

Using Dynamic Analysis Of Java Bytecode
For Evolutionary Object-Oriented Unit Testing

José Carlos Bregieiro Ribeiro1, Francisco Fernández de Vega2, Mário Zenha-Rela3

1Polytechnic Institute of Leiria (IPL)
Campus 2, Morro do Lena, Alto do Vieiro – Leiria – Portugal

2University of Extremadura (UNEX)
C/ Sta Teresa de Jornet, 38 – Mérida – Spain

3University of Coimbra (UC)
CISUC, Department of Informatics Engineering, P 3030-290 – Coimbra – Portugal

jose.ribeiro@estg.ipleiria.pt, fcofdez@unex.es, mzrela@dei.uc.pt

Abstract. The focus of this paper is on presenting a methodology for
generating and optimizing test data by employing evolutionary search
techniques, with basis on the information provided by the analysis and
interpretation of Java bytecode and on the dynamic execution of the
instrumented test object.

The main reason to work at the bytecode level is that even when the source
code is unavailable, structural testing requirements can still be derived and
used to assess the quality of a given test set and to guide the evolutionary
search towards reaching specific test goals.

Java bytecode retains enough high-level information about the original source
code for an underlying model for program representation to be built. The
observations required to select or generate test data are obtained by
employing dynamic analysis techniques – i.e. by instrumenting, tracing and
analysing Java bytecode.

1. Introduction

Software testing is an expensive process, typically consuming roughly half of the total
costs involved in the software development process while adding nothing to the raw
functionality of the final product. Yet, it remains the primary method through which
confidence in software is achieved. In industry, this process is often done manually –
with the responsibility of assessing the quality of a given software product usually
falling on the software tester. However, locating suitable test data can be time-
consuming, difficult and expensive; automation of test data generation is, therefore,
vital to advance the state-of-the-art in software testing.

 Test data selection, generation and optimization deals with locating good test
data for a particular test criterion. The application of evolutionary algorithms to test
data generation is often referred to in literature as Evolutionary Testing (Mantere and
Alander 2005). In evolutionary testing, meta-heuristic search techniques are employed
to select or generate test data. The search space is the input domain of the test object,

143Sessão Técnica 4 - Testes em Sistemas de Software II

and the problem is to find a (minimal) set of input data – test cases – that satisfies a
certain test criterion. In particular case of object-oriented programs, a sequence of
method invocations is required to cover the test goal, and the sequence search space is
an explosive space. The application of search-based strategies for object-oriented unit
testing has not yet been investigated comprehensively.

 In this paper, we present an approach for guiding the evolutionary search
towards generating test sets using coverage metrics derived from the test object’s Java
bytecode. The main reason to work at the bytecode level is that even when the test
object’s source code is unavailable, structural testing requirements can still be derived
and used to assess the quality of a given test set. The observations required to extract
such metric are obtained by employing dynamic analysis techniques – i.e. by
instrumenting, tracing and analysing Java bytecode.

 In the following section, background on the topics of testing methodologies,
quality criteria, evolutionary search techniques and fitness evaluation is provided;
related work is reviewed in Section 4. In section 5, we present our methodology for
employing dynamic analysis of Java bytecode for test quality assessment and
optimization and, on Section 6 the complete framework of our tool is outlined. The
concluding chapter resumes the key ideas of this paper and presents some topics for
future research.

2. Background

The assessment of the quality of a given test set can be achieved functionally (black-box
testing) or structurally (white-box testing). Black-box testing is concerned with showing
the conformity between the implementation and its functional specification; with white-
box testing techniques, test case design is performed with basis on the program
structure. Black-box testing is the most widely used testing approach; however, its
applicability is often hindered by the need for a formal specification of the test object to
be available. With white-box testing, the metrics for measuring the thoroughness of a
given test set can be extracted from the structure of the target’s source code, or even
from compiled code (e.g. Java bytecode).

 Traditional white-box criteria include structural (e.g. statement, branch)
coverage and data flow coverage. The basic idea is to ensure that all of the control
elements in a program are executed by a given test set, providing evidence of the quality
of the testing activity; a test set that contains test cases that exercise all such elements is
said to be adequate with respect to the corresponding criterion.

 The evaluation of the quality of a given test set and the guidance to the test case
selection using white-box criteria generally requires the definition of an underlying
model for program representation – usually a control-flow graph (CFG). The CFG is an
abstract representation of a given method in a class; control-flow testing criteria can be
derived based on such a program representation to provide a theoretical and systematic
mechanism to select and assess the quality of a given test set.

 Two well known control-flow testing standards to derive testing requirements
from the CFG are the all-nodes and all-edges criteria (Vincenzi, Delamaro et al. 2006).
The all-nodes criterion requires that each node of a given CFG is executed at least once.
To distinguish between instructions that are executed under the normal execution of the

144 VIII Workshop de Testes e Tolerância a Falhas

program from others that require an exception to be executed, this criterion can be
subdivided into two non-overlapping testing criteria so that the testing activity can
focus on different aspects of a program at a time:

• all-nodes-exception-independent (All-Nodesei): requires every node of the CFG
reachable through an exception-free path to be executed at least once.

• all-nodes-exception-dependent (All-Nodesed): requires every node of the CFG
not reachable through an exception-free path to be executed at least once.

 Conversely, the all-edges criterion requires that each control-flow deviation is
executed at least once. To consider the control-flow in relation to the exception-
handling mechanism, this criterion also is subdivided into two non-overlapping testing
criteria: all-edges-exception-independent (All-Edgesei) and all-edges-exception-
dependent (All-Edgesed).

 The observations needed to assemble the metrics required by these criteria can
be collected by abstracting and modelling the behaviours programs exhibit during
execution – either by static or dynamic analysis techniques (Tracey, Clark et al. 2002).
Dynamic analysis involves executing the actual test object and monitoring its
behaviour; while it may not possible to draw general conclusions from dynamic
analysis, it provides evidence of the successful operation of the software. In contrast,
static analysis involves the construction and analysis of an abstract mathematical model
of the system (e.g. symbolic execution). Static analysis is performed without executing
the method under test, but rather this abstract model; this type of analysis is complex,
and often incomplete due to the simplifications in the model.

 If dynamic analysis techniques are employed, the ability to observe program
execution is paramount. Events that need to be captured range from simple observations
– such as execution of structural entities – to more complex examinations – such as
thread and object creation, field manipulations, and object locking behaviour (Kinneer,
Dwyer et al. 2006). Dynamic monitoring for events in Java software can be achieved
through instrumentation of Java bytecode.

 Bytecode is an assembly-like language that retains much of the high-level
information about the original source program. Class files (i.e. compiled Java programs
containing bytecode information) are a portable binary representation that contains class
related data such as the class name, its superclass name, information about the variables
and constants, and the bytecode instructions of each method (Vincenzi, Maldonado et
al. 2005). Using bytecode as the basis for building the CFG allows broadening the scope
of applicability of software testing tools, since the target object’s source code is often
unavailable; it can be used, for instance, to perform structural testing on third party Java
components. In addition, the bytecode can be seen as an intermediate language, so the
analysis performed at this level can be mapped back to the original high-level language
that generated the bytecode.

 Evolutionary algorithms have been used successfully for the unit testing of
procedural software, and their application to the generation of quality test data for
object-oriented software is an active field of research. Within the paradigm of object-
orientation, the major concept is the object – which possesses attributes, constructors
and methods. A test case for object-oriented software does not comprise only numerical

145Sessão Técnica 4 - Testes em Sistemas de Software II

test data; a sequence of constructor and method calls is also necessary. Usually,
multiple objects are involved in one single test case (Wappler and Lammermann 2005):

• At the least, an instance of the class under test is needed.

• Additional objects, which are required (as parameters) for the creation of the
object under test and for the invocation of the method under test, must be
available. Again, for the creation of these additional objects, more additional
objects may be required.

• Depending on the kind of test, the participating objects may have to be put into
particular states in order for the test scenario to be processed in the desired way.
Consequently, method calls must be issued for these objects.

 A fitness function for object-oriented evolutionary testing must evaluate test
cases according to their ability to meet a given test goal. If white-box criteria are
employed, the CFG and the monitored execution of the test object are used to access the
adequateness of test cases – i.e. if the CFG node and/or path defined as the test goal was
exercised by the execution of a particular test case over the test object.

 In (Wappler and Wegener 2006a) a distance-based fitness function, which
expresses how close the execution of a test case over the test object is to reaching the
current test goal, was proposed. This closeness is expressed in terms of three distances:

• The Method Call Distance (dMC): expresses how close the test case execution
approached the method under test in terms of the number of methods called. In
case of a runtime exception, execution of a method call sequence terminates
prematurely, meaning that the method under test is not called.

• The Control Node Distance (dCN): expresses how close execution of the test
object approached the target CFG node.

• The Local Problem Node Distance (dPN): expresses how far the test object’s
execution is away from diverging along the branch of the problem node which
leads to the test goal.

 The metric dMC works at the test case level, and steers the evolutionary search
towards producing feasible test cases – i.e. it ensures that a method call sequence of a
given test case generates no runtime exceptions that prevent the method under test from
being called.

 Metrics dCN and dPN, on the other hand, are employed to cover individual test
goals on the test object, and are computed with basis on the CFG. In (Wegener, Baresel
et al. 2001), four methodologies – which depend on the CFG and the required test
purpose – for guiding the evolutionary search toward reaching particular test goals were
outlined, and the corresponding fitness functions were described:

• Node-oriented methods: require the attainment of specific nodes in the CFG
(e.g. statement test, condition test).

• Path-oriented methods: require the execution of certain paths in the CFG (e.g.
path tests).

146 VIII Workshop de Testes e Tolerância a Falhas

• Node-path-oriented methods: require the achievement of a specific node and,
from this node, the achievement of a specific path through the CFG (e.g. branch
test, segment coverage).

• Node-node-oriented methods: aim to execute program paths that cover certain
node combinations of the CFG in a pre-determined sequence without specifying
a specific path between nodes (e.g. data-flow criteria).

3. Related Work

Interesting review articles on the topic of Evolutionary Testing include that of McMinn
(McMinn 2004), who presents a review of meta-heuristic techniques that have been
used in software test data generation, namely Hill Climbing, Simulated Annealing and –
most interestingly – Evolutionary Algorithms. Namely, the main achievements in
automating test data generation in the areas of structural testing, functional testing, and
grey-box testing are summarized. In (Mantere and Alander 2005) an in-depth index of
the work developed in the area is provided; topics include genetic algorithms applied to
coverage testing, test data generation, testing program dynamics, black-box testing and
software quality.

 Both works pinpoint the state problem (McMinn and Holcombe 2003) as the
main issue to be faced by researchers in this field. It occurs with methods that exhibit
state-like qualities by storing information in internal variables; such variables are
hidden from the optimization process because they are not available to external
manipulation. The only way to change the values of these variables is through execution
of statements that perform assignments to them. In object-oriented software this can
occur through the use of variables that are protected from external manipulation using
access modifiers.

 The first approach to the field of evolutionary testing for object-oriented
software was presented in (Tonella 2004); in this work, input sequences were generated
using evolutionary algorithms for the white-box testing of classes. Genetic algorithms
were the evolutionary approach employed, with potential solutions (test cases) being
represented as chromosomes. A source-code representation was used, and an original
evolutionary algorithm – with special evolutionary operators for recombination and
mutation on a statement level (i.e. mutation operators insert or remove methods from a
test program) – was defined. A population of individuals, representing the test cases,
was evolved in order to increase a measure of fitness, accounting for the ability of the
test cases to satisfy a coverage criterion of choice – the proportion of all control and call
dependences that lead to the given target. New test cases are generated as long as there
are targets to be covered or a maximum execution time is reached. However, the
encapsulation problem was not addressed, and this proposal only dealt with a simple
state problem; additionally, with this approach, Universal Evolutionary Algorithms –
evolutionary algorithms, provided by popular toolboxes, which are independent from
the application domain and offer a variety of predefined, probabilistically well-proven
evolutionary operators – cannot be applied.

 An approach which built upon an Ant Colony Optimization Algorithm was
presented by (Liu, Wang et al. 2005). The focus was on the generation of the shortest
method call sequence for a given test goal, under the constraint of state dependent

147Sessão Técnica 4 - Testes em Sistemas de Software II

behaviour and without violating encapsulation. Ant PathFinder, hybridizing Ant Colony
Optimization and Multiagent Genetic Algorithms were employed. To cover those
branches enclosed in private/protected methods without violating encapsulation, call
chain analysis on class call graphs was introduced.

 In (Wappler and Lammermann 2005) an approach for the automatic generation
of test programs for object-oriented unit testing was presented, focusing on the usage of
Universal Evolutionary Algorithms. An encoding was proposed that represented object-
oriented test programs as basic type value structures, allowing for the application of
various search-based optimization techniques such as Hill Climbing or Simulated
Annealing. The generated test programs could be transformed into test classes
according to popular testing frameworks. The suggested encoding, however, did not
prevent the generation of individuals which could not be decoded into test programs
without errors; their fitness function used different penalty mechanisms in order to
penalize invalid sequences and to guide the search towards regions that contained valid
sequences. Due to the generation of infeasible sequences, the approach lacked
efficiency for more complicated cases.

 In (Wappler and Wegener 2006b) a different approach to the subject was
presented. Potential solutions were encoded using a Strongly-Typed Genetic
Programming (STGP) methodology, with method call sequences being represented by
method call trees; these trees are able to express the call dependences of the methods
that are relevant for a given test object. To account for polymorphic relationships which
exist due to inheritance relations, the STGP types used by the function set are specified
in correspondence to the type hierarchy of the test cluster classes. The emphasis of this
work is on sequence feasibility; the usage of STGP preserves feasibility throughout the
entire search process. The fitness function does need, however, to incorporate a penalty
mechanism for test cases which include method call sequences that generate runtime
exceptions. The issue of runtime exceptions was precisely the main topic in (Wappler
and Wegener 2006a). This methodology yielded very encouraging results. For a simple
custom-tailored test cluster, the set of generated test cases achieved full (100%) branch
coverage: during the search, 11966 test programs were generated and evaluated, and the
resulting test set contained 3 test cases; a control run, in which random test cases where
produced for comparison purposes, stopped after having evaluated 43233 test programs
(in accordance to the specified termination criteria), and the generated test set achieved
a coverage of 66%. In a more complex scenario, four classes where tested and full
coverage was achieved for all of the test objects.

 In the abovementioned approaches, the underlying model for program
representation is built with basis on the test object’s source-code; moreover,
instrumentation of the test object for extracting tracing information is also done at the
source-code level. To the best of our knowledge, there are no evolutionary approaches
to the unit-testing of object-oriented software that employ dynamic bytecode analysis to
derive structural testing criteria.

 The application of evolutionary algorithms and bytecode analysis for test
automation was, however, already studied in different scenarios. In (Cheon, Kim et al.
2005) an attempt to automate unit testing of object-oriented programs is described. A
black-box approach for investigating the use of genetic algorithms for test data
generation is employed, and program specifications written in JML are used for test

148 VIII Workshop de Testes e Tolerância a Falhas

result determination. The JML compiler was extended to make Java bytecode produce
test coverage information. In (Muller, Lembeck et al. 2004), the layout of a symbolic
Java virtual machine (SJVM), which discovers test cases using a definable structural
coverage criterion with basis on static analysis techniques, is described. Java bytecode
is executed symbolically, and the decision whether to enter a branch or throw an
exception is based on the earlier constraints, a constraint solver and current testing
criterion. The SJVM has been implemented in a test tool called GlassTT. This work,
however, doesn’t address exception-related and method interaction-related criteria, and
only procedural software scenarios are described.

4. Dynamic Analysis Of Java Bytecode For Test Quality Optimization

The focus of this paper is on presenting a methodology for generating and optimizing
test data by employing evolutionary search techniques, solely with basis on the
information provided by the analysis Java bytecode and on the dynamic execution of the
instrumented test object’s class files.

 In this section, the simple test cluster defined in (Wappler and Wegener 2006a)
is used for demonstration purposes. We focus on the Controller.reconfigure(Config)
public method; its source code is reproduced in Figure 1.

 public void reconfigure(Config cfg) throws Exception {
 if(cfg.getSignalCount() > MAX_SIGNALS)
 throw new Exception("Too many signals.");
 if(cfg.getPort()<MIN_PORT||cfg.getPort()>MAX_PORT)
 throw new Exception("Invalid port.");
 this.cfg = cfg;
 signals = new int[cfg.getSignalCount()];
 }

Figure 1. Source code for the method Controller.reconfigure(Config)

 The source code provided by this example was compiled using JDK 1.5. The
bytecode instructions of the compiled Controller.reconfigure(Config) public method
are depicted in Figure 2.

4.1. Bytecode Analysis

In order to understand the details of Java bytecode, a preliminary discussion on how the
Java virtual machine (Lindholm and Yellin 1999) works regarding the execution of the
bytecode must take place. A JVM is a stack-based machine; each thread has a JVM
stack which stores frames. A frame is created each time a method is invoked, and
consists of an operand stack, an array of local variables, and a reference to the runtime
constant pool of the class of the current method (Haggar 2001).

 The array of local variables contains the parameters of the method and the
values of the local variables. The size of the array of local variables is determined at
compile time, and is dependent on the number and size of local variables and formal
method parameters. The parameters are stored first, beginning at index 0. If the frame is
for a constructor or an instance method, the this reference is stored at location 0;
location 1 contains the first formal parameter, location 2 the second, and so on. For a
static method, the first formal method parameter is stored in location 0, the second in
location 1, and so on. The operand stack is a LIFO stack used to push and pop values;

149Sessão Técnica 4 - Testes em Sistemas de Software II

its size is also determined at compile time. Certain bytecode instructions push values
onto the operand stack; others take operands from the stack, manipulate them, and push
the result. The operand stack is also used to receive return values from methods.

 In Figure 2, The aload_1 instruction at location 0 pushes the value from the
index 1 of local variable table onto the operand stack – i.e. it pushes the parameter cfg
of the method Controller.reconfigure(Config cfg) onto the top of the operand stack
(a reference to an object of type Config). The invokevirtual instruction at location 1
invokes the instance method Config.getSignalCount() on the object cfg (popped from
the top of the operand stack); the value returned by this method is pushed onto the top
of the operand stack. The iconst_5 instruction at location 4 loads the integer value 5
onto the top of the operand stack. At this point, the operand stack contains two values:
the integer 5 on top, and the value returned by the Config.getSignalCount() on the
bottom. The if_icmple instruction loads both those values from the operand stack, and
compares them: if 5 is lower than or equal to the value returned from the
getSignalCount method, instruction flow is transferred to instruction 18.

cfg.Controller.public_void_reconfigure(cfg.Config_cfg)
_throws_java.lang.Exception
Code(max_stack = 3, max_locals = 2, code_length = 64)
0: aload_1
1: invokevirtual cfg.Config.getSignalCount ()I (6)
4: iconst_5
5: if_icmple #18
8: new <java.lang.Exception> (7)
11: dup
12: ldc "Too many signals." (8)
14: invokespecial java.lang.Exception (java.lang.String)
17: athrow
18: aload_1
19: invokevirtual cfg.Config.getPort ()I (10)
22: sipush 8000
25: if_icmplt #38
28: aload_1
29: invokevirtual cfg.Config.getPort ()I (10)
32: sipush 8005
35: if_icmple #48
38: new <java.lang.Exception> (7)
41: dup
42: ldc "Invalid port." (11)
44: invokespecial java.lang.Exception (java.lang.String)
47: athrow
48: aload_0
49: aload_1
50: putfield cfg.Controller.cfg Lcfg/Config; (2)
53: aload_0
54: aload_1
55: invokevirtual cfg.Config.getSignalCount ()I (6)
58: newarray <int>
60: putfield cfg.Controller.signals [I (3)
63: return

Figure 2. Java bytecode for the method Controller.reconfigure(Config)

 This brief analysis helps to support the following conclusions: firstly, the
bytecode instructions contain enough high-level information for coverage criteria to be
applied at the bytecode level; secondly, it is possible to group some instructions into a
smaller set of basic blocks that can ease the representation of the compiled program
using a CFG and, consequently, the application of dynamic analysis and structural
coverage metrics on the target object.

150 VIII Workshop de Testes e Tolerância a Falhas

 The purpose of the aload_1 instruction is, in fact, to prepare the operand stack
for the getSignalCount method call at location 2. Equally, the iconst_5 instruction
prepares the stack for the if instruction on location 5. We group these instructions into
two basic blocks: the first pair is grouped into a Call block; the second pair is grouped
into a Basic Instruction block of the sub-type “if”.

4.2. CFG Definition and Interpretation

In our approach, bytecode instructions are grouped into a set of basic blocks – namely,
Basic Instruction blocks and Call Blocks. These blocks cover the core of nodes required
to build the CFG graph.

 Basic Instruction blocks encompass regular bytecode instructions, including the
decision and branching instructions that can influence control flow – namely the sub-
types “if”, “goto”, “jsr”, “switch”, “return”, “ret”, “throw”, “sumthrow” and “exit”.
They are represented in the CFG by Basic Instruction nodes. Call blocks represent
bytecode instructions that cause control flow to be transferred to another method; they
contain the high-level information needed to identify the method being called, and are
represented in the CFG by Call nodes. In our example, bytecode instructions are
grouped in accordance to Table 1.

Table 1. Mapping between bytecode instructions, basic instruction blocks,
basic intruction block subtypes, and node numbers in the CFG depicted in Figure 3.

initial

bc inst

final

bc inst

node

type

node

subtype

node

number

0

4

8

18

22

28

32

38

48

58

1

5

17

19

25

29

39

47

55

63

Call

Basic

Basic

Call

Basic

Call

Basic

Basic

Call

Basic

If

Throw

If

If

Throw

Return

2

4

5

6

8

9

11

12

13

15

 Additionally, other types of nodes which represent virtual operations are
defined: Entry nodes, Exit nodes, and Return nodes. These virtual nodes encompass no
bytecode instructions; they are used to represent certain control flow hypothesis.

 As mentioned above, Call blocks transfer control flow to the CFG of another
method; the method called, in turn, can return normally or with an exception. In order to
differentiate these situations, Return nodes are created. They follow Call nodes, and are
transversed when the called method returns regularly; if the called method returns with
an exception, either the exception is dealt with internally or control flow jumps to an
Exit node that causes the method to return with an exception itself.

 Exit nodes follow other nodes that can cause the method to return; a different
Exit node is created for each return scenario – including “return” and “throws”
instructions, and method call instructions that may return an exception.

 Entry nodes identify the starting point of the CFG. They simply indicate the
method’s entry point; there’s only one Entry block node per method.

151Sessão Técnica 4 - Testes em Sistemas de Software II

Figure 3. Control-Flow Graph for the method Controller.reconfigure(Config).

 The CFG generated for the method Controller.reconfigure(Config) is depicted
of Figure 3. A brief overview follows: node #1 is the Entry node; it is connected by a
directed edge to Call node #2, which transfers control flow to the
Config.getSignalCount() method; if Config.getSignalCount() method returns
regularly, Return node #4 is next; if it throws an exception, Exit node #18 is transversed
and Controller.reconfigure(Config) returns with an exception itself.

4.3. Test Set Evaluation and Optimization

Using the CFG built with basis on the test object’s bytecode, it is possible to evaluate
thoroughness of the test set with basis on the quality criteria proposed by (Vincenzi,
Maldonado et al. 2005; Vincenzi, Delamaro et al. 2006); moreover, it is possible to
optimize the test set by employing the evolutionary search techniques proposed by
(Wegener, Baresel et al. 2001; Wappler and Wegener 2006a; Wappler and Wegener
2006b). Both methodologies were introduced in the Background section.

152 VIII Workshop de Testes e Tolerância a Falhas

 In order to access the thoroughness of the testing process according to the all-
nodes and all-edges criteria, the test object’s class files must be instrumented for Basic
block and Call block dispatch, in accordance to the CFG defined as the underlying
representation. Dynamic analysis is performed by executing the instrumented test object
using each test case of a given test set as input; the trace files produced must then be
analyzed for the coverage metrics to be calculated.

public void testReconfigure() throws Exception
{
 System.out.println("reconfigure");

 int expected = 8000;

 Config cfg = new Config(9999);
 cfg.setPort(expected);
 Controller instance = new Controller();
 instance.reconfigure(cfg);

 int actual = cfg.getPort();

 assertEquals(expected, actual);
}

Figure 4. Sample test case for method Controller.reconfigure(Config)

 Exception-independent control-flow analysis implies the coverage of the
bytecode instructions represented by Basic Instruction nodes and Call nodes (in the case
of all-edgesei criterion, by exercising all available branches). Trace files for the
execution of the instrumented test object defined in Figure 2 using the test case depicted
in Figure 4 yield the transversal of nodes #2, #4, #6, #8, #13 and #15 – i.e. 66% all-
nodesei coverage (nodes #5 and #12 aren’t exercised) and 90% all-edgesei coverage
(edge #11 #12 isn’t exercised; edges beginning at virtual nodes aren’t considered) is
achieved.

 When employing exception-dependant coverage criteria, Exit nodes and Basic
Instruction nodes of the subtype “jsr” constitute the focus of the analysis. The all-
nodesei criterion implies the coverage of catch and finally Java blocks; additionally,
the all-edges criterion also implies the transversal of all the edges that lead to Exit nodes
that follow Call nodes.

 Specific fitness functions have to be defined for each coverage criterion; we
employ the methodologies proposed by (Wegener, Baresel et al. 2001). Each individual
fitness function, depending on the coverage criterion of choice, is defined as follows
(discussion includes examples related to the coverage information extracted from the
trace files described above):

• all-nodesei: a node-oriented fitness function is used, which allows the search to
be guided towards achieving every individual test goal – e.g. test cases that
exercise nodes #5 and #12 must be created.

• all-edgesei: a node-path-oriented fitness function is used, which allows the
search to be guided towards reaching a specific problem node and, from there,
following a certain path – e.g. a test case that considers node #11 as the problem
node and transverses edge #11 #12 must be created.

• all-nodesed: a node-path-oriented fitness function is used, which allows the
coverage of all bytecode instructions that are encompassed in catch and finally

153Sessão Técnica 4 - Testes em Sistemas de Software II

blocks, and that can be reached through a jsr bytecode function. Basic
Instruction nodes of the subtype “jsr” are the problem nodes.

• all-edgesed: a node-node-oriented fitness function is used. In addition to the
nodes encompassed by catch and finally blocks, test cases must be generated
that reach every single Call node and, from there, transverse the Exit node that
corresponds to the called methods exceptional return – e.g. test cases must be
generated that consider nodes #18 to #23 as individual goals for the evolutionary
search.

5. Framework Description

The focus of our tool is on the creation and optimization of a test set that maximizes
code coverage. Optimization occurs at the test set level and at the test case level: we
aim to generate a set that can help gain confidence in the software under test using
white-box metrics, and to generate the shortest sequence for a given test goal.

 The process of CFG building, bytecode instrumentation and event tracing is
achieved with the aid of Sofya (Kinneer, Dwyer et al. 2006), a dynamic analysis
framework developed at the University of Nebraska, USA, that is particularly suited for
developing dynamic analysis tools. The Sofya package provides implementations and
tools for the construction of various kinds of graphs – most notably CFGs – and native
capabilities for dispatching event streams of specified program observations, which
include instrumentators, event dispatchers, and event selection filters for semantic and
structural event streams. Additionally, it contains tools to perform various analyses
using the outputs generated by its components (statistics, coverage reports, …) and to
visualize the trace files produced by the executions of instrumented programs.

 In the context of our tool, Sofya is employed to instrument classes for structural
event dispatch. Basic Block instrumentation enables the observations of the virtual
Entry, Exit and Return blocks, Call blocks and Basic Instruction blocks transversed
during a given program execution. Our tool automatically executes instrumented
programs, and compares the trace files produced to the statically generated CFGs in
order to compute the fitness function.

 For evolving the set of test cases, the Evolutionary Computation in Java (ECJ)
package (Luke, Panait et al. 2007) is used in a similar fashion to the one proposed in
(Wappler and Wegener 2006a; Wappler and Wegener 2006b). ECJ is a research
package, developed at the George Mason’s University, USA, that incorporates several
Universal Evolutionary Algorithms, and includes built-in support for Set-Based
Strongly-Typed Genetic Programming. It is highly flexible, having nearly all classes
and their settings being dynamically determined at runtime by user provided parameter
files.

 Parameter files containing all the constraints defined by the function set are
automatically generated by our tool: firstly, the Test Cluster and the Type Set for the
Class Under Test are extracted by means of the Java Reflection API; then, the Extended
Method Call Dependence Graph (EMCDG) is computed, and a Function Set for each of
the public methods is derived; finally, ECJ parameter files are automatically generated
for each of the function sets produced.

154 VIII Workshop de Testes e Tolerância a Falhas

 jUnit is used as the front-end for our tool, as it constitutes both the starting and
ending points of the software testing process: the initial population of test cases can
optionally be derived from those defined by the user using jUnit (the initial population
can also be created automatically), and the generated test programs can be transformed
into test classes that can be loaded into the jUnit framework. The major usage scenario
is the generation of test cases that complete a test set in order to maximize code
coverage. The rationale for minimizing the length of the method call sequence of test
cases is that of simplifying the user’s task of defining assertions.

6. Conclusions and Future Work

This paper presents the rationale and introduces the methodology for generating and
optimizing test sets with basis on metrics derived from the dynamic analysis of the test
object’s Java bytecode. A Control-Flow Graph is used as the underlying model for
program representation, and it is build solely with basis on the high-level information
extracted from the Java bytecode of the test object. Bytecode instructions are grouped
into a smaller set of Basic Instruction and Call blocks with the intention of easing the
representation of the test object’s control flow, and additional virtual nodes are defined
to facilitate the dynamic analysis phase. The methodology for evaluating the test set
includes instrumenting the bytecode for basic block analysis and structural event
dispatch, and executing the instrumented test object using the generated test cases as
inputs, with the intention of collecting trace files with which to derive coverage metrics.
Methodologies for defining fitness functions in order to achieve the particular criteria-
related test goals are introduced. A general overview on how our automated software
testing tool is integrated is given.

 Evolutionary testing is an emerging methodology for automatically generating
high quality test data. Future work includes performing a case-study in a real
development context in order to demonstrate the usefulness and applicability of the
methodology and experiment different approaches to the evolutionary paradigm
employed. Namely, we aim to fine-tune the fitness functions employed for working at
the bytecode level. Further research must also be made on the topic facilitating the
user’s task of defining assertions for the generated test cases (e.g. by minimizing the
length of method call sequence of test cases) and on the possibility of using distinct
strong-typing mechanisms for the definition of the constraint imposed by the object-
oriented paradigm.

7. References

Cheon, Y., M. Y. Kim, et al. (2005). A complete automation of unit testing for Java
programs. Proceedings of the 2005 International Conference on Software
Engineering Research and Practice (SERP '05). Las Vegas, Nevada, USA, CSREA
Press: 290-295.

Haggar, P. (2001, 2001/07/01). "Java bytecode: Understanding bytecode makes you a
better programmer " IBM developerWorks Retrieved 2007/04/01, from http://www-
128.ibm.com/developerworks/ibm/library/it-haggar_bytecode/.

Kinneer, A., M. Dwyer, et al. (2006). Sofya: A Flexible Framework for Development of
Dynamic Program Analyses for Java Software, Department of Computer Science and
Engineering, University of Nebraska - Lincoln.

155Sessão Técnica 4 - Testes em Sistemas de Software II

Lindholm, T. and F. Yellin (1999). The Java virtual machine specification. Harlow,
Addison-Wesley.

Liu, X., B. Wang, et al. (2005). Evolutionary search in the context of object-oriented
programs. MIC2005: The Sixth Metaheuristics International Conference, Vienna,
Austria.

Luke, S., L. Panait, et al. (2007). "ECJ 16: A Java evolutionary computation library."
from http://www.cs.gmu.edu/~eclab/projects/ecj/.

Mantere, T. and J. T. Alander (2005). "Evolutionary software engineering, a review."
Applied Soft Computing 5(3): 315-331.

McMinn, P. (2004). "Search-based software test data generation: a survey." Software
Testing, Verification and Reliability 14(2): 105-156.

McMinn, P. and M. Holcombe (2003). The state problem for evolutionary testing.
Genetic and Evolutionary Computation Conference, Chicago, USA, Springer-Verlag.

Muller, R. A., C. Lembeck, et al. (2004). A symbolic Java virtual machine for test case
generation. Proceedings of IASTED Conference on Software Engineering: 365-371.

Tonella, P. (2004). Evolutionary testing of classes. ISSTA '04: Proceedings of the 2004
ACM SIGSOFT international symposium on Software testing and analysis. Boston,
Massachusetts, USA, ACM Press: 119-128.

Tracey, N., J. Clark, et al. (2002). A search-based automated test-data generation
framework for safety-critical systems, Springer-Verlag New York, Inc.

Vincenzi, A. M. R., M. E. Delamaro, et al. (2006). "Establishing structural testing
criteria for Java bytecode." Software Practice and Experience 36(14): 1513-1541.

Vincenzi, A. M. R., J. C. Maldonado, et al. (2005). "Coverage testing of Java programs
and components." Special issue on new software composition concepts 56(1-2): 211-
230.

Wappler, S. and F. Lammermann (2005). Using evolutionary algorithms for the unit
testing of object-oriented software. GECCO '05: Proceedings of the 2005 conference
on genetic and evolutionary computation, ACM Press: 1053-1060.

Wappler, S. and J. Wegener (2006a). Evolutionary Unit Testing Of Object-Oriented
Software Using A Hybrid Evolutionary Algorithm. Proceedings of the 2006 IEEE
Congress on Evolutionary Computation. Vancouver, IEEE Press: 3193-3200.

Wappler, S. and J. Wegener (2006b). Evolutionary unit testing of object-oriented
software using strongly-typed genetic programming. GECCO '06: Proceedings of the
8th annual conference on Genetic and evolutionary computation. Seattle,
Washington, USA, ACM Press: 1925-1932.

Wegener, J., A. Baresel, et al. (2001). "Evolutionary test environment for automatic
structural testing." Information & Software Technology 43(14): 841-854.

156 VIII Workshop de Testes e Tolerância a Falhas

