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Abstract. The focus of this paper is on presenting a methodology for 
generating and optimizing test data by employing evolutionary search 
techniques, with basis on the information provided by the analysis and 
interpretation of Java bytecode and on the dynamic execution of the 
instrumented test object. 

The main reason to work at the bytecode level is that even when the source 
code is unavailable, structural testing requirements can still be derived and 
used to assess the quality of a given test set and to guide the evolutionary 
search towards reaching specific test goals. 

Java bytecode retains enough high-level information about the original source 
code for an underlying model for program representation to be built. The 
observations required to select or generate test data are obtained by 
employing dynamic analysis techniques – i.e. by instrumenting, tracing and 
analysing Java bytecode. 

1. Introduction 

Software testing is an expensive process, typically consuming roughly half of the total 
costs involved in the software development process while adding nothing to the raw 
functionality of the final product. Yet, it remains the primary method through which 
confidence in software is achieved.  In industry, this process is often done manually – 
with the responsibility of assessing the quality of a given software product usually 
falling on the software tester. However, locating suitable test data can be time-
consuming, difficult and expensive; automation of test data generation is, therefore, 
vital to advance the state-of-the-art in software testing. 

 Test data selection, generation and optimization deals with locating good test 
data for a particular test criterion. The application of evolutionary algorithms to test 
data generation is often referred to in literature as Evolutionary Testing (Mantere and 
Alander 2005). In evolutionary testing, meta-heuristic search techniques are employed 
to select or generate test data. The search space is the input domain of the test object, 
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and the problem is to find a (minimal) set of input data – test cases – that satisfies a 
certain test criterion. In particular case of object-oriented programs, a sequence of 
method invocations is required to cover the test goal, and the sequence search space is 
an explosive space. The application of search-based strategies for object-oriented unit 
testing has not yet been investigated comprehensively. 

 In this paper, we present an approach for guiding the evolutionary search 
towards generating test sets using coverage metrics derived from the test object’s Java 
bytecode. The main reason to work at the bytecode level is that even when the test 
object’s source code is unavailable, structural testing requirements can still be derived 
and used to assess the quality of a given test set. The observations required to extract 
such metric are obtained by employing dynamic analysis techniques – i.e. by 
instrumenting, tracing and analysing Java bytecode.   

 In the following section, background on the topics of testing methodologies, 
quality criteria, evolutionary search techniques and fitness evaluation is provided; 
related work is reviewed in Section 4. In section 5, we present our methodology for 
employing dynamic analysis of Java bytecode for test quality assessment and 
optimization and, on Section 6 the complete framework of our tool is outlined. The 
concluding chapter resumes the key ideas of this paper and presents some topics for 
future research.  

2. Background 

The assessment of the quality of a given test set can be achieved functionally (black-box 
testing) or structurally (white-box testing). Black-box testing is concerned with showing 
the conformity between the implementation and its functional specification; with white-
box testing techniques, test case design is performed with basis on the program 
structure.  Black-box testing is the most widely used testing approach; however, its 
applicability is often hindered by the need for a formal specification of the test object to 
be available. With white-box testing, the metrics for measuring the thoroughness of a 
given test set can be extracted from the structure of the target’s source code, or even 
from compiled code (e.g. Java bytecode). 

 Traditional white-box criteria include structural (e.g. statement, branch) 
coverage and data flow coverage. The basic idea is to ensure that all of the control 
elements in a program are executed by a given test set, providing evidence of the quality 
of the testing activity; a test set that contains test cases that exercise all such elements is 
said to be adequate with respect to the corresponding criterion. 

 The evaluation of the quality of a given test set and the guidance to the test case 
selection using white-box criteria generally requires the definition of an underlying 
model for program representation – usually a control-flow graph (CFG). The CFG is an 
abstract representation of a given method in a class; control-flow testing criteria can be 
derived based on such a program representation to provide a theoretical and systematic 
mechanism to select and assess the quality of a given test set. 

 Two well known control-flow testing standards to derive testing requirements 
from the CFG are the all-nodes and all-edges criteria (Vincenzi, Delamaro et al. 2006). 
The all-nodes criterion requires that each node of a given CFG is executed at least once. 
To distinguish between instructions that are executed under the normal execution of the 
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program from others that require an exception to be executed, this criterion can be 
subdivided into two non-overlapping testing criteria so that the testing activity can 
focus on different aspects of a program at a time: 

• all-nodes-exception-independent (All-Nodesei): requires every node of the CFG 
reachable through an exception-free path to be executed at least once. 

• all-nodes-exception-dependent (All-Nodesed): requires every node of the CFG 
not reachable through an exception-free path to be executed at least once. 

 Conversely, the all-edges criterion requires that each control-flow deviation is 
executed at least once. To consider the control-flow in relation to the exception-
handling mechanism, this criterion also is subdivided into two non-overlapping testing 
criteria: all-edges-exception-independent (All-Edgesei) and all-edges-exception-
dependent (All-Edgesed). 

 The observations needed to assemble the metrics required by these criteria can 
be collected by abstracting and modelling the behaviours programs exhibit during 
execution – either by static or dynamic analysis techniques (Tracey, Clark et al. 2002). 
Dynamic analysis involves executing the actual test object and monitoring its 
behaviour; while it may not possible to draw general conclusions from dynamic 
analysis, it provides evidence of the successful operation of the software. In contrast, 
static analysis involves the construction and analysis of an abstract mathematical model 
of the system (e.g. symbolic execution). Static analysis is performed without executing 
the method under test, but rather this abstract model; this type of analysis is complex, 
and often incomplete due to the simplifications in the model. 

 If dynamic analysis techniques are employed, the ability to observe program 
execution is paramount. Events that need to be captured range from simple observations 
– such as execution of structural entities – to more complex examinations – such as 
thread and object creation, field manipulations, and object locking behaviour (Kinneer, 
Dwyer et al. 2006). Dynamic monitoring for events in Java software can be achieved 
through instrumentation of Java bytecode.  

 Bytecode is an assembly-like language that retains much of the high-level 
information about the original source program. Class files (i.e. compiled Java programs 
containing bytecode information) are a portable binary representation that contains class 
related data such as the class name, its superclass name, information about the variables 
and constants, and the bytecode instructions of each method (Vincenzi, Maldonado et 
al. 2005).  Using bytecode as the basis for building the CFG allows broadening the scope 
of applicability of software testing tools, since the target object’s source code is often 
unavailable; it can be used, for instance, to perform structural testing on third party Java 
components. In addition, the bytecode can be seen as an intermediate language, so the 
analysis performed at this level can be mapped back to the original high-level language 
that generated the bytecode. 

 Evolutionary algorithms have been used successfully for the unit testing of 
procedural software, and their application to the generation of quality test data for 
object-oriented software is an active field of research.  Within the paradigm of object-
orientation, the major concept is the object – which possesses attributes, constructors 
and methods. A test case for object-oriented software does not comprise only numerical 
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test data; a sequence of constructor and method calls is also necessary. Usually, 
multiple objects are involved in one single test case (Wappler and Lammermann 2005):  

• At the least, an instance of the class under test is needed.  

• Additional objects, which are required (as parameters) for the creation of the 
object under test and for the invocation of the method under test, must be 
available. Again, for the creation of these additional objects, more additional 
objects may be required. 

• Depending on the kind of test, the participating objects may have to be put into 
particular states in order for the test scenario to be processed in the desired way. 
Consequently, method calls must be issued for these objects. 

 A fitness function for object-oriented evolutionary testing must evaluate test 
cases according to their ability to meet a given test goal. If white-box criteria are 
employed, the CFG and the monitored execution of the test object are used to access the 
adequateness of test cases – i.e. if the CFG node and/or path defined as the test goal was 
exercised by the execution of a particular test case over the test object. 

 In (Wappler and Wegener 2006a) a distance-based fitness function, which 
expresses how close the execution of a test case over the test object is to reaching the 
current test goal, was proposed. This closeness is expressed in terms of three distances: 

• The Method Call Distance (dMC): expresses how close the test case execution 
approached the method under test in terms of the number of methods called. In 
case of a runtime exception, execution of a method call sequence terminates 
prematurely, meaning that the method under test is not called. 

• The Control Node Distance (dCN): expresses how close execution of the test 
object approached the target CFG node. 

• The Local Problem Node Distance (dPN): expresses how far  the test object’s 
execution is away from diverging along the branch of the problem node which 
leads to the test goal. 

 The metric dMC works at the test case level, and steers the evolutionary search 
towards producing feasible test cases – i.e. it ensures that a method call sequence of  a 
given test case generates no runtime exceptions that prevent the method under test from 
being called.  

 Metrics dCN and dPN, on the other hand, are employed to cover individual test 
goals on the test object, and are computed with basis on the CFG. In (Wegener, Baresel 
et al. 2001), four methodologies – which depend on the CFG and the required test 
purpose – for guiding the evolutionary search toward reaching particular test goals were 
outlined, and the corresponding fitness functions were described: 

• Node-oriented methods: require the attainment of specific nodes in the CFG 
(e.g. statement test, condition test). 

• Path-oriented methods: require the execution of certain paths in the CFG (e.g. 
path tests). 
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• Node-path-oriented methods: require the achievement of a specific node and, 
from this node, the achievement of a specific path through the CFG (e.g. branch 
test, segment coverage). 

• Node-node-oriented methods: aim to execute program paths that cover certain 
node combinations of the CFG in a pre-determined sequence without specifying 
a specific path between nodes (e.g. data-flow criteria). 

3. Related Work 

Interesting review articles on the topic of Evolutionary Testing include that of McMinn 
(McMinn 2004), who presents a review of meta-heuristic techniques that have been 
used in software test data generation, namely Hill Climbing, Simulated Annealing and – 
most interestingly – Evolutionary Algorithms. Namely, the main achievements in 
automating test data generation in the areas of structural testing, functional testing, and 
grey-box testing are summarized. In (Mantere and Alander 2005) an in-depth index of 
the work developed in the area is provided; topics include genetic algorithms applied to 
coverage testing, test data generation, testing program dynamics, black-box testing and 
software quality.    

 Both works pinpoint the state problem (McMinn and Holcombe 2003) as the 
main issue to be faced by researchers in this field. It occurs with methods that exhibit 
state-like qualities by storing information in internal variables; such variables are 
hidden from the optimization process because they are not available to external 
manipulation. The only way to change the values of these variables is through execution 
of statements that perform assignments to them. In object-oriented software this can 
occur through the use of variables that are protected from external manipulation using 
access modifiers. 

 The first approach to the field of evolutionary testing for object-oriented 
software was presented in (Tonella 2004); in this work, input sequences were generated 
using evolutionary algorithms for the white-box testing of classes. Genetic algorithms 
were the evolutionary approach employed, with potential solutions (test cases) being 
represented as chromosomes. A source-code representation was used, and an original 
evolutionary algorithm – with special evolutionary operators for recombination and 
mutation on a statement level (i.e. mutation operators insert or remove methods from a 
test program) – was defined. A population of individuals, representing the test cases, 
was evolved in order to increase a measure of fitness, accounting for the ability of the 
test cases to satisfy a coverage criterion of choice – the proportion of all control and call 
dependences that lead to the given target. New test cases are generated as long as there 
are targets to be covered or a maximum execution time is reached. However, the 
encapsulation problem was not addressed, and this proposal only dealt with a simple 
state problem; additionally, with this approach, Universal Evolutionary Algorithms – 
evolutionary algorithms, provided by popular toolboxes, which are independent from 
the application domain and offer a variety of predefined, probabilistically well-proven 
evolutionary operators – cannot be applied. 

 An approach which built upon an Ant Colony Optimization Algorithm was 
presented by (Liu, Wang et al. 2005). The focus was on the generation of the shortest 
method call sequence for a given test goal, under the constraint of state dependent 
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behaviour and without violating encapsulation. Ant PathFinder, hybridizing Ant Colony 
Optimization and Multiagent Genetic Algorithms were employed. To cover those 
branches enclosed in private/protected methods without violating encapsulation, call 
chain analysis on class call graphs was introduced. 

 In (Wappler and Lammermann 2005) an approach for the automatic generation 
of test programs for object-oriented unit testing was presented, focusing on the usage of 
Universal Evolutionary Algorithms. An encoding was proposed that represented object-
oriented test programs as basic type value structures, allowing for the application of 
various search-based optimization techniques such as Hill Climbing or Simulated 
Annealing. The generated test programs could be transformed into test classes 
according to popular testing frameworks. The suggested encoding, however, did not 
prevent the generation of individuals which could not be decoded into test programs 
without errors; their fitness function used different penalty mechanisms in order to 
penalize invalid sequences and to guide the search towards regions that contained valid 
sequences. Due to the generation of infeasible sequences, the approach lacked 
efficiency for more complicated cases. 

 In (Wappler and Wegener 2006b) a different approach to the subject was 
presented. Potential solutions were encoded using a Strongly-Typed Genetic 
Programming (STGP) methodology, with method call sequences being represented by 
method call trees; these trees are able to express the call dependences of the methods 
that are relevant for a given test object. To account for polymorphic relationships which 
exist due to inheritance relations, the STGP types used by the function set are specified 
in correspondence to the type hierarchy of the test cluster classes. The emphasis of this 
work is on sequence feasibility; the usage of STGP preserves feasibility throughout the 
entire search process. The fitness function does need, however, to incorporate a penalty 
mechanism for test cases which include method call sequences that generate runtime 
exceptions.  The issue of runtime exceptions was precisely the main topic in (Wappler 
and Wegener 2006a). This methodology yielded very encouraging results. For a simple 
custom-tailored test cluster, the set of generated test cases achieved full (100%) branch 
coverage: during the search, 11966 test programs were generated and evaluated, and the 
resulting test set contained 3 test cases; a control run, in which random test cases where 
produced for comparison purposes, stopped after having evaluated 43233 test programs 
(in accordance to the specified termination criteria), and the generated test set achieved 
a coverage of 66%. In a more complex scenario, four classes where tested and full 
coverage was achieved for all of the test objects. 

 In the abovementioned approaches, the underlying model for program 
representation is built with basis on the test object’s source-code; moreover, 
instrumentation of the test object for extracting tracing information is also done at the 
source-code level. To the best of our knowledge, there are no evolutionary approaches 
to the unit-testing of object-oriented software that employ dynamic bytecode analysis to 
derive structural testing criteria.   

 The application of evolutionary algorithms and bytecode analysis for test 
automation was, however, already studied in different scenarios. In (Cheon, Kim et al. 
2005) an attempt to automate unit testing of object-oriented programs is described. A 
black-box approach for investigating the use of genetic algorithms for test data 
generation is employed, and program specifications written in JML are used for test 
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result determination. The JML compiler was extended to make Java bytecode produce 
test coverage information. In (Muller, Lembeck et al. 2004), the layout of a symbolic 
Java virtual machine (SJVM), which discovers test cases using a definable structural 
coverage criterion with basis on static analysis techniques, is described. Java bytecode 
is executed symbolically, and the decision whether to enter a branch or throw an 
exception is based on the earlier constraints, a constraint solver and current testing 
criterion. The SJVM has been implemented in a test tool called GlassTT. This work, 
however, doesn’t address exception-related and method interaction-related criteria, and 
only procedural software scenarios are described. 

4. Dynamic Analysis Of Java Bytecode For Test Quality Optimization 

The focus of this paper is on presenting a methodology for generating and optimizing 
test data by employing evolutionary search techniques, solely with basis on the 
information provided by the analysis Java bytecode and on the dynamic execution of the 
instrumented test object’s class files. 

 In this section, the simple test cluster defined in (Wappler and Wegener 2006a) 
is used for demonstration purposes. We focus on the Controller.reconfigure(Config) 
public method; its source code is reproduced in Figure 1. 

 

     public void reconfigure(Config cfg) throws Exception { 
         if( cfg.getSignalCount() > MAX_SIGNALS ) 
             throw new Exception("Too many signals."); 
         if(cfg.getPort()<MIN_PORT||cfg.getPort()>MAX_PORT)  
             throw new Exception("Invalid port."); 
         this.cfg = cfg; 
         signals = new int[cfg.getSignalCount()]; 
     } 

Figure 1. Source code for the method Controller.reconfigure(Config)

 The source code provided by this example was compiled using JDK 1.5. The 
bytecode instructions of the compiled Controller.reconfigure(Config) public method 
are depicted in Figure 2. 

4.1. Bytecode Analysis 

In order to understand the details of Java bytecode, a preliminary discussion on how the 
Java virtual machine (Lindholm and Yellin 1999) works regarding the execution of the 
bytecode must take place. A JVM is a stack-based machine; each thread has a JVM 
stack which stores frames. A frame is created each time a method is invoked, and 
consists of an operand stack, an array of local variables, and a reference to the runtime 
constant pool of the class of the current method (Haggar 2001).   

 The array of local variables contains the parameters of the method and the 
values of the local variables. The size of the array of local variables is determined at 
compile time, and is dependent on the number and size of local variables and formal 
method parameters. The parameters are stored first, beginning at index 0. If the frame is 
for a constructor or an instance method, the this reference is stored at location 0; 
location 1 contains the first formal parameter, location 2 the second, and so on. For a 
static method, the first formal method parameter is stored in location 0, the second in 
location 1, and so on. The operand stack is a LIFO stack used to push and pop values; 
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its size is also determined at compile time. Certain bytecode instructions push values 
onto the operand stack; others take operands from the stack, manipulate them, and push 
the result. The operand stack is also used to receive return values from methods. 

 In Figure 2, The aload_1 instruction at location 0 pushes the value from the 
index 1 of local variable table onto the operand stack – i.e. it pushes the parameter cfg 
of the method Controller.reconfigure(Config cfg) onto the top of the operand stack 
(a reference to an object of type Config). The invokevirtual instruction at location 1 
invokes the instance method Config.getSignalCount() on the object cfg (popped from 
the top of the operand stack); the value returned by this method is pushed onto the top 
of the operand stack.  The iconst_5 instruction at location 4 loads the integer value 5 
onto the top of the operand stack. At this point, the operand stack contains two values: 
the integer 5 on top, and the value returned by the Config.getSignalCount() on the 
bottom. The if_icmple instruction loads both those values from the operand stack, and 
compares them: if 5 is lower than or equal to the value returned from the 
getSignalCount method, instruction flow is transferred to instruction 18. 

 

cfg.Controller.public_void_reconfigure(cfg.Config_cfg) 
_throws_java.lang.Exception 
Code(max_stack = 3, max_locals = 2, code_length = 64) 
0:    aload_1 
1:    invokevirtual cfg.Config.getSignalCount ()I (6) 
4:    iconst_5 
5:    if_icmple #18 
8:    new <java.lang.Exception> (7) 
11:   dup 
12:   ldc "Too many signals." (8) 
14:   invokespecial java.lang.Exception (java.lang.String) 
17:   athrow 
18:   aload_1 
19:   invokevirtual cfg.Config.getPort ()I (10) 
22:   sipush 8000 
25:   if_icmplt #38 
28:   aload_1 
29:   invokevirtual cfg.Config.getPort ()I (10) 
32:   sipush 8005 
35:   if_icmple #48 
38:   new <java.lang.Exception> (7) 
41:   dup 
42:   ldc "Invalid port." (11) 
44:   invokespecial java.lang.Exception (java.lang.String) 
47:   athrow 
48:   aload_0 
49:   aload_1 
50:   putfield cfg.Controller.cfg Lcfg/Config; (2) 
53:   aload_0 
54:   aload_1 
55:   invokevirtual cfg.Config.getSignalCount ()I (6) 
58:   newarray <int> 
60:   putfield cfg.Controller.signals [I (3) 
63:   return 

Figure 2. Java bytecode for the method Controller.reconfigure(Config)

 This brief analysis helps to support the following conclusions: firstly, the 
bytecode instructions contain enough high-level information for coverage criteria to be 
applied at the bytecode level; secondly, it is possible to group some instructions into a 
smaller set of basic blocks that can ease the representation of the compiled program 
using a CFG and, consequently, the application of dynamic analysis and structural 
coverage metrics on the target object. 

150 VIII Workshop de Testes e Tolerância a Falhas



  

 The purpose of the aload_1 instruction is, in fact, to prepare the operand stack 
for the getSignalCount method call at location 2. Equally, the iconst_5 instruction 
prepares the stack for the if instruction on location 5. We group these instructions into 
two basic blocks: the first pair is grouped into a Call block; the second pair is grouped 
into a Basic Instruction block of the sub-type “if”. 

4.2. CFG Definition and Interpretation 

In our approach, bytecode instructions are grouped into a set of basic blocks – namely, 
Basic Instruction blocks and Call Blocks. These blocks cover the core of nodes required 
to build the CFG graph. 

 Basic Instruction blocks encompass regular bytecode instructions, including the 
decision and branching instructions that can influence control flow – namely the sub-
types “if”, “goto”, “jsr”, “switch”, “return”, “ret”, “throw”, “sumthrow” and “exit”. 
They are represented in the CFG by Basic Instruction nodes. Call blocks represent 
bytecode instructions that cause control flow to be transferred to another method; they 
contain the high-level information needed to identify the method being called, and are 
represented in the CFG by Call nodes. In our example, bytecode instructions are 
grouped in accordance to Table 1. 

Table 1. Mapping between bytecode instructions, basic instruction blocks,  
basic intruction block subtypes, and node numbers in the CFG depicted in Figure 3. 

initial 

bc inst 

final 

bc inst 

node 

type 

node 

subtype 

node 

number 

0 

4 

8 

18 

22 

28 

32 

38 

48 

58 

1 

5 

17 

19 

25 

29 

39 

47 

55 

63 

Call 

Basic 

Basic 

Call 

Basic 

Call 

Basic 

Basic 

Call 

Basic 

 

If 

Throw 

 

If 

 

If 

Throw 

 

Return 

2 

4 

5 

6 

8 

9 

11 

12 

13 

15 

  Additionally, other types of nodes which represent virtual operations are 
defined: Entry nodes, Exit nodes, and Return nodes. These virtual nodes encompass no 
bytecode instructions; they are used to represent certain control flow hypothesis. 

 As mentioned above, Call blocks transfer control flow to the CFG of another 
method; the method called, in turn, can return normally or with an exception. In order to 
differentiate these situations, Return nodes are created. They follow Call nodes, and are 
transversed when the called method returns regularly; if the called method returns with 
an exception, either the exception is dealt with internally or control flow jumps to an 
Exit node that causes the method to return with an exception itself.  

 Exit nodes follow other nodes that can cause the method to return; a different 
Exit node is created for each return scenario – including “return” and “throws” 
instructions, and method call instructions that may return an exception.  

 Entry nodes identify the starting point of the CFG. They simply indicate the 
method’s entry point; there’s only one Entry block node per method.  
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Figure 3. Control-Flow Graph for the method Controller.reconfigure(Config).

 The CFG generated for the method Controller.reconfigure(Config) is depicted 
of Figure 3. A brief overview follows: node #1 is the Entry node; it is connected by a 
directed edge to Call node #2, which transfers control flow to the 
Config.getSignalCount() method; if Config.getSignalCount() method returns 
regularly, Return node #4 is next; if it throws an exception, Exit node #18 is transversed 
and Controller.reconfigure(Config) returns with an exception itself. 

4.3. Test Set Evaluation and Optimization 

Using the CFG built with basis on the test object’s bytecode, it is possible to evaluate 
thoroughness of the test set with basis on the quality criteria proposed by (Vincenzi, 
Maldonado et al. 2005; Vincenzi, Delamaro et al. 2006); moreover, it is possible to 
optimize the test set by employing the evolutionary search techniques proposed by 
(Wegener, Baresel et al. 2001; Wappler and Wegener 2006a; Wappler and Wegener 
2006b). Both methodologies were introduced in the Background section. 
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 In order to access the thoroughness of the testing process according to the all-
nodes and all-edges criteria, the test object’s class files must be instrumented for Basic 
block and Call block dispatch, in accordance to the CFG defined as the underlying 
representation. Dynamic analysis is performed by executing the instrumented test object 
using each test case of a given test set as input; the trace files produced must then be 
analyzed for the coverage metrics to be calculated. 

 

public void testReconfigure() throws Exception 
{ 
   System.out.println("reconfigure"); 
          
   int expected = 8000; 
         
   Config cfg = new Config(9999); 
   cfg.setPort(expected); 
   Controller instance = new Controller();       
   instance.reconfigure(cfg); 
 
   int actual = cfg.getPort(); 
         
   assertEquals(expected, actual);     
} 

Figure 4. Sample test case for method Controller.reconfigure(Config)

 Exception-independent control-flow analysis implies the coverage of the 
bytecode instructions represented by Basic Instruction nodes and Call nodes (in the case 
of all-edgesei criterion, by exercising all available branches). Trace files for the 
execution of the instrumented test object defined in Figure 2 using the test case depicted 
in Figure 4 yield the transversal of nodes #2, #4, #6, #8, #13 and #15 – i.e. 66% all-
nodesei coverage (nodes #5 and #12 aren’t exercised) and 90% all-edgesei coverage 
(edge #11 #12 isn’t exercised; edges beginning at virtual nodes aren’t considered) is 
achieved.   

 When employing exception-dependant coverage criteria, Exit nodes and Basic 
Instruction nodes of the subtype “jsr” constitute the focus of the analysis.  The all-
nodesei criterion implies the coverage of catch and finally Java blocks; additionally, 
the all-edges criterion also implies the transversal of all the edges that lead to Exit nodes 
that follow Call nodes. 

 Specific fitness functions have to be defined for each coverage criterion; we 
employ the methodologies proposed by (Wegener, Baresel et al. 2001). Each individual 
fitness function, depending on the coverage criterion of choice, is defined as follows 
(discussion includes examples related to the coverage information extracted from the 
trace files described above):  

• all-nodesei: a node-oriented fitness function is used, which allows the search to 
be guided towards achieving every individual test goal – e.g. test cases that 
exercise nodes #5 and #12 must be created. 

• all-edgesei: a node-path-oriented fitness function is used, which allows the 
search to be guided towards reaching a specific problem node and, from there, 
following a certain path – e.g. a test case that considers node #11 as the problem 
node and transverses edge #11 #12 must be created. 

• all-nodesed: a node-path-oriented fitness function is used, which allows the 
coverage of all bytecode instructions that are encompassed in catch and finally 
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blocks, and that can be reached through a jsr bytecode function. Basic 
Instruction nodes of the subtype “jsr” are the problem nodes. 

• all-edgesed: a node-node-oriented fitness function is used. In addition to the 
nodes encompassed by catch and finally blocks, test cases must be generated 
that reach every single Call node and, from there, transverse the Exit node that 
corresponds to the called methods exceptional return – e.g. test cases must be 
generated that consider nodes #18 to #23 as individual goals for the evolutionary 
search. 

5. Framework Description 

The focus of our tool is on the creation and optimization of a test set that maximizes 
code coverage. Optimization occurs at the test set level and at the test case level: we 
aim to generate a set that can help gain confidence in the software under test using 
white-box metrics, and to generate the shortest sequence for a given test goal. 

 The process of CFG building, bytecode instrumentation and event tracing is 
achieved with the aid of Sofya (Kinneer, Dwyer et al. 2006), a dynamic analysis 
framework developed at the University of Nebraska, USA, that is particularly suited for 
developing dynamic analysis tools. The Sofya package provides implementations and 
tools for the construction of various kinds of graphs – most notably CFGs – and native 
capabilities for dispatching event streams of specified program observations, which 
include instrumentators, event dispatchers, and event selection filters for semantic and 
structural event streams. Additionally, it contains tools to perform various analyses 
using the outputs generated by its components (statistics, coverage reports, …) and to 
visualize the trace files produced by the executions of instrumented programs. 

 In the context of our tool, Sofya is employed to instrument classes for structural 
event dispatch. Basic Block instrumentation enables the observations of the virtual 
Entry, Exit and Return blocks, Call blocks and Basic Instruction blocks transversed 
during a given program execution. Our tool automatically executes instrumented 
programs, and compares the trace files produced to the statically generated CFGs in 
order to compute the fitness function. 

 For evolving the set of test cases, the Evolutionary Computation in Java (ECJ) 
package (Luke, Panait et al. 2007) is used in a similar fashion to the one proposed in 
(Wappler and Wegener 2006a; Wappler and Wegener 2006b). ECJ is a research 
package, developed at the George Mason’s University, USA, that incorporates several 
Universal Evolutionary Algorithms, and includes built-in support for Set-Based 
Strongly-Typed Genetic Programming. It is highly flexible, having nearly all classes 
and their settings being dynamically determined at runtime by user provided parameter 
files. 

 Parameter files containing all the constraints defined by the function set are 
automatically generated by our tool: firstly, the Test Cluster and the Type Set for the 
Class Under Test are extracted by means of the Java Reflection API; then, the Extended 
Method Call Dependence Graph (EMCDG) is computed, and a Function Set for each of 
the public methods is derived; finally, ECJ parameter files are automatically generated 
for each of the function sets produced.  

154 VIII Workshop de Testes e Tolerância a Falhas



  

 jUnit is used as the front-end for our tool, as it constitutes both the starting and 
ending points of the software testing process: the initial population of test cases can 
optionally be derived from those defined by the user using jUnit (the initial population 
can also be created automatically), and the generated test programs can be transformed 
into test classes that can be loaded into the jUnit framework. The major usage scenario 
is the generation of test cases that complete a test set in order to maximize code 
coverage.  The rationale for minimizing the length of the method call sequence of test 
cases is that of simplifying the user’s task of defining assertions. 

6. Conclusions and Future Work 

This paper presents the rationale and introduces the methodology for generating and 
optimizing test sets with basis on metrics derived from the dynamic analysis of the test 
object’s Java bytecode. A Control-Flow Graph is used as the underlying model for 
program representation, and it is build solely with basis on the high-level information 
extracted from the Java bytecode of the test object. Bytecode instructions are grouped 
into a smaller set of Basic Instruction and Call blocks with the intention of easing the 
representation of the test object’s control flow, and additional virtual nodes are defined 
to facilitate the dynamic analysis phase. The methodology for evaluating the test set 
includes instrumenting the bytecode for basic block analysis and structural event 
dispatch, and executing the instrumented test object using the generated test cases as 
inputs, with the intention of collecting trace files with which to derive coverage metrics. 
Methodologies for defining fitness functions in order to achieve the particular criteria-
related test goals are introduced.   A general overview on how our automated software 
testing tool is integrated is given.  

 Evolutionary testing is an emerging methodology for automatically generating 
high quality test data. Future work includes performing a case-study in a real 
development context in order to demonstrate the usefulness and applicability of the 
methodology and experiment different approaches to the evolutionary paradigm 
employed. Namely, we aim to fine-tune the fitness functions employed for working at 
the bytecode level. Further research must also be made on the topic facilitating the 
user’s task of defining assertions for the generated test cases (e.g. by minimizing the 
length of method call sequence of test cases) and on the possibility of using distinct 
strong-typing mechanisms for the definition of the constraint imposed by the object-
oriented paradigm. 
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