 18 9 4 20 99 158718

Tomcat 6.0.14, 6.0.16
and 6.0.18 98 21 23 4 23 169 279298

 Declarations of new structures (i.e., new classes, new variable/object declaration
including the “get” and “set” methods for them) were not identified as faults, because a
simple structure declaration does not imply a fault correction. If they are associated
with a fault correction, this will be seen in the code, and the fault would be properly
classified.

 For each fault, we attempt to understand the language construction and the
program context around it. Then, we try to correlate the fault with a fault type observed
in the previous study [Durães and Madeira 2006]. When it is not possible to classify a
fault according to the previous study [Durães and Madeira 2006], a new fault type is
created, in accordance with the methodology proposed [Durães and Madeira 2006].
Changes in configuration files (i.e., files with “xml” and “properties” extensions) were
not considered.

 Under the decisions and assumptions above, we were able to identify and
classify all the faults found in this field data study. The final classification should be
seen as a complementary extension to the previous classification [Durães and Madeira
2006] and can be used to define specific fault emulation operators to inject faults in
Java applications.

3.1. Security vulnerabilities patches analysis

Due to the importance of knowing the faults that lead to security vulnerabilities, a
subset of security faults was identified. To identify this fault subset, additional decisions
were made as explained in the next paragraph. These decisions are based on the
methodology proposed by Fonseca and Vieira [2008].

 The Struts and Tomcat applications were selected to identify security faults
because they are very popular and have many security vulnerabilities reported. For the
other applications there was not security vulnerabilities reported, and, consequently,
security faults were not analyzed for them. The vulnerability corrections are available in
correction patches. Normally, these patches also present many corrections, including
faults not linked to security. Thus, it is necessary to identify files and pieces of source
code that were modified exclusively to correct a particular vulnerability. This detailed
information was found through an internal control number called “number revision” in

10º Workshop de Testes e Tolerância a Falhas 160

the patches of the applications under analysis. From this number it was possible to
identify the files that were modified exclusively to correct the particular vulnerability. It
is understood that all the modified source code fragments in these files are connected to
the present security faults and it does correct the corresponding security vulnerabilities.

4. Results and discussions
A set of 574 Java faults were analyzed. Table 2 presents the most frequent faults found
considering the representative set of Java application shown in Table 1. These most
frequent faults represent 78.4% of the total Java faults found.

Table 2. Most frequent Java faults and corresponding ODC fault types

Fault
nature Specific fault types Faults ODC type

Missing
construct

Missing functionality (MFCT) 87 Function
Missing If construct plus statements (MIFS) 85 Algorithm
Missing function call (MFC) 60 Algorithm
Missing if construct plus else plus statements around
statements (MIEA) 20 Algorithm
Missing if construct around statements (MIA) 17 Checking
Missing parameter in function call (MPFC) 11 Interface

Wrong
construct

Wrong function called with same parameters (WFCS) 30 Algorithm
Wrong value used in variable initialization (WVIV) 23 Assignment
Wrong data types or conversion used (WSUT) 19 Assignment
Wrong value used in parameter of function call
(WPFL) 18 Interface
Wrong variable used in parameter of function call
(WPFV) 17 Interface
Wrong logical expression used as branch condition
(WLEC) 15 Checking
Wrong algorithm - small sparse modifications (WALD) 13 Algorithm
Wrong return value (WRV) 12 Interface
Wrong algorithm - code was misplaced(WALR) 11 Algorithm

Extraneous
construct Extraneous function call (EFC) 12 Algorithm
Total faults 450

 The most frequent fault types found in our field study are Missing Functionality
(MFCT) and Missing if construct plus statements (MIFS). Both types present a
percentage much higher than that of other fault types, accounting for 30% of the total of
analyzed faults. The third most frequent is the Missing function call (MFC),
representing 10.5% of the total faults. This rank is similar to that of a previous field
study [Durães and Madeira 2006], where: MIFS is the most frequent type representing
10.7% of the total of faults found in the C language; MFC is the third one, representing
6.7%; and MFCT represents 3.2%. These results indicate that, despite some different
frequencies, the mistakes most commonly made by programmers are common to both
programming languages (C and Java).

10º Workshop de Testes e Tolerância a Falhas 161

4.1. General Java Faults

From the most frequent fault types in Table 2, seven are also found as the most frequent
fault types in Durães and Madeira´s study [Durães and Madeira 2006]. They are MIFS,
MFC, MFCT, MIA, WSUT, WPFV and WLEC. Table 3 presents a comparison between
the distribution of this field study and the distributions of Durães and Madeira´s field
study [Durães and Madeira 2006].

Table 3. General fault distribution across ODC defect-type distribution and
comparison with Durães and Madeira´s field study [Durães and Madeira 2006].

ODC
defect-type

General Java
Faults (GJF)

GJF ODC defect-type
distribution (%)

C faults distribution [Durães and
Madeira 2006] (%)

Algorithm 272 47.4 40.1
Assignment 81 14.1 21.4
Checking 57 9.9 25
Function 90 15.7 6.1
Interface 74 12.9 7.3
total 574

 Results show that general Java faults distribution is similar from the tendency
found in the study by Durães and Madeira [2006]. We observe that Assignment,
Interface and Function faults have roughly the same frequency and Checking faults are
the least frequent ones. There was a considerable increase of Function faults when
compared to the study by Durães and Madeira [2006]. It is our belief that these
differences are due to the specific characteristics of the programming language and
paradigm; Java programming code tends to be more modularized and encapsulated, and
requires more methods constructions to make the corrections. There was also a
considerable increase of Interface faults. As Interface faults are faults that produce
errors in the interaction among components, modules, device drivers, call statements or
parameter lists, this increase may be due to the stronger importance assigned to the
interfaces in Java applications and to the security vulnerabilities corrections, since
attacks can be done especially through variables and values inputs.

4.2. Security Java Faults

From 574 investigated faults, 67 are found to lead to software vulnerabilities. Table 4
shows the most frequent faults observed in security vulnerability correcting patches.
These faults represent 73.2% of the total security faults observed and follow a pattern
similar to that of the general Java faults, where the fault types MFC and MIFS are the
most frequent ones. Table 5 presents the security Java faults distribution and a
comparison with the distribution of Fonseca and Vieira´s field study [Fonseca and
Vieira 2008].

10º Workshop de Testes e Tolerância a Falhas 162

Table 4. Most frequent security Java faults and corresponding ODC fault types

Fault Nature Specific fault types Faults ODC Type
Missing
construct

Missing function call (MFC) 14 Algorithm
Missing If construct plus statements (MIFS) 11 Algorithm

Wrong
construct

Wrong variable used in parameter of function call
(WPFV) 8 Interface
Wrong value used in variable initialization (WVIV) 7 Assignment
Wrong value used in parameter of function call
(WPFL) 5 Interface
Wrong algorithm - code was misplaced(WALR) 4 Algorithm

Total faults 49

 Table 5. Security fault distribution across ODC defect-type distribution and
comparison with Fonseca and Vieira´s field study [Fonseca and Vieira 2008].

ODC defect-
type

Security Java
Faults (SJF)

SJF ODC defect-
type distribution (%)

PHP faults distribution (%)
[Fonseca and Vieira 2008]

Algorithm 36 53.7 86.01
Assignment 11 16.4 6.04
Checking 5 7.5 2.36
Function 1 1.5 0
Interface 14 20.9 5.6
total 67

 The security fault distribution follows a distribution pattern similar to that of
general Java faults, except for Function faults. However, significant differences arise
when we compare our security fault distribution with that presented by Fonseca and
Vieira [2008]. Again, we believe these differences are due to the programming language
specific characteristics (PHP faults were investigated in that study).

 Table 6 shows, for each fault type, the security fault percentage relative to
general Java faults. Interface faults have the highest percentage: 14 of the 74 Interface
faults make the software vulnerable, meaning that 18.9% of the Interface faults are
security faults.

Table 6. Security fault percentage relative to general Java faults.

ODC defect-type GJF SJF SJF / GJF (%)
Algorithm 272 36 13.2
Assignment 81 11 13.6
Checking 57 5 8.8
Function 90 1 1.1
Interface 74 14 18.9
total 574 67 11.7

4.3. New fault types

In our study new fault types were found due to the Java language specific characteristics
and the object-oriented paradigm, representing 7.1% of the total Java faults. As they
arise due to the Java language specificity, they must be considered in the creation of
new operators and, consequently, in the development of a realistic Java injection fault

10º Workshop de Testes e Tolerância a Falhas 163

tool. Also, some of these new fault types are security faults. Table 7 presents a new Java
fault types summary with the corresponding frequencies and the ODC type. A brief
description for each new fault type follows.

Table 7. New Java fault types

Fault
nature Fault specific type Faults ODC type

Missing
contruct

Missing interface implementation (MII) 6 Interface
Missing throw statement (MTS) 4 Algorithm
Missing try/catch/finally statement around statements
(MTCFAS) 4 Algorithm

Missing try/catch/finally statement plus statements
(MTCFS) 4 Algorithm

Missing Synchronized statement around statements
(MSAS) 2 Algorithm

Missing throws specification in method (MTSM) 2 Algorithm
Missing extended class (MEC) 1 Interface
Missing Synchronized statement (MSS) 1 Algorithm

Wrong
construct

Wrong extended class (WEC) 9 Interface
Wrong parameter passed to an object constructor (WPOC) 5 Assignment

Extraneous
construct

Extraneous try/catch/finally statement (ETCFS) 2 Algorithm
Extraneous Synchronized statement (ESS) 1 Algorithm

Total faults 41

Interface faults

 Missing interface implementation (MII): the omission of the interface
specification that will be implemented by the class or even the implements clause.

 Missing Extended class (MEC): the omission of the super class specification or
even the extends clause.

 Wrong extended class (WEC): the super class specified during the class
declaration is wrong.

Assignment faults

 Wrong parameter passed to an object constructor (WPOC): a wrong parameter
passed to a constructor method when an object is created by the new clause.

Algorithm faults

 Missing synchronized statement (MSS): the omission of a code fragment with
synchronize instruction.

 Missing synchronized statement around statements (MSAS): the omission of a
synchronize instruction in the existing code fragments.

 Missing throws specification in method (MTSM): the omission of the exceptions
specification, which will be thrown by particular methods.

 Missing throw statement (MTS): the omission of exception handling.

10º Workshop de Testes e Tolerância a Falhas 164

 Missing try/catch/finally statement plus statements (MTCFS): the omission of a
code fragment with the corresponding exception handling

 Missing try/catch/finally statement around statements (MTCFAS): the omission
of exception handling in existing code fragments

 Extraneous synchronized statement (ESS): a synchronized instruction used
mistakenly.

 Extraneous try/catch/finally statement (ETCFS): exception handling used in a
wrong way.

 Fault types relative to the try/catch/finally statements were classified in a generic
way and some characteristics of the try/catch/finally block syntax must be explained. It
is known that every try block requires at least one catch block or one finally block. For
each try block several catch blocks are permitted. The missing construct faults relative
to the try/catch/finally block can be the omission of one or more catch blocks
corresponding to an existent try block; it can also be the omission of one finally block.
The extraneous construct faults can be the wrong use of catch and finally blocks even
separately.

 To classify these new fault types the nomenclature proposed by Durães and
Madeira [2006] was followed. Some structures are related to well known Java specific
faults presented by Reilly [2009] (Top Ten Errors), but the majority of the new fault
types do not represent that kind of mistakes. This can be due to the maturity level of the
applications, where more stable versions do not present those common errors.

Most representative faults

The most representative new fault types are WEC, MII and WPOC, accounting for,
respectively, 22%, 14.6% and 12.2% of the total new fault types. Their structures are
exemplified in Table 8, where the missing or wrong code is marked with gray
background.

Table 8. Fault structure of the most representative new fault types

MII
…code before
public class Class1 implements Interface1, Interface2
… code after

WEC
…code before
public class Class1 extends SuperClass1
… code after

WPOC
…code before
Class1 object1 = new Class1 (parameter)
…code after

 In the object-oriented paradigm an interface establishes a kind of contract which
is fulfilled by a class that implements this interface. When a class implements an
interface, it is ensured that all the functionalities specified by the interface will be
offered by the class. Interfaces define only method and constants variables definitions
and represent higher level abstraction than the classes do, i.e., it is possible to design

10º Workshop de Testes e Tolerância a Falhas 165

explicitly all the interfaces of an application before deciding on the more adequate
implementation form. A class can implement several interfaces.

 The new fault type MII occurs when the programmer misses the implements
clause or misses the specification of the implementation of some interface. This fact
can lead to missing some functionality necessary to the correct behavior of the
application. This functionality will be included when the correction of this fault type is
done. It also contributes to the increase of the MFCT fault type in this field study,
because some interfaces may have several methods definitions that are called in some
part of the code.

 The WEC fault type occurs due to the concept of inheritance provided by the
object-oriented paradigm. This concept permits characteristics common to various
classes to be concentrated in only one class (superclass). Extending a wrong class
means inheriting wrong characteristics and wrong functionalities to be used by the
subclass.

 The WPOC fault type is related to the constructor method. This method
determines which actions must be executed when an object is created. In the Java
language, the constructor is defined as a method whose name is the class name and that
does not have a return type, neither void. The constructor is invoked only at the moment
that the object is created by the new clause. The constructor can receive arguments and
the same constructor can be defined with different numbers of arguments, using the
overloading mechanism.

 All the classes have at least one predefined constructor. If no one constructor is
defined explicitly by the programmer, a default constructor, which does not receive
arguments, is included in the class by the Java compiler. Thus, for the WPOC fault type,
if the called constructor has an argument, it means that the programmer wants to write a
piece of code to be executed when an object is created (he does not want to use the
default constructor). Passing a wrong parameter as an argument means that the code to
be executed in this constructor can create an object with wrong initialization values, for
example.

 Three security faults identified among the new fault types were found. They
correspond respectively to the MTSM, MTCFAS and MTCFS fault types. These three
fault types are related to the exceptions concept. The Java language offers mechanisms
to detect and to treat exceptions.

 The existence of an exception means that some exceptional condition has
occurred during the code execution. Thus, exceptions are associated with faults that
were not identified during the compilation. Catching the exceptional situation is
necessary to treat them. For each exception that can occur during the code execution, an
exception handler must be specified. The Java compiler verifies and enforces that
exceptions have an associated treatment block.

 The MSTM, MTCFAS, MTCFS fault types occur due to missing treatment
blocks and missing statements related to them. It means that the exceptions can
propagate and cause errors in the applications.

10º Workshop de Testes e Tolerância a Falhas 166

5. Conclusions
The field data study reported in this paper analyzed 574 Java software faults. Among
them, 67 lead to security vulnerabilities. The results show that the fault types found
correspond largely to the fault types found in the field study using the C programming
language. The fault representativeness also follows this tendency, meaning that the most
frequent Java faults correspond to the most frequent C faults; this shows that mistakes
made by computer systems programmers follow a similar pattern independently of these
programming languages.

 Concerning fault distribution, the Java field study shows a considerable increase
of Function and Interface fault types; this increase can be due to Java language
characteristics and object-oriented paradigm, security vulnerabilities corrections and a
stronger importance assigned to the interfaces in the Java applications analyzed.

 New fault types were identified according to Java language specific
characteristics and the object-oriented paradigm. These new fault types are important
for the validation process of the Java applications, mainly because some of them are
security faults that must be considered.

 As future work the authors’ aim is to develop a fault injection tool to automate
the software fault injection process in Java applications. This tool will use the fault
representativeness found in the present field study to create faultloads to be used during
fault injection experiments, to obtain more realistic and useful results in the software
validation process.

References
Avizienis, A., Laprie, J.C., Randell, B. and Landwehr, C. (2004) “Basic concepts and

taxonomy of dependable and secure computing”. IEEE Transactions on Dependable
and Secure Computing, Volume 1, Issue 1, p. 11 – 33.

Azureus (Vuze). (2009). Available in www.azureus.sourceforge.net. Last access on
February.

Barcelos, P. P., Leite, F., Silva, T. W. (1999) “Implementação de um Injetor de Falhas
de Comunicação”. SCTF ’99 – VIII Simpósio de Computação Tolerante a Falhas.
Campinas, Brazil, p. 225-239.

Carreira, J., Madeira, H. and Silva, J. G. (1995) “Xception: Software Fault Injection and
Monitoring in Processor Functional Units”. 5º IFIP International Working
Conference on Dependable Computing for Critical Applications. Urbana-
Champaign, EUA, p. 135-149.

Chillarege, R. (1995) “Orthogonal Defect Classification”, Chapter 9 of “Handbook of
Software Reliability Engineering”, Michael R. Lyu Ed., IEEE Computer Society
Press, McGraw-Hill.

Chillarege, R., Bhandari, I. S., Chaar, J. K., Halliday, M. J., Moebus, D., Ray, B. and
Wong, M. (1992) “Orthogonal Defect Classification – A Concept for In-Process
Measurement”. IEEE Transactions on Software Engineering, vol. 18, n. 11, p. 943-
956.

10º Workshop de Testes e Tolerância a Falhas 167

Durães, J. and Madeira, H. (2006) "Emulation of Software Faults: A Field Data Study
and Practical Approach". IEEE Trans. on Software Engineering, vol. 32, n. 11, p.
849-867.

Fonseca, J. and Vieira, M. (2008) “Mapping software faults with web security
vulnerability”. IEEE/IFIP Int. Conf. on Dependable Systems and Networks (DSN),
Anchorage, USA, p. 257-266

FreeMind. (2009). Available in www.freemind.sourceforge.net. Last access on
February.

Gage, D. and McCormick, J. (2004) "Why Software Quality Matters", Baseline
Magazine, p. 32-59.

JEdit. (2009). Available in www.jedit.org. Last access on February.

Kalyanakrishnam, M., Kalbarczyk, Z. and Iyer, R. (1999) “Failure Data Analysis of a
LAN of Windows NT Based Computers”, Symposium on Reliable Distributed
Database Systems, SRDS-18, Switzerland, p. 178-187.

Lee, I. and Iyer, R. K. (1995) “Software Dependability in the Tandem GUARDIAN
System”, IEEE Trans. on Software Engineering, vol. 21, no. 5, p. 455-467

Lyu, M. (1996) “Handbook of Software Reliability Engineering”, IEEE Computer
Society Press, MCGraw-Hill.

Martins, E., Rubira, C. and Leme, N. (2002) “Jaca: A reflective fault injection tool
based on patterns”. Proc of the 2002 International Conference on Dependable
Systems & Networks, Washington D.C. USA, p. 483-487.

Musa, J. (1996) “Software Reliability Engineering”, McGraw-Hill.

Neves, N., Antunes, J., Correia, M., Veríssimo, P., Neves, R. “Using Attack Injection to
Discover New Vulnerabilities”. Proc. of the International Conference on Dependable
Systems and Networks (DSN), 2006, p. 457-466.

Pfleeger, S. (2000) "Risky Business: what we have yet to learn about risk management",
The Journal of Systems and Software, 53, p. 265-273.

Phex. (2009). Available in www.phex.org. Last access on February.

Reilly, D. (2009). Top Ten Errors Java Programmers Make. Available in
www.javacoffeebreak.com/articles/toptenerrors.html. Last access on May.

Struts.(2009). Available in www.struts.apache.org. Last access on February.

Sullivan, M. and Chillarege, R. (1992) “Comparison of Software Defects in
DataDatabase Management Systems and Operating Systems”, Proc. of the 22nd
IEEE Fault Tolerant Computing Symposium, FTCS-22, p. 475-484.

Tomcat. (2009). Available in www.tomcat.apache.org. Last access on February.

WinMerge. (2009). Avaliable in www.winmerge.org. Last access on February.

10º Workshop de Testes e Tolerância a Falhas 168

