
  

Data Reconciliation in DHT Networks 

Vidal Martins
1
, Esther Pacitti

2
 

1
Programa de Pós-Graduação em Informática Aplicada (PPGIa)  

Pontifícia Universidade Católica do Paraná (PUCPR) 

Rua Imaculada Conceição, 1155 – Prado Velho – 80.215-901 – Curitiba – PR – Brazil 

2
Laboratoire d’Informatique de Nantes Atlantique (LINA) – University of Nantes 

Nantes, France. 

vidal.martins@pucpr.br, Esther.Pacitti@univ-nantes.fr 

Abstract. Optimistic replication can provide high data availability for col-

laborative applications in large scale distributed systems (grid, P2P, and mo-

bile systems).  However, if data reconciliation is performed by a single node, 

data availability remains an important issue since the reconciler node can fail. 

Thus, reconciliation should also be distributed and reconciliation data should 

be replicated. We have previously proposed the DSR-cluster algorithm, a dis-

tributed version of the IceCube semantic reconciliation engine designed for 

cluster networks. However DSR-cluster is not suitable for P2P networks, 

which are usually built on top of the Internet. In this case, network costs must 

be considered. The main contribution of this paper is the DSR-P2P algorithm, 

a distributed reconciliation algorithm designed for P2P networks. We first 

propose a P2P-DHT cost model for computing communication costs in a DHT 

overlay network. Second, taking into account this model, we propose a cost 

model for computing the cost of each reconciliation step. Third, we propose an 

algorithm that dynamically selects the best nodes for each reconciliation step. 

Our algorithm yields high data availability with acceptable performance and 

limited overhead. 

1. Introduction 

Large-scale distributed collaborative applications are getting common as a result of 

rapid progress in distributed technologies (grid, P2P, and mobile computing). Consider a 

professional community whose members wish to elaborate, improve and maintain an 

on-line virtual document, e.g. notes on classical literature or common bibliography, 

supported by a P2P system. They should be able to read and write application data. In 

addition, user nodes may join and leave the network whenever they wish, thus hurting 

data availability.  

 Optimistic replication is largely used as a solution to provide data availability for 

these applications. It allows asynchronous updating of replicas such that applications 

can progress even though some nodes are disconnected or have failed. This enables 

asynchronous collaboration among users. However, concurrent updates may cause rep-

lica divergence and conflicts, which should be reconciled. In most existing solutions 

[13,15] reconciliation is typically performed by a single node (reconciler node) which 

15Artigo Convidado



  

may introduce bottlenecks. In addition, if the reconciler node fails, the entire replication 

system may become unavailable. 

 In [10], we proposed the DSR-cluster algorithm (Distributed Semantic Recon-

ciliation for cluster), a distributed version of the semantic reconciliation engine of 

IceCube [6,13] for cluster networks. Tentative actions, stored at action logs, are recon-

ciled using constraints.  Other reconciliation objects, such as clusters, are also necessary 

to produce the global schedule. DSR-cluster avoids bottlenecks, speeds up large scale 

reconciliation, and provides high data availability in case of node failures during recon-

ciliation for cluster networks. In addition, DSR-cluster employs a distributed approach 

for storing reconciliation objects (actions, clusters, constraints, etc.) using a distributed 

hash table (DHT) [14,16] in order to provide high data availability. 

 DSR-cluster proceeds in 5 distributed reconciliation steps. However, it does not 

take into account network costs during these steps. A fundamental assumption behind 

DSR-cluster is that the communication costs among cluster nodes are negligible. This 

assumption is not appropriate for P2P systems, which are usually built on top of the 

Internet. In this case, network costs may vary significantly from node to node and have a 

strong impact on the performance of reconciliation. Thus, network costs should be con-

sidered to perform reconciliation efficiently and to avoid network overload due to the 

communication with far distant nodes. 

 In this paper, we propose the DSR-P2P algorithm, a distributed reconciliation 

algorithm designed for P2P networks. The main contributions of this paper are: (1) a 

DHT cost model for computing communication costs of a P2P network using a DHT 

overlay network; (2) the DSR-P2P cost model for computing the cost of each reconcilia-

tion step based on DHT cost model; (3) the DSR-P2P algorithm for selecting the best 

reconciler nodes based on the DSR-P2P cost model (4); and experimental results that 

show that our cost-based approach yields high data availability with acceptable perform-

ance and limited overhead. 

 The rest of this paper is organized as follows. Section 2 describes the basis of the 

DSR-P2P semantic reconciliation solution for P2P networks. Section 3 introduces the 

DHT cost model. Section 4 describes the DSR-P2P cost model and the dynamic alloca-

tion algorithm for selecting the best reconciler nodes. Section 5 shows implementation 

and experimental results. Section 6 compares our work with the most relevant related 

works. Finally, Section 7 concludes this paper. 

2. P2P Distributed Semantic Reconciliation 

In this section, we describe the main terms and assumptions we consider for DSR-P2P 

followed by the main DSR-P2P algorithm itself. 

 We assume that DSR-P2P is used in the context of a virtual community which 

requires a high level of collaboration and relies on a reasonable number of nodes (typi-

cally hundreds or even thousands of interacting users) [17]. The P2P network we con-

sider consists of a set of nodes which are organized as a distributed hash table (DHT) 

[14,16]. A DHT provides a hash table abstraction over multiple computer nodes. Data 

placement in the DHT is determined by a hash function which maps data identifiers into 

nodes. 

16 VIII Workshop de Testes e Tolerância a Falhas



  

 In our solution, a replica R is a copy of a collection of objects (e.g. copy of a 

relational table, or an XML document). A replica item is an object belonging to a replica 

(e.g. a tuple in a relational table, or an element in an XML document). We assume 

multi-master replication, i.e. a replica R is stored in several nodes and all nodes may 

read or write R. Conflicting updates are expected, but with low frequency. 

 In order to update replicas, nodes produce tentative actions (henceforth actions) 

that are executed only if they conform to the application semantics. An action is defined 

by the application programmer and represents an application-specific operation (e.g. a 

write operation on a file or document, or a database transaction). The application seman-

tics is described by means of constraints between actions. A constraint is the formal 

representation of an application invariant (e.g. an update cannot follow a delete).  

 On the one hand, users and applications can create constraints between actions to 

make their intents explicit (they are called user-defined constraints). On the other hand, 

the reconciler node identifies conflicting actions, and asks the application if these ac-

tions may be executed together in any order (commutative actions) or if they are mutu-

ally dependent. New constraints are created to represent semantic dependencies between 

conflicting actions (they are called system-defined constraints). 

 A cluster is a set of actions related by constraints, and a schedule is a list of or-

dered actions that do not violate constraints. 

 With DSR-P2P, data replication proceeds basically as follows. First, nodes exe-

cute local actions to update replicas while respecting user-defined constraints. Then, 

these actions (with the associated constraints) are stored in the DHT using the replica 

identifier as key. Finally, reconciler nodes retrieve actions and constraints from the DHT 

and produce a global schedule, by performing conflict resolution in 6 distributed steps 

based on the application semantics. This schedule is locally executed at every node, 

thereby assuring eventual consistency [13]. The replicated data is eventually consistent 

if, when all nodes stop the production of new actions, all nodes will eventually reach the 

same value in their local replicas. 

 In order to avoid communication overhead and due to dynamic connections and 

disconnections, we distinguish replica nodes, which are the nodes that hold replicas, 

from reconciler nodes, which is a subset of the replica nodes that participate in distrib-

uted reconciliation.  

 We now present DSR-P2P in more details. First, we introduce the reconciliation 

objects necessary to DSR-P2P. Then, we present the six steps of the DSR-P2P algo-

rithm. 

2.1. Reconciliation Objects 

Data managed by DSR-P2P during reconciliation are held by reconciliation objects that 

are stored in the DHT giving the object identifier. To enable the storage and retrieval of 

reconciliation objects, each reconciliation object has a unique identifier. DSR-P2P uses 

six reconciliation objects: 

• Communication costs (noted CC): it stores the communication costs to execute each 

DSR-P2P step, estimated by every replica node, and used to choose reconcilers before 

starting reconciliation. These costs are computed in terms of latency times. 

17Artigo Convidado



  

• Action log R (noted LR): it holds all actions that try to update the replica R.  

• Action groups of R (noted GR): actions that manage a common replica item are put 

together into the same action group in order to enable the parallel checking of seman-

tic conflicts among actions (each action group can be checked independently of the 

others); every replica R may have a set of action groups, which are stored in the action 

groups of R reconciliation object.  

• Clusters set (noted CS): all clusters produced during reconciliation are included in 

the clusters set reconciliation object; a cluster is not associated with a replica.  

• Action summary (noted AS): it comprises constraints and action memberships (an 

action is a member of one or more clusters).  

• Schedule (noted S): it contains a set of ordered actions. 

 The node that holds a reconciliation object is called the provider node for that 

object (e.g. cost provider is the node that currently holds CC). Provider data are guaran-

teed to be available using known DHT replication solutions [7]. DSR-P2P’s liveness 

relies on the DHT liveness. 

2.2. DSR-P2P Algorithm 

DSR-P2P executes reconciliation in 6 distributed steps as showed in Figure 1. 

• Step 1 – node allocation: a subset of connected replica nodes is selected to proceed 

as reconciler nodes.  

• Step 2 – actions grouping: for each replica R, reconcilers put actions that try to up-

date common replica items of R into the same group, thereby producing GR.  

• Step 3 – clusters creation: reconcilers split action groups into clusters of semanti-

cally dependent conflicting actions (actions that the application judge safe to execute 

together, in any order, are semantically independent, even if they update a common 

replica item); clusters produced in this step are stored in the clusters set, and the asso-

ciated action memberships are included in the action summary.  

• Step 4 – clusters extension: user-defined constraints are not taken into account in 

clusters creation; thus, in this step, reconcilers extend clusters by adding to them new 

conflicting actions, according to user-defined constraints; the associated action mem-

berships are also included in the action summary.  

• Step 5 – clusters integration: clusters extensions lead to the overlap of clusters’ ac-

tions; in this step, reconcilers bring together overlapping clusters, thereby producing 

integrated clusters (an overlap occurs when different clusters have common actions, 

and this is identified by analyzing action memberships).  

• Step 6 – clusters ordering: in this step, reconcilers produce the global schedule by 

ordering actions of integrated clusters; all replica nodes execute this schedule. 

18 VIII Workshop de Testes e Tolerância a Falhas



  

 

Figure 1. DSR-P2P Steps 

 At every step, the DSR-P2P algorithm takes advantage of data parallelism, i.e. 

several nodes perform simultaneously independent activities on a distinct subset of ac-

tions (e.g. ordering of different clusters). No centralized criterion is applied to partition 

actions. In fact, whenever a set of reconciler nodes request data to a provider, the pro-

vider node naively supplies reconcilers with about the same amount of data (the pro-

vider node knows the maximal number of reconcilers because it receives this informa-

tion from the node that launches reconciliation). 

3. DHT Cost Model 

In this section, we propose a basic cost model for computing communication costs in 

DHTs. On top of it, we can build customized cost models (e.g. in the next section we 

elaborate a customized cost model for selecting DSR-P2P reconciler nodes). 

In our model, we define communication costs (henceforth costs) in terms of latency 

times. We assume links with variable latencies and constant bandwidths. We intend to 

consider variable bandwidths in a future work. 

Most DHT data access operations consist of a lookup, for finding the address of the 

node n that holds the requested information, followed by direct communication with n 

[5]. In the lookup step, several hops may be performed according to nodes’ neighbor-

hoods. Therefore, our DHT cost model relies on two metrics: lookup cost and direct 

cost. The lookup cost, noted lc(n, id), is the latency time spent in a lookup operation 

launched by node n to find the data item identified by id. Similarly, direct cost, noted 

dc(ni, nj), is the latency time spent by node ni to directly access nj. 

Node n could easily compute the lookup cost lc(n, id) by executing the lookup opera-

tion and measuring the associated time. However, this approach overloads the node that 

replies the lookup operation as it receives a lot of lookup messages. Furthermore, the 

network is overloaded. To avoid these problems, we propose that each node computes 

its lookup costs by taking advantage of cost information held by its neighbors. We illus-

trate this solution with an example. In Figure 2a, let n4 be a node that replies lookup 

operations searching for id=x; let arrows indicate the route of a lookup operation (e.g. if 

n2 looks for x it makes this route: n2 → n3 → n4); let a number over an arrow be the la-

tency between the associated nodes. In this example, the lookup cost lc(n2, x) is 100 (i.e. 

40 + 60), and lc(n1, x) is 150 (i.e. 50 + 40 + 60). Instead of executing the lookup opera-

tion to compute lc(n1, x), n1 can ask n2 for lc(n2, x) and add to this cost the latency be-

tween n1 and n2 (i.e. lc(n1, x) = lc(n2, x) + 50). The advantage of this incremental ap-

proach is locality and to avoid network overload.  

4 

Clusters 

Extension 

5 

Clusters 

Integration 

3 

Clusters 

Creation 

2 

Actions 

Grouping 

6 

Clusters 

Ordering 

 

Actions Action 

Groups Clusters 

Extended 

Clusters 
Integrated 

Clusters 
1  

Node 

Allocation 

Actions 

Schedule 

Communication 

Costs 

 

19Artigo Convidado



  

 

Figure 2. Computing lookup costs 

 Joins and leaves change the neighborhoods of nodes and, accordingly, the routes 

of lookup messages. As a result, lookup costs must be refreshed. However, we should 

avoid the refreshment at distant nodes to avoid network overload. To cope with this 

problem, we introduce two definitions: cost limit and relevant joins and leaves. Cost 

limit is the maximal acceptable cost for looking up an identifier (it can be a parameter or 

an adaptively computed value). A join or leave is relevant for a node n if it changes the 

cost for looking up an identifier in which n is interested, such that the old or the new 

lookup cost does not overtake cost limit. Thus, we propose that nodes refresh their 

lookup costs only in the presence of relevant joins and leaves. We illustrate this ap-

proach with an example. In Figure 2b, let cost limit be 110; and consider that n5 joins 

the DHT of Figure 2a taking the place of n3 in the route towards id=x. The join of n5 is 

relevant only to n2 as n2 updates lc(n2, x) from 100 (a value that does not overtake cost 

limit) to 120. In contrast, the join of n5 is not relevant to n3 and n4 since the associated 

lookup costs remain unchanged. This join is not relevant to n1 either, because both, the 

old lookup cost (i.e. 150) and the new one (i.e. 170), overtake cost limit. Thus, n1, n3 

and n4 do not participate in the refresh operation. 

 We now present how we compute direct cost. Node n could easily compute the 

direct cost between n and the provider node for id (henceforth home(id)) by measuring 

the latency between n and home(id). However, this approach may overload home(id). To 

avoid this problem, we propose that nodes locally estimate direct costs. Two equivalent 

approaches may be used for this estimation: (1) for DHTs that do not rely on nodes’ 

physical location for choosing nodes’ neighbors, the latency between a node n and any 

other node can be estimated based on the latencies between n and its neighbors in the 

DHT; (2) for location-aware DHTs, where n’s neighbors are supposed to be closer to n 

than other nodes, the same estimation can be made based on the latencies between n and 

some other nodes randomly selected from a bootstrap list (list of nodes that are likely 

connected). The advantage of the estimated approach is locality, and its drawback is 

lack of accuracy. In the performance evaluation we compare the estimated and exact 

approaches. 

 The home(id) may change due to joins and leaves. Thus, direct costs must also 

be refreshed. In our solution, dc(n, home(id)) is refreshed at node n whenever home(id) 

changes and the associated lookup cost (i.e. lc(n, id)) is smaller than cost limit. To com-

pute the refreshed value, we use the same strategy employed for computing the initial 

value. The principle of this approach is to avoid the execution of refreshment operations 

at far distant nodes, and its advantage is to avoid network overload. 

(b) 

n1 n2 n3 n4 
50 

80 

60 

lc(n1,x)=170 lc(n2,x)=120 40 

Cost Limit = 110 
n5 

n1 n2 n3 n4 
50 40 60 

(a) 

lc(n1,x)=150 lc(n2,x)=100 

20 VIII Workshop de Testes e Tolerância a Falhas



  

4. DSR-P2P Node Allocation Algorithm 

In this section, we present a dynamic distributed algorithm for allocating nodes to DSR-

P2P steps using the DHT cost model. We first present the DSR-P2P cost model for each 

reconciliation step. Next, we describe how the cost provider node selects reconcilers 

based on DSR-P2P cost model. Finally, we present our approach for managing the dy-

namic behavior of DSR-P2P costs. 

4.1. DSR-P2P Cost Model 

The DSR-P2P cost model takes into account each reconciliation step defining a new 

metric: node step cost. A node step cost, noted cost(i, n), is the sum of lookup and direct 

costs estimated by node n for executing step i of DSR-P2P algorithm. By analyzing the 

DSR-P2P behavior in terms of lookup and direct access operations at every step, we 

produced a cost formula for each step of DSR-P2P, which are showed in Table 1. There 

is no formula associated with step 1 because it is not performed by reconciler nodes. 

Table 1. DSR-P2P Cost Model 

i Cost(i, n) 

2 lc(n,LR) + 2×dc(n,nLR) + lc(n,GR) + dc(n,nGR) 

3 lc(n,GR) + 3×dc(n,nGR) + lc(n,CS) + 2×dc(n,nCS) + lc(n,AS) + dc(n,nAS) 

4 2×lc(n,AS) + 3×dc(n, nAS) + lc(n,CS) + 3×dc(n,nCS)  

5 lc(n,AS) + 3×dc(n,nAS) + lc(n,CS) + dc(n,nCS)  

6 lc(n,CS) + 3×dc(n,nCS) + lc(n,AS) + 2×dc(n,nAS) + lc(n,S) + dc(n,nS) 

 As an example, let us explain cost(2, n). In the second step of DSR-P2P (i=2), 

node n takes actions from the action log R (LR) and produces the action groups of R 

(GR). Thus, the first term in the associated formula (lc(n,LR)) represents the lookup cost 

for finding LR provider. The second term (2×dc(n,nLR)) corresponds to the direct costs 

for taking actions from LR provider (request and reply). The third term (lc(n,GR)) repre-

sents the lookup cost for finding GR provider, and the last term (dc(n,nGR)) corresponds 

to the direct cost for storing groups in GR provider (only request). Similarly, all formulas 

can be explained. 

4.2. Allocating Nodes 

Node allocation is the first step of DSR-P2P algorithm. It aims to select for every suc-

ceeding step a set of reconciler nodes that can perform reconciliation with good per-

formance. In this subsection, we describe how reconciler nodes are chosen and we illus-

trate that with an example.  

 The cost provider, i.e. the node that currently holds the communication costs 

reconciliation object, is the node responsible for allocating reconcilers. The allocation 

works as follows. Replica nodes locally estimate the costs for executing every DSR-P2P 

step, according to the DSR-P2P cost model, and provide this information to cost pro-

vider. The node that starts reconciliation computes the maximal number of reconcilers 

per step (noted maxRec), as described in [9], and asks cost provider for allocating at 

most maxRec reconciler nodes per DSR-P2P step. As a result, cost provider selects the 

21Artigo Convidado



  

best nodes for each step, and notifies these nodes about DSR-P2P steps they should exe-

cute. 

 In our solution, the cost management is parallel and independent of reconcilia-

tion. Moreover, it is network optimized since replica nodes do not send messages to cost 

provider, informing their estimated costs, if the node step costs overtake the cost limit. 

For these reasons, the cost provider does not become a bottleneck. 

 We now illustrate the allocation algorithm using an example. Table 2 shows the 

lookup and direct costs of our example, which were computed using a Chord DHT [16] 

with 4 connected nodes (i.e. n0, n1, n4, and n6). In a DHT, a node that is close to a recon-

ciliation object (e.g. n0 is close to AS (id=1)) may be far distant of others (e.g. n0 is far 

distant of LR (id=5)). As a result, a node that is suitable for a DSR-P2P step may not be 

worth in other steps. For this reason, every DSR-P2P step has its own set of reconcilers. 

Table 2. Lookup and direct costs based on the DHT cost model. Each column 
has the identifier of a reconciliation object (id) and the node that holds this ob-
ject (home(id)). Reconciliation object identifiers are: CS – 0, AS – 1, LR – 5, GR – 
6, S – 7. Each cell provides a specific lookup or direct cost, e.g. the cell in the 1

st
 

line and 3
rd

 column indicates that n0 spends 148.8ms to lookup LR (id=5) stored 
in n6 whereas the cell in the 2

nd
 line and 3

rd
 column indicates that a direct ac-

cess between n0 and n6 costs 81.8ms. 

Reconciliation Objects (id →→→→ home(id))  

0 →→→→ n0 1 →→→→ n1 5 →→→→ n6 6 →→→→ n6 7 →→→→ n0 

Lookup id 0 0 148.8 148.8 0 
n0 

Access home(id) 0 37.8 81.8 81.8 0 

Lookup id 132 0 116.8 116.8 132 
n1 

Access home(id) 37.8 0 66.0 66.0 37.8 

Lookup id 35.4 148.8 0 0 35.4 
n4 

Access home(id) 74.4 58.4 17.7 17.7 74.4 

Lookup id 0 163.6 0 0 0 
n6 

Access home(id) 81.8 66.0 0 0 81.8 

Table 3 shows the estimated costs that the cost provider receives from the replica nodes. 

These costs are computed by applying on the DSR-P2P cost model (Table 1) the lookup 

and direct costs of the DHT cost model (Table 2). We show in bold the two less expen-

sive costs associated with each DSR-P2P step. Thus, in our example, if the maximal 

number of reconcilers is 2, the cost provider selects as reconcilers for each DSR-P2P 

step the nodes of Table 3 whose costs are in bold (i.e. Step2 = {n4, n6}, Step3 = {n0, n6}, 

Step4 = {n0, n1}, Step5 = {n0, n1}, Step6 = {n0, n1}), and notifies its decision to these 

nodes. 

Table 3. Node step costs associated with the DHT considered in Table 2. 

DSR-P2P steps (i) 
 

2 3 4 5 6 

n0 543.0 432.0 113.4 113.4 75.6 

n1 431.6 522.4 245.4 169.8 415.2 

n4 53.1 444.5 731.4 433.8 634.0 

n6 0 393.2 770.6 443.4 622.8 

22 VIII Workshop de Testes e Tolerância a Falhas



  

4.3. Managing the Dynamic Behavior of DSR-P2P Costs 

The costs estimated by replica nodes for executing DSR-P2P steps change as a result of 

disconnections and reconnections. To cope with this dynamic behavior and assure reli-

able cost estimations, a replica node ni works as follows: 

• Initialization: whenever ni joins the system, ni estimates its costs for executing every 

DSR-P2P step. If these costs do not overtake the cost limit, ni supplies the cost pro-

vider with this information. 

• Refreshment: while ni is connected, the join or leave of another node nj may invali-

date ni’s estimated costs due to routing changes. Thus, if the join or leave of nj is rele-

vant to ni, ni recomputes its DSR-P2P estimated costs and refreshes them at the cost 

provider. 

• Termination: when ni leaves the system, if its DSR-P2P estimated costs are smaller 

than cost limit (i.e. the cost provider holds ni’s estimated costs), ni notifies its depar-

ture to the cost provider. 

5. Validation and Performance Evaluation 

To validate and study the performance behavior of DSR-P2P, we implemented it and 

simulated the overlay P2P network based on Chord (we used SimJava [4] for simula-

tions). In this section, we present our performance model and the experimental results. 

 The performance model takes into account the strategy for selecting reconciler 

nodes (noted Allocation), the action log size (i.e. the number of actions to be reconciled, 

noted Nb-Actions) based on IceCube setup, and the network topology based on BRITE 

[2]. We define three strategies for selecting reconcilers: random selection (RDM); cost-

based selection using precise costs for direct communication (CB/P); and cost-based 

selection using estimated costs for direct communication (CB/E). A network topology is 

defined by its bandwidth (noted Bandwidth), the number of connected nodes (noted Nb-

Nodes), the average latency among these nodes (noted Avg-Latency), and the associated 

standard deviation (noted Sd-Latency). Latency values follow a normal distribution. We 

produced 3 network instances for every network topology definition. We also produced 

3 action logs for each action log size. By combining action logs with network instances, 

we generate several distinct reconciliation scenarios that avoid over fitted results. Table 

4 describes the parameters of the performance model. 

Table 4. Performance parameters 

Parameter Definition Values 

Allocation 

Nb-Actions 

Nb-Nodes 

Bandwidth 

Avg-Latency 

Sd-Latency 

Strategy for selecting reconciler nodes 

Number of actions to be reconciled 

Number of connected nodes 

Network bandwidth 

Average latency among nodes 

Standard deviation of network latency 

CB/P; CB/E; RDM 

106 – 10000 

1024; 20000  

1Mbps; 10Mbps 

51ms – 263ms 

15ms – 96ms 

 The first experiment (Figure 3a) studies the reconciliation performance with lo-

cally estimated direct costs (recall that this approach reduces network load and avoids 

the overload of provider nodes, but it is not precise). For this experiment, we defined 4 

network topologies and produced 12 network instances that are different only wrt. la-

23Artigo Convidado



  

tency parameters (all topologies have Bandwidth = 1Mbps and Nb-Nodes = 1024). We 

used 3 action logs with Nb-Actions = 1005. Figure 3a shows the reconciliation perform-

ance using precise costs (CB/P), estimated costs (CB/E), and random allocation (RDM). 

In 3 topologies, the cost-based approaches (i.e. CB/P and CB/E) are equivalent and 

more efficient than the random approach. In the best case, which corresponds to a real 

P2P network, the CB/P reduces the reconciliation time of RDM in 37% whereas CB/E 

provides a performance improvement of 30%. Due to the small difference between 

CB/P and CB/E (i.e. 7%), we consider the estimated approach worth to avoid overload 

problems. Notice that the experimental conditions (i.e. constant bandwidth and normal 

distribution of latencies) are strongly promising for random selection. We can improve 

the performance of cost-based approaches by changing these conditions (i.e. by provid-

ing variable bandwidths and distributing latencies in a way that some nodes are very 

close to each other making up clusters of nodes). 

0

5

10

15

20

25

30

51/15 95/33 174/57 263/96

Average Latency / Standard Deviation

R
e

c
o

n
c

il
ia

ti
o

n
 T

im
e

 (
s

) CB/P

CB/E

RDM

 
(a) Varying network latencies 

0

10

20

30

40

50

60

70

106 1005 2004 4003 6002 8001 10000

Number of actions

R
e

c
o

n
c
il

ia
ti

o
n

 t
im

e
 (

s
)

CB/P-1-1024

CB/P-1-20000

CB/P-10-1024

RDM-1-1024

 
(b) Varying the number of actions, the number of 

nodes and the bandwidth 

Figure 3. DSR-P2P Reconciliation Time 

 Due to the lack of space, we describe three additional experiments in a single 

graph, which corresponds to Figure 3b. The goal of these experiments is to show that 

the reconciliation time is improved because cost-based selection is used, and for faster 

network we have the best improvements compared with RDM. For instance, for a net-

work of 10 Mbps and 1024 connected nodes using cost-based selection (CB/P-10-1024) 

we improved the random approach (RDM-1-1024) by a factor of 4. Notice that in this 

case both network bandwidths are different. For equal network bandwidths, the cost-

based approach (CB/P-1-1024) still outperforms the random approach. Finally, increas-

ing the number of connected nodes up to 20000 (CB/P-1-20000) does not degrade the 

DSR-P2P performance because it relies on a DHT and due to our allocation algorithm. 

 Liveness is an important issue in dynamic systems. DSR-P2P provides a greater 

degree of availability, scalability and fault-tolerance than the centralized solution. In 

contrast, since DSR-P2P depends on network communication, its reconciliation time 

(e.g. 57s for 10000 actions in a 1Mbps network with average latency of 229ms) is worse 

than the centralized counterpart (e.g. about 3s for 10000 actions). However, 57s remains 

an acceptable time for reconciling 10000 actions in a P2P network. The centralized solu-

tion, although more efficient than DSR-P2P, is unsuitable for P2P networks due to its 

low availability in dynamic environments. 

24 VIII Workshop de Testes e Tolerância a Falhas



  

6. Related Work 

In the context of P2P networks, there has been little work on managing data replication 

in the presence of updates. Most of data sharing P2P networks consider the data they 

provide to be very static or even read-only. Freenet [3] partially addresses updates which 

are propagated from the updating peer downward to close peers that are connected. 

However, peers that are disconnected do not get updated. P-Grid [1] is a structured P2P 

network that exploits epidemic algorithms to address updates. It assumes that conflicts 

are rare and their resolution is not necessary in general. In addition, P-Grid assumes that 

probabilistic guarantees instead of strict consistency are sufficient. Moreover, it only 

considers updates at the file level in a single master-mode. In OceanStore [8] every up-

date creates a new version of the data object. Consistency is achieved by a two-tiered 

architecture: a client sends an update to the object’s inner ring (primary copies) and 

some secondary replicas in parallel. Once the update is committed, the inner ring multi-

casts the result of the update down the dissemination tree. OceanStore assumes an infra-

structure comprised of servers that are connected by high-speed links. Different from the 

previous works, we propose to distribute the reconciliation engine in order to provide 

high availability. Our approach assures eventual consistency among replicas, which en-

ables asynchronous collaboration among users. In addition, we provide multi-master 

replication and we do not assume servers linked by high-speed links. 

7. Conclusion 

In this paper, we proposed the DSR-P2P, a distributed algorithm for semantic recon-

ciliation in P2P networks. Our main contributions are a cost model for computing com-

munication costs in DHTs and an algorithm that takes into account these costs and the 

DSR-P2P steps to select the best reconciler nodes. For computing communication costs, 

we use local information and we deal with the dynamic behavior of nodes. In addition, 

we limit the scope of event propagation (e.g. joins or leaves) in order to avoid network 

overload.  

 We validated DSR-P2P through implementation and simulation. The experimen-

tal results showed that our cost-based reconciliation outperforms the random approach 

by a factor of 30% over scenarios that are favorable for the random approach (constant 

bandwidth and normal distribution of latencies). In addition, the number of connected 

nodes is not important to determine the reconciliation performance due to the DHT scal-

ability and the fact that reconcilers are as close as possible to the reconciliation objects. 

Compared with the centralized solution, which is more efficient but lowly available, our 

algorithm yields high data availability with acceptable performance and limited over-

head. As future work, we plan to include variable bandwidths in our cost model. 

References 

1. Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M., Punceva, 

M., and Schmidt, R. P-Grid: A Self-organizing Structured P2P System. ACM SIG-

MOD Record 32(3), 2003. 

2. BRITE, http://www.cs.bu.edu/brite/. 

25Artigo Convidado



  

3. Clarke, I., Miller, S., Hong, T.W., Sandberg, O., and Wiley, B. Protecting Free Ex-

pression Online with Freenet. IEEE Internet Computing, 6(1), 2002. 

4. Howell, F. and McNab, R. SimJava: a discrete event simulation package for Java 

with applications in computer systems modeling. In Web-based Modeling and Simu-

lation, 1998. 

5. Huebsch, R., Hellerstein, J. M., Lanham, N., Stoica, I., Loo, B. T., and Shenker, S. 

Querying the Internet with PIER. Proc. of VLDB Conference, 2003. 

6. Kermarrec, A-M, Rowstron, A, Shapiro, M and Druschel P. The IceCube approach to 

the reconciliation of diverging replicas. Proc. of ACM PODC, 2001.  

7. Knezevic, P., Wombacher, A., and Risse, T. Enabling High Data Availability in a 

DHT. Proc. of GLOBE, 2005. 

8. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gum-

madi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., and Zhao, B. Ocean-

Store: An Architecture for Global-Scale Persistent Storage. Proc. of ASPLOS, 2000. 

9. Martins, V., Pacitti, E., and Valduriez, P. A Dynamic Distributed Algorithm for Se-

mantic Reconciliation. Distributed Data & Structures 7 (WDAS), 2006. 

10. Martins, V., Pacitti, E., and Valduriez, P. Distributed Semantic Reconciliation of 

Replicated Data. Proc of CDUR, 2005. 

11. Pacitti, E. and Dedieu, O. Algorithms for optimistic replication on the Web. Journal 

of the Brazilian Computing Society, 8(2), 2002. 

12. Pacitti, E. and Simon, E. Update propagation strategies to improve freshness in lazy 

master replicated databases. The VLDB Journal, 8(3-4), 2000. 

13. Preguiça, N, Shapiro, M and Matheson, C. Semantics-based reconciliation for col-

laborative and mobile environments. Proc. of IFCIS CoopIS, 2003. 

14. Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S. A scalable con-

tent-addressable network. Proc. of ACM SIGCOMM, 2001. 

15. Saito, Y. and Shapiro, M. Optimistic Replication. ACM Computing Surveys, 37(1), 

2005. 

16. Stoica, I, Morris, R, Karger, D. R, Kaashoek, M. F and Balakrishnan, H. Chord: A 

scalable peer-to-peer lookup service for internet applications. Proc. of ACM SIG-

COMM, 2001. 

17. Whittaker, S., Issacs, e., and O’Day, V. Widening the Net: Workshop report on the 

theory and practice of physical and network communities. ACM SIGCHI Bulletin, 

29(3), 1997. 

 

26 VIII Workshop de Testes e Tolerância a Falhas




