

A Meta Protocol for Adaptable Mobile Replicated Databases1

Udo Fritzke Jr. 1, Luiz Alberto F. Gomes1, Denis L. Silva1, Daniel M. Morais1

1Pontifícia Universidade Católica de Minas Gerais
Curso de Ciência da Computação

Poços de Caldas, MG - Brazil
{udo,luizgomes}@pucpcaldas.br, denislimamg@yahoo.com.br

dmerlimorais@gmail.com

���������	
����������������������������	�������������������������� ��	��!���"�����������������������
�	���#$�%�&'(�()*+,�

Abstract. This paper presents a meta protocol that allows the replacement of
replication control protocols in mobile replicated databases. The meta protocol
is motivated by the adaptability requirements of mobile database systems but
can also be used on replicated databases with fixed nodes. The paper defines
three properties that meta protocol executions have to enforce and specifies a
protocol that satisfies these properties. The protocol is based on transactions
and atomic broadcast. Finally, we outline a dynamic adaptable architecture
that includes the meta protocol and that is based of an aspect oriented
framework and on a group communication system.

1. Introduction
Data replication has been widely used in order to provide database systems with high
availability and better performance in a distributed environment. In mobile database
systems, data replication allows a mobile node to access local data while it is
disconnected from a network. During the execution of a replicated system, the access of a
replicated object is controlled by a particular replication control protocol. Such a
protocol collaborates with concurrency control protocols so that data accesses are
synchronized offering a one-copy view of the system [Bernstein et al., 1987]. There
exists a large variety of replication control protocols [Wiesmann et al., 2000] that have
been conceived upon different assumptions on data consistency (or transaction isolation)
needs, communication primitives, node disconnection modes (failures or planned
disconnection), replication models and data synchronization methods.
 The adaptation of replication techniques to particular application needs has also
been subject to study (e.g. [Drapeau et al., 2002]) and is motivated both by the
miscellanea of replication protocols and also by environment changes to which an
application can be subjected. These include modifications of requirements as
confidentiality of data, data placement, data administration policies, storage capacity, and
data access latency, among others. As mentioned in [Drapeau et al., 2002], we
understand that there is no practical replication control protocol that fulfills all adaptation
needs, even if it was conceived to be parameterized. Moreover, we believe that runtime
adaptation is important to some applications and accordingly, it should be part of
database replication frameworks.
 As part of our motivation, we borough the application scenarios presented in
[Holliday et al., 2000]. Holliday et al. show three practical replication schemes for
mobile replicated databases. In the first one, basic sign-off mode, a mobile node

173Sessão Técnica 5 - Computação Móvel

disconnects from the network keeping local copies of read-only data. When it reconnects
it synchronizes the state with the remaining nodes that have possibly updated the
database. In a second scheme, check-out mode, a mobile node can travel with updatable
data, usually a portion of the database, while other nodes are not allowed to access the
data that was checked-out by the mobile node. When the node reconnects it updates the
remaining database copies with the new state of the data. These two modes provide
strong consistency (one copy-serializability). A third method, relaxed check-out mode,
relaxes the previous one by allowing connected nodes to “browse” the data that was
checked-out by the mobile node. This ensures a lower consistency level as long as nodes
can browse old data. As a practical scenario, one could imagine that during an usual
activity period, nomadic users access portions of data in relaxed check-out mode. When
all of nodes reconnect to an enterprise network, the administrator of the database claims
to himself the data access starting a basic sign-off mode, so that he or she is allowed to
execute data management activities, as for example, users inclusion and data schemata
alteration. Therefore, replication control protocol replacement would be an important
requirement for such a system.
 We treat in this paper the dynamic replacement of replication control protocols,
so that such an adaptable scenario could be implemented. We consider that a protocol
replacement can be requested by any node of the system, and these requests can occur
concurrently. In this paper, while the term “protocol” denotes distributed replication
control algorithms, the term “meta protocol” has been adopted to denote protocols that
maintain the consistency of the replication control protocols despite concurrent
replacement requests.
 The rest of the paper is structured as follows. Section 2 presents definitions and
models of mobile databases, concurrency and replication control, transactions and group
communication. Section 3 presents three safety properties of the meta protocol. Section 4
details the meta protocol, and section 5 briefly describes a dynamic architecture that is
being implemented. Section 6 concludes the paper.

2. Models and Definitions

2.1 Mobile Database and Failures
We consider that the system is composed of nodes that may replicate objects (or data
items). A node, noted as Ni, can disconnect from a network and possibly access local data
during disconnection. Objects are accessed by read and write operations executed on
behalf of a transaction, noted as t (or ti to avoid ambiguity), following the execution
model presented in [Bernstein et al., 1987]. Two transactions are concurrent if one of
them begun its execution before the termination (with commit or abort) of the other. Two
operations conflict if they belong to different transactions, access the same object and
one of them is a write operation. Two concurrent transactions are said to be conflicting if
both access some object (replicated or not) with conflicting operations.
 During a disconnection period of a node, data accesses are performed on local
copies, and no synchronization between nodes is possible. After reconnection a node can
re-synchronize the state of local copies with respect to other nodes’ copies.
Disconnections and re-connections are planned by the user or due to a failure. Objects
residing in a node are accessed through a Database Management System (DBMS).

174 VIII Workshop de Testes e Tolerância a Falhas

 We assume that nodes only fail by prematurely stopping their execution (crash
failure model) [Hadizlacos and Toueg, 1993]. A node (or process) is said “correct” if it
never crashes. We use “node” instead of “process” for the sake of notation simplicity.

2.2 Concurrency and Replication Control Protocols
Data access isolation is guaranteed by concurrency control protocols. These protocols
handle operations that access shared data (writes and reads) so that execution histories
respect the required isolation level, and therefore, ensure some data consistency criterion.
The literature presents several concurrency control protocols, some of them for strong
consistency levels (as two-phase locking [Bernstein et al., 1987]) and other for more
relaxed consistency. In the latter case, the protocols are designed to avoid deadlocks (e.g.
[Gray et al., 1996]) and to minimize data access latency in mobile systems (e.g.
[Holliday et al., 2000][Shapiro et al., 2000] [Fritzke et al., 2004]). The choice of the
algorithm is strongly related to the integrity constraints of application’s data.
 The coherency of object copies is ensured by replication control protocols. These
protocols aim to make an execution composed by operations that access replicated data
appear as an execution on a non replicated system. Traditional replication control
protocols use to synchronize data accesses during transaction executions (e. g. [El
Abbadi et al., 1986]). However, in mobile settings transactions cannot be synchronized
when a node is disconnected from the network. Therefore, different protocols that allow
local execution of data accesses and further dissemination of the updates after
reconnections have been proposed (e.g. [Gray et al., 1996], [Holliday et al., 2000] and
[Fritzke et al., 2004]). These two synchronization methods are defined in [Gray et al.,
1996] as eager and lazy replication, respectively.
 Concurrency and replication control protocols normally cooperate in order to
achieve the desired isolation and coherency levels (e.g., one-copy serializability). For the
sake of notation simplicity, we will refer to these protocols simply as replication control
protocols in the rest of the paper.
 We consider that any transaction operation submitted to a DBMS is handled first
by a replication control protocol. The replication control protocol will then be allowed to
schedule transaction executions as well as disseminate transaction updates according to
its concurrency and replication control policies.

2.3 Distributed Transaction Execution
An application at node Ni can possibly connect to a local DBMS and execute local reads
and writes while it is isolated from a network or from some other node of the distributed
system. When Ni reconnects to some node it has to synchronize its database with respect
to the database state of other nodes. Therefore, we consider that a transaction on a
replicated environment passes two distinct and sequential execution phases:

• Local phase. Access operations are executed on the local DBMS. Most
replication control protocols allow only read operations, but there are other
protocols that also allow data modifications. In mobile database applications,
frequently, transaction commit is constrained to local accesses and so they are
instead executed in the local phase (lazy replication). The local phase of a
transaction is initiated by the first operation submitted to the DBMS.

• Global phase. The goal of this execution phase is twofold: (1) to disseminate the
effects of writes on local data to remote copies and/or from remote copies to the

175Sessão Técnica 5 - Computação Móvel

local ones, and (2) to perform an atomic distributed commit in order to provide a
transactional semantics of data accesses (eager replication). So, a node can
possibly participate in the global phase of remotely initiated transaction in order
to update local and remote copies of objects and to execute a distributed atomic
commit to terminate the remote transaction.

 The number of nodes involved in the global phase may vary from one DBMS
server up to all nodes of the distributed system. The former is normally the case of
common client-server applications, while the latter corresponds to fully replicated
databases. Our meta protocol assumes that all database objects are fully replicated.
 We consider that the global phase can occur progressively, so that all nodes that
replicate an object modified by Ni eventually get updated with Ni’s modifications, and
vice-versa. Therefore, we define here a global phase termination event that represents
the dissemination of writes followed by the distributed atomic commit of a transaction at
all nodes. This execution model is not completely general as is does not include
synchronization that could occur during earlier accesses to distributed data by a
transaction, what happens for example in writes on a ROWA (Read-One Write-All) or
quorum basis. In most cases, however, one could postpone writes to the global phase,
after all reads are executed on local data. Moreover, synchronization at the transaction
termination phase is particularly interesting for mobile databases, where nodes are
frequently isolated from communication networks. In some mobile applications, the set
of transactions executed in a mobile node while it is disconnected, can in fact be
perceived by other nodes as only one transaction execution whose global phase happens
when the node reconnects to the system.
 This abstract global phase termination event allows the decoupling of the actual
implementation of replication control protocols from the meta protocol we will propose
in section 4. This is important as there are numerous protocols that could be handled by
the meta protocol. We will discuss in section 4.3 how a replication control protocol can
launch such an event.

2.4 Atomic Broadcast
We use in our protocol an atomic broadcast primitive [Hadizlacos and Toueg, 1993]. A
node that wants to broadcast a message m to all nodes of the system executes an
A_Broadcast(m). The delivery of m to a node is reliable. Informally, this means that
when either a correct node broadcasts a message m or some node delivers a non spurious
message m, then all correct nodes eventually deliver m. Moreover, message deliveries
respect a total order property: if two nodes N1 and N2 deliver two messages m and m’,
then N1 delivers m before m’ if and only if N2 delivers m before m’.

3. Properties for Protocol Replacement
In this section we present properties that our meta protocol has to enforce. In a similar
way as presented in [Yang and Li, 2004], we consider that during its execution, a
replicated system can pass through three sequential execution phases: protocol
attachment, protocol execution and protocol detachment. The first phase consists of
reconfiguration steps that are performed by the meta protocol to install a replication
control protocol in all nodes of the distributed system. The second phase corresponds to
the application execution on top of an installed replication control protocol, during which
accesses to replicated objects are synchronized according to the rules determined by the
replication control. The third phase consists of the steps that are performed by the meta

176 VIII Workshop de Testes e Tolerância a Falhas

protocol to remove a previously installed replication control protocol from all nodes of
the distributed system. Once a replication control protocol is first attached, a subsequent
attachment of a new protocol is only allowed after the previous protocol is detached.
 With respect to mobility of nodes, we consider that the dynamic replacement only
takes place when all nodes are connected to a network and allowed to communicate
among themselves.
 Replication control protocol replacement is constrained by the execution state of
transactions. A new protocol cannot be negligently attached to a node while transactions
are active and under control of another protocol. If we consider a distributed execution in
which several replication protocols are attached to nodes and run, we need to understand
when these protocols can be attached, run and detached. In order to clarify this dynamic
replacement, we present three safety properties that relate replication control protocols
with transaction executions:

Object copy access consistency. At any time in system’s execution, any copy of an
object is accessed by a transaction under control of only one replication control
protocol. In other words, each node with an object copy runs only one protocol at
a given time.

Transaction control consistency. The execution of a transaction, including the local and
the global phases, is controlled by the same replication control protocol, attached
to all nodes that replicate objects accessed by the transaction. When a transaction
execution satisfies this property, we say that the transaction is protocol consistent.

Object access consistency. Consider any two concurrent and conflicting transactions t1
and t2 that are protocol consistent, and let O be the set of objects on which t1 and
t2 execute conflicting operations. During t1 and t2 executions (i.e. operations of
the local phase plus the operations of the global phase), both are subject to the
same replication control protocol. In other words, all nodes that hold copies of the
objects in O have attached to themselves the same replication control protocol
during the execution of t1 and t2.

 The first property ensures that no two replication control protocols can mediate
the execution of a transaction accessing an object copy during application execution. The
treatment of transaction operations at some node is done deterministically by exactly one
protocol. This property is important in the sense that it avoids the attachment and
execution of a protocol in a node, without the detachment of the previous one. In a
practical implementation, for example using a dynamic weaving mechanism in which
protocols are implemented as advices intercepting the execution of the system, no two
advices responding to distinct protocols should be deployed. Section 5 will present an
architecture based on an aspect oriented framework. Figure 1(a), that shows three nodes
replicating some object and that changed replication control from “protocol 1” to
“protocol 2”, illustrates this reasoning. Node 1 appears as it had installed simultaneously
the two protocols, creating a protocol conflict situation and thus violating the object copy
access consistency property.

 The second property ensures that a transaction execution that is started under
some replication control protocol is constrained by that protocol until it is completely
executed. Figure 1(b) shows a transaction execution in which the local phase is executed
under some (replication control) “protocol 1”. The global phase is also initiated under the
same replication control protocol, but it terminates in node N3 under control of “protocol
2”. Supposing that protocol 1 and 2 differ in the isolation level they implement, it is clear

177Sessão Técnica 5 - Computação Móvel

that the overall execution of the transaction could not be consistent by none of the
isolation levels. This cannot happen to a protocol consistent transaction.

Figure 1 – (a) Violation of the object copy access consistency property, and (b)

violation of the transaction control consistency.

 The third property extends the transaction control property to concurrent and
conflicting transactions. Figure 2 illustrates two execution scenarios that exemplify the
importance of this property. It shows two transactions, t1 that reads and writes into
replicated objects x and y, and t2 that writes into y. All operations of t1 are controlled at
nodes N1, N2 and N3 by “protocol 1”, thus ensuring that the transaction is protocol
consistent. Moreover, all operations of transaction t2 are controlled by a “protocol 2”,
also ensuring transaction control consistency with respect to t2. That scenario could
clearly lead to data integrity problems when for example the concurrency is controlled by
distinct protocols, say using an optimistic approach for t2, and a pessimistic one for t1.
When updates of t2 reach node N1 they can be considered correct by a certification phase,
as the optimistic protocol does not care about locks hold on behalf of t1, an then they are
committed into the local DBMS. On the other hand, the updates of t1 will also ignore the
certification of t2, and proceed with t1’s execution that overwrites the copy of y at all
nodes. Such a phenomenon is avoided if object consistency is implemented by the
system and this because both transactions would be submitted to the same replication
control protocol. We remark that if both transactions did not conflict, they could be
executed under different replication control protocols. For example, if t1 and t2 were both
read-only transactions, they could be executed no matter what protocol was controlling
each of them. This is due to the fact that in this case, their executions are “naturally”
isolated one from the other and so they are inoffensive to data consistency and
coherency.

Figure 2 – Object consistency violation scenario due both to a conflict of
transactions t1 and t2 on the access of objects x and y, and to a different

replication control protocol for t1 and t2.

�����������

	
�

	��

	��

���������
�

�
��������
���������
��

��������������

���������
�

�
���������
���������
��

���������
� �����������

������������������

	
�

	��

	��

�����������

	
�

	��

	��

�
�� ����

��������������������������

���������
�

�
�����������������������
������������������������������

����
�

���� ����

178 VIII Workshop de Testes e Tolerância a Falhas

 In the framework presented by Yang and Li [Yang and Li, 2004], protocols are
attached to objects, and not to nodes, as we propose in our work. The fact that
transactions that access different sets of objects could be executed under distinct
replication control shows that Yang and Li’s approach could be more interesting.
Attaching protocols to nodes (instead of objects) could hidden some flexibility and
concurrency gains when two protocols are allowed to coexist in a node, each responding
to some disjoint collection of objects. However, from a practical point-of-view this leads
to some problems. In such a scheme, a protocol consistent transaction would have to pre-
declare the set of objects it intended to access so that the system could associate the same
protocol to all accessed objects. This would constraint the execution of transactions that
are dynamically defined by the user. Alternatively, the system could change the protocols
attached to the objects as the transaction executes, what certainly would restrict the
throughput of the transactional system. We note that Yang and Li’s framework was
designed for groupware applications that do not use to access shared objects by the
means of transactions (instead each operation is treated as an atomic execution unit). So,
the attachment of protocols to objects does not present the above mentioned drawbacks
in such systems.

4. The Meta Protocol

4.1 Protocol Definition
In this section we present a meta-protocol that allows the dynamic replacement of
replication control protocols and that implements the properties defined in the previous
section. Initially, we consider that during its execution in some node of the system, a
replication control protocol can be found in one of the three following states:

1. Detached: the protocol does not handle any operation on behalf of transactions
submitted to the system.

2. Attached and pending: the protocol was requested by some node to become active
but the meta protocol has not activated it yet in order to ensure the safety
properties.

3. Attached and active: the protocol previously attached to a node becomes active
and gets run to handle operations of transactions that are submitted to a DBMS.

 Each node of the system maintains a queue, noted as Q, of structures recording
relevant information about replication control protocols. Such a structure, denoted as
proto, has the identification of a protocol, the proto_id field, and its state, the state field.
A node Ni also manages a set with the identification of active transactions, denoted Acti.
A transaction is considered to be active if it has initiated its local phase but not yet
terminated its global phase. At each node Ni, Acti identifies local transactions and remote
transactions for which the global phase has include Ni but has not been globally
terminated so far.
 In the figures that follow, the instructions in a scope defined by begin and end
keywords are executed atomically, except during a blocking wait operation.

 Accordingly, Figure 3 defines the rules that maintain the Acti set at a node Ni.
For any transaction that is initiated, its identification is atomically broadcast to all nodes.
This allows the nodes to be aware of a transaction begin. The termination event handled
in Figure 3 is launched by the active replication control protocol, as discussed in section
4.3.

179Sessão Técnica 5 - Computação Móvel

Figure 3 – Rules for the management of the Acti set at a node Ni.

 Based on the state of active transactions we can coordinate the protocol
reconfiguration at a node of the system. For that purpose we define two procedures that
an application can call to request a protocol attachment or detachment, namely
Attach(proto_id) and Dettach(proto_id), where proto_id corresponds to the
identification of the protocol to be attached or detached, respectively. Figure 4 defines
the attachment procedure and the treatment of the protocol replacement requests that are
delivered to a node.

 Figure 4 – Replication control protocol attachment request at node Ni.

 The procedure of Figure 4 is straightforward. A protocol attachment request is
started by an atomic broadcast sent to all nodes (line 1). When a request is delivered to a
node, it results in a new entry in the queue with information about the new protocol to be
attached (lines 3-5). The state of the protocol is initially pending (line 4), and it becomes
active after the detachment of previously attached protocols (Figure 5). Figure 5 defines
the detachment procedure and the treatment of protocol detachment request.

 Figure 5 – Replication control protocol detachment request at node Ni.

 The procedure of Figure 5 shows that protocol detachment request is also
redirected to all nodes by an atomic broadcast. After the delivery by a correct node, the

1 when an operation of a transaction t is submitted to the DBMS
2 begin A_broadcast(<t>) end /* broadcast t’s identification */
3 when Ni detects the termination of t
4 begin Acti Acti t end
5 when Ni delivers <t> /* message delivery event */
 begin
6 Acti Acti t
7 Submit t to the replication control protocol
 end

 Attach(proto_id) /* attachment procedure */
1 begin A_broadcast(<attach, proto_id>) end
2 when a <attach, proto_id> message is delivered to Ni:
 begin
3 proto.proto_id � proto_id
4 proto.state � pending
5 put proto in queue Q
 end

 Dettach(proto_id) /* Dettachment procedure */
1 begin A_broadcast(<dettach, proto_id>) end
2 when a <dettach, proto_id> message is delivered to Ni:
 begin
 /* ensure that no transaction is under control of the protocol to be removed*/
3 wait while Acti �

�

4 Stop the execution of proto_id
5 Let proto be the structure in Q that describes proto_id:
6 Remove proto from Q
7 Let proto be the oldest structure in Q:
8 proto.state � active
9 run the proto_id protocol;
 end

180 VIII Workshop de Testes e Tolerância a Falhas

request results in the deletion of the protocol from the Q queue and in the activation of a
new protocol following a FIFO policy (lines 4-9).
 The wait condition of line 3 ensures that all active transactions run over the same
replication control protocol, and this includes conflicting and non conflicting
transactions. However, if there are concurrent transactions that do not conflict with each
other, then there is no need to wait for the complete termination of these transactions
before a protocol is removed and a new protocol is attached and activated. Accordingly,
a node could instead attach a replication control protocol to each transaction and let these
protocols run independently so far no conflicting transaction appears in the overall
execution. However, in order to detect such a concurrent execution it would be necessary
to ensure that no object is accessed with conflicting operations in a system wide base,
and this can only happen after the global phase of transaction executions. Thus, our
protocol waits for the global phase termination of all active transactions.

4.2 Discussion on the Meta Protocol Correctness
We informally discuss here the protocol safety in relation to the three properties defined
in section 3. We assume that initially the same replication control protocol is installed at
all nodes and no transaction has been started so far.
 Object copy access consistency. It is easy to note that an attachment request
results only in a new entry into the Q queue (Figure 4, lines 1 and 3-5) of a node. The
requested protocol is only activated as the result of a detachment request (Figure 5), in
which the protocol is activated (Figure 5, lines 8-9) only after the previous one is
removed (Figure 5, line 6). Also, this is valid for all nodes that deliver an attach request
message. Consequently object copy access consistency is preserved by the meta protocol.
 Transaction control consistency. Suppose that a transaction t is started at a node
Ni and that a detachment request is started by a node Nk. We have to consider two
situations, (1) k = i and (2) k � i.
 In the first case, if the delivery of t (Figure 3) occurs before the delivery of the
detachment request (Figure 5), then t is first included in the Acti set and submitted to a
replication control protocol (Figure 3, lines 6-7). The wait condition (Figure 5, line 3)
allows a protocol withdraw (Figure 5, line 6) and a subsequent activation of a new one
(Figure 5, lines 8-9) only after all active transactions are terminated, i.e. the transactions
are removed from Act (Figure 3, line 4). Therefore, until t does not terminate no
replication control protocol is removed at Ni. Otherwise, if the delivery of t (Figure 3)
occurs after the delivery of the detachment request (Figure 5), then the requested
protocol will be activated (as Acti =

�) and t will run under the control of the requested
protocol, as lines 4-9 of Figure 5 are executed atomically. In both cases, t will execute
entirely over the same replication control protocol.
 In the second case, even with t and the protocol detachment request being issued
by distinct nodes, the total order property of atomic broadcast will ensure that all nodes
will treat the delivery of t’s identification (and its inclusion into Acti) and the protocol
detachment request in the same order. Accordingly, all nodes will behave as Ni, and the
points discussed above are also valid for this case. A more detailed proof can be obtained
by extending the set of transactions and detachment requests and by taking the principles
above as base steps. So, transaction control consistency is ensured by the meta protocol.
 Object access consistency. Consider two conflicting transactions, say t1 and t2,
that are executed concurrently. We will show that they are executed under control of the

181Sessão Técnica 5 - Computação Móvel

same replication control protocol. We will take into account two situations: (1) t1 and t2
were started at the same node, and (2) t1 and t2 were started at different nodes.
 In the first case, we show by contradiction that if one transaction is controlled by
some replication control protocol, the other one could not be controlled by other protocol
if they are conflicting and concurrent. Both transactions identifications are atomically
broadcast when they are submitted, and their executions by a replication control protocol
only occur after they are included in the set Acti (Figure 3, lines 6-7). Suppose that t1’s
identification delivery to some node, occurs first (Figure 3, line 5) and so, it is the only
one that is in Acti. Now consider that before t2’s identification delivery occurs, a protocol
detachment request is treated by the protocol, resulting in a protocol replacement. This
would only be possible if the termination event of t1 was detected be the meta protocol
(Figure 3, line 3) and that transactions was excluded from Acti (Figure 3, line 4) so that
the set is empty. In such a situation, t1 was terminated and, as it was completely executed
before t2 they were not actually concurrent, a contradiction. Thanks to the total order of
atomic multicast these deliveries occur in the same order in all correct nodes and the
result is valid to these nodes.
 In the second case, even if t1 and t2 were submitted to the DBMS at different
nodes, their identifications are first atomically broadcast to all nodes, and the same
reasoning of the precedent paragraph is also effective. Accordingly, the meta protocol
implements object access consistency.

4.3 Handling the Global Phase Termination Event
The global phase termination event determines that a transaction was globally terminated
at the nodes that took part in its execution. This event has to be launched by the
replication protocol that is controlling the transaction execution, and the launch process
depends on the implementation of the replication protocols. As examples, we consider
here three implementation solutions, each based on a distinct termination scheme:
distributed atomic commit, group communication, and reconnection of mobile nodes.
 Informally, a distributed atomic commitment [Bernstein et al., 1987] ensures that
either all correct nodes that participated in the execution of the transaction commit its
execution, or all of them will abort it. A protocol that implements a distributed commit
involves all non faulty nodes, and should eventually terminate its execution with a
common decision. A protocol based on consensus could also be used to reach such a
decision [Guerraoui and Schiper, 1995]. In this case, the protocol effectively commits (or
aborts) the transaction at the node after the decision of the adopted termination
algorithm, and then it launches the termination event.
 When group communication primitives are used (e.g. [Kemme et al. 1998]),
[Fritzke e Ingels, 2001]), the termination event is simply obtained by the delivery of a
final message of the replication control protocol to all correct nodes. Depending on the
delivery properties (reliability and/or order), this message can determine the global phase
termination of the transaction. Protocols use to commit (or abort) the transaction just
after the delivery of that message, and after this they can also launch the event so that the
meta protocol can handle it.
 When we deal with reconnection of mobile nodes, as it is the case of replication
control protocols presented in [Holliday et al., 2000], the termination event corresponds
to the end of the synchronization that occurs during reconnection. This synchronization
usually involves the exchange of updates issued at the mobile node, say node N, or at the
node to which the mobile node reconnects. If the database is fully replicated, this

182 VIII Workshop de Testes e Tolerância a Falhas

synchronization can occur progressively between the nodes that become connected to N.
For any node that perceives N reconnection, the global phase terminates after the
synchronization with N. After this synchronization, the global termination event can be
launched and treated by the meta protocol.

4.4 Node Failures and Mobility
As defined in section 3, we assume that nodes only attach and detach replication control
protocols while they are all connected to each other. In order to track node mobility, one
could use a node (or process) group membership service of a virtually synchronous group
communication sub-system [Birman et al., 1991]. Informally, virtual synchrony ensures
that all correct nodes agree on the set of nodes that could have abandoned a node group
and this in an ordered sequence of installed group views. Membership (or view) changes
are usually result of either explicit requested leave group and join group operations or by
involuntary node failures. Accordingly, mobile nodes may smoothly disconnect by
issuing a leave group and reconnect with a join group request.
 Our meta protocol can be executed only after a complete membership
reconfiguration: all disconnected nodes have to be (re)joined to the group. During this
connection period, failures are handled by the virtual synchronous group communication
sub-system. We do not implement automatic membership reconfiguration if a node fails
after it has executed an explicit leave request. Thus the meta protocol liveness could
suffer in such a failure scenario, unless some manual intervention is taken. We note
however that the meta protocol safety is not risked in this case if the set of original nodes
is compared to the current group view.

5. Implementation
The proposed meta protocol is being implemented in a adaptable middleware for mobile
database applications. The Figure 6 sketches the dynamic adaptable architecture that is
being implemented. The mobile replicated database application runs of top of the meta
protocol that is responsible for the replacement of replication control protocols, through
the previously defined attachment and detachment procedures. The meta protocol and the
mobile application interact with building blocks for distributed programming, aspect
oriented programming and database access.

Figure 6 – The architecture for dynamic adaptable mobile replicated databases.

 The group communication system offers atomic multicast and state transfer
services, as well as a virtually synchronous execution environment. These functionalities
are used by the meta protocol and can also be used by the replication control protocols.

Replication
Control Protocol

1
Replication

Control Protocol
2

Replication
Control Protocol

n

...

Attach(...)
Detach(...)

Group
Communication
System

Database
Management
System

Meta
protocol

Replication
Control Protocol

Distributed
Object
System

Aspect
Oriented

Framework

Mobile Replicated Database Application

Transaction operations

183Sessão Técnica 5 - Computação Móvel

State transfer is particularly useful for to the synchronization of database states on mobile
node reconnections. The JGroups toolkit [Red Hat, 2006] has been used for that purpose.
The distributed object system allows an abstract way to make remote method invocation
among objects from the application and replication control protocols. Java RMI has been
used here. The database management system provides the system with a transactional
environment. We are using the MySQL DBMS.
 The aspect oriented framework plays a central role in our architecture. Aspect
orientation [Kiczales et al . 1997] has been proposed as a solution for the treatment of
non functional and transversal issues in adaptable middleware [Gilani et al., 2004].
Aspect oriented software enhances the modularity by separating orthogonal concerns in
well defined constructions called aspects. Aspects can crosscut the static structure of
software, adding for example a new method to a class, as well as the dynamic structure,
for example by modifying the execution flow of a program. The points of interest in the
execution of some program (also called joinpoints) are defined by declaring pointcuts. To
the pointcuts are associated pieces of code called advices that can add new behavior to a
program. Syntactically, aspects allow the definition of pointcuts and advices. According
to the aspect oriented language or framework used, aspects can be weaved into the
program code, either before the program starts or at run-time (dynamic weaving).
 We have adopted, in the present implementation, the AspectWerkz framework
[AspectWerkz, 2007]. AspectWerkz offers two important features: a dynamic weaver
and a way to transform plain Java classes into aspects through a XML definition file. The
first feature has a particular interest because it allows attaching the aspects code to some
pre-programmed Java bytecode during the execution of the program. The second feature
offers a way to decouple the definition of pointcuts (XML) from the actual
implementation of aspects (Java classes). This brings flexibility to the definition of
pointcuts and to the reuse of classes as aspects.
 In our work, we consider that replication control protocols are concerns that
should be separated from application programming, thus enforcing modularity and
adaptability of the software development process. Accordingly, aspects are used to
accommodate meta protocol functionalities. The aspect oriented framework enables the
association of aspects to application and replication control algorithms. With respect to
application, we intercept transaction operations as they are submitted to a DBMS. In
practice, these points correspond to popular mechanisms for DBMS connection
initialization, data access, connection interruption, like the methods offered by well
known database programming interfaces (e.g. JDBC API, Java Database Connectivity).
We have also to define the treatment of replication control protocol events, as the start of
a transaction and its global termination. These operations and events can be declared in
the scope of pointcuts that identify some application and replication control joinpoints. It
is worth to note, that with the aspect oriented framework, we reach a complete
decoupling from application, replication control and aspect code. These code
components (Java classes) can be combined through XML elements defining pointcuts
and advices.
 We are implementing the dynamic architecture by extending a system that offers
a set of adaptable replication services using an aspect oriented language [Tavares et al.,
2006]. The adaptability provided by the system in [Tavares et al., 2006] allows the
attachment of aspects written in the AspectJ [AspectJ, 2007] language to centralized
database application written in Java and that use the JDBC API. The static configuration
of aspects allows the extension of a client-server database with replication control

184 VIII Workshop de Testes e Tolerância a Falhas

protocols suited to mobile environments. Depending on the aspects chosen by the
application programmer, different types of replication can be implemented as for
example, full replication and partial replication. The partial replication model allows also
different types of data accesses to mobile nodes. The protocols implemented through
aspects have been used as components of the dynamically adaptable architecture and will
be used to validate the meta protocol in practical applications.
 Kienzle and Guerraoui argue in [Kienzle e Guerraoui, 2002] that aspect oriented
languages are limited in their utility when it comes to separate transactional mechanisms
from the functionalities of applications classes. The main issue presented by the authors
is that in the general case, it is impossible to completely decouple the semantics of
application classes from the semantics of transaction mechanisms implemented by
aspects, being only possible a “physical” separation of these components. That problem
is associated to exception handling, method semantics, restrictions on transaction
synchronization and the maintainability of the application, among other questions.
However, the middleware we propose avoid most of these problems because it connects
aspects to the JDBC API, that in contrast to the general case, offers a stable and well
defined method interface, and thus allows a stable definition of pointcuts.

6. Concluding Remarks
This paper presented a meta protocol for the dynamic replacement of replication control
protocols in adaptable mobile replicated databases. In best of our knowledge, the work
that is closely related to ours is the meta protocol proposed in by Yang and Li [Yang and
Li, 2004]. Yang and Li propose a meta protocol that allows to change concurrency
control in collaborative applications, but that is not well suited to transactional systems.
Also, they work relies on a central server that coordinates protocol replacement, while
we assume a symmetrical protocol based on group communication, and so, without a
single point of failure.
 The adaptability of replication mechanisms has been proposed in previous work.
Some systems rely on reflective models (e.g. [Kleinöder and Golm, 1996], [Fraga et al.,
1997]) and other on frameworks with specific components (e.g. [Drapeau at al., 2002],
[Beloued et al., 2005]). These approaches allow, in different ways, the adaptation of the
structure of replicated systems according to different distributed service needs. Our
protocol is complementary, in the sense that it shows a way for implementing a dynamic
replacement of replication protocols, potentially able to be included in other replication
architectures. This work also differs from previous ones in that it explores aspect
orientation as a mechanism to implement adaptability of mobile replicated databases.

7. References
AspectJ (2007). The Aspect Programming Guide. <http://www.eclipse.org/aspectj/doc/

released/progguide/index.html>. Accessed in April, 2007.
AspectWerkz (2007). AspectWerkz - Plain Java AOP.

<http://aspectwerkz.codehaus.org>. Accessed in April, 2007.
Beloued, A., Gilliot, J.-M., Segarra, M.-T., André, F. (2005). Dynamic Data Replication

and Consistency in Mobile Environments. In: Proc. of the 2nd. International Doctoral
Symposium on Middleware. Nov. 28 – Dec. 02, 2005. Grenoble, France. ACM.

Bernstein, P., Hadzilacos, V., Goodman, N. (1987). Concurrency Control and Recovery
in Database Systems. Addison Wesley.

185Sessão Técnica 5 - Computação Móvel

Birman, K., Schiper, K., Stephenson, P. (1991). Lightweight Causal and Atomic Group
Multicast. ACM Transactions on Computer Systems, vol 9, no. 3, august, 1991.

Drapeau, S., Ronancio, C. L., Déchamboux, P. (2002). RS2.7: and Adaptable Replication
Framework. In: 18èm. Journées de Bases de Données Avancées , Oct., 2002. France.

El Abbadi, A., Toueg, S. (1986). Availability in Partitioned Replicated Databases. In:
Proc. 5th. ACM-SIGACT-SIGMOD Symp. on Princip. of Datab. Syst. ACM.

Fraga, J., Maziero, C., Lung, L. C., Loques Filho, O. (1997) Implementing Replicated
Services in Open Systems Using a Reflective Approach. 3rd International Symposium
on Autonomous Decentralized Systems (ISADS '97). Berlim. 1997.

Fritzke Jr. , U., Morselli Jr., J. C. de M., Abrão, I. C., Luiz A. Gomes, Faria, C.,
Vicentini, W. B. (2004). A Protocol for Mobile Replicated Databases based on
Causallity. In: Proc. Of the WSCF 2004. Fortaleza, CE, 2004. SBC.

Fritzke Jr., U., Ingels, P.. Transactions on Partially Replicated Data based on Reliable
and Atomic Multicasts. Proc. of the ICDCS-21. Phoenix-AZ, USA. April 16-19, 2001.

Gilani, W., Naqvi, N. H, Spinczyk, O. (2004). On Adaptable Middleware Product
Lines. In: Proc. of the 3rd Work. on Adapt. and Refl. Middl... ACM. Toronto, Canada.

Gray, J., Helland, P., O'Neil, P., Shasha, D. (1996). The Dangers of Replication and a
Solution. In: Proc. of the 1996 ACM SIGMOD'96. Montreal, Canada.

Guerraoui, R., Schiper, A. (1995). The decentralized non-blocking atomic commitment
protocol. In.: Proc. of the IEEE Int. Symp. On Parallel and Distributed Processing
(SPDP’95). San Antônio, Texas, EUA, September, 1995.

Hadizlacos, V. and Toueg, S. (1993). Fault-tolerant broadcasts and related problems. In
Sape Mullender, editor. Distributed Systems, chapter 5. Addison Wesley, 1993.

Holliday, J., Agrawal, D., El Abbadi, A. (2000) “Planned Disconnections for Mobile
Databases”. Tech. Rep. TRCS00-07. Dep. of CS, UCSA, EUA. 2000.

Kemme, B., Alonso, G. (1998). A suite of database replication protocols based on group
communication primitives. In: Proceedings of the 18th IEEE Int. Conf. on Distr.
Computing Systems (ICDCS). pp. 156-163. Amsterdam, The Netherlands. 1998.

Kleinöder, J. and Golm, M. (1996). Transparent and Adaptable Object Replication Using
a Reflective Java. Tech. report TR-14-96-07. CS Dept., Friedrich-Alexander
University/Erlangen-Nürnberg University. 1996.

Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.; Lopes, C. V.; Loingtier, J.-M.;
Irwin, J. (1997). Aspect Oriented Programming. In: Proc. of the ECOOP’97.
Springer.-Verl.. Jun., 1997.

Kienzle J., Guerraoui, R. (2002) AOP: Does it Make Sense? The Case of Concurrency
and Failures. In: Proc. of ECOOP 2002, Malaga, Spain, Jun, 2002. LNCS 2374 /2002.

Red Hat, 2006. Red Hat Inc. (2006). Reliable Multicasting with the JGroups Toolkit –
Revision 1.6. Available at <www.jgroups.org>.

Shapiro, M., Rowstron, A., Kermarrec, A.-M. (2000). Application-independent
reconciliation for nomadic applications. In: Proc. of the SIGOPS Europ. Works..:
“Beyond the PC: New Challenges for the Oper. Syst..”. Denmark. Sep. 2000.

Tavares, T. C., Gomes, L. A. F., Fritzke Jr., U., (2006) Middleware Adaptável para
Bancos de Dados Móveis utilizando Aspectos. In: Anais do Work. de Desenvolv. de
Software Orientado a Aspectos (WASP’2006). Florianópolis, SC. SBC.

Wiesmann. M. , Pedone, F. , Schiper, A., Kemme, B., Alonso, G.. Database Replication
Techniques: a Three Parameter Classification. In: Proc. of SRDS’2000. pp. 206-215,
Nürnberg, Germany, October 2000. IEEE.

Yang, Y.; Li, D. (2004) Separating data and control: support for adaptable consistency
protocols in collaborative systems. In: Proc. of CSCW’2004, Chicago, USA. ACM.

186 VIII Workshop de Testes e Tolerância a Falhas

