Applying Mutation Testing in Prolog Programs
Juliano R. Toaldo ! and SilviaR. Vergilio!

!Federal University of Parana (UFPR), CP: 19081,
CEP: 81531-970, Curitiba - Brazil

j toal do@ahoo. com br, silvia@nf. ufpr.br

Abstract. Several testing criteria and tools have been proposedyiavéth the

goal of selecting and evaluating test data sets. Howevest morks focus only
procedural and object-oriented programs and little hasrbeaid about logic
programming languages, such as Prolog. Some works addregsst of Prolog
programs however, do not introduce a testing criterion and offer coverage
testing metrics. This work investigates the applicatiothefMutation Analysis
criterion for testing Prolog programs. In experiments eétature, this criterion

has been considered one of the most efficacious. A set ofiomudgterators for

this language is proposed, based on common mistakes makle pyogrammers
using this paradigm. A tool, named MutProlog, is describEais tool supports
the proposed operators and eases the development of Pradggams. Results
from an experiment, using MutProlog, show the applicapitif the proposed
operators and allow comparison with structural criteria.

1. Introduction

In the software development process, software testing @sabrthe most important ac-
tivities for software quality assurance. However, theitgsactivity is very expensive;

the testing teams should be properly trained and in somes cagdequate tools are not
available. Because of this, some works introduced tes#@ngrtiques and criteria, with
the goal of revealing a great number of faults with minimé&befand costs.

Since to execute the program for all inputs of its domaint teato perform
an exhaustive testing is not always possible, the testiitgrier were proposed to help
the tester in the task of selecting test data and/or of etiatpa given test set T.
A testing criterion is a predicate to be satisfied to consttiertesting activity ended
[Rapps and Weyuker 1985]. It offers a metric, based on therege of certain el-
ements, named required elements. This metric is used tadssn&hether a pro-
gram has been tested enough. For example, functionaliartensider functional as-
pects of the program. Structural criteria, such as contndl data-flow based criteria
[Rapps and Weyuker 1985], consider internal aspects ofribgram or the specification
to generate the test data. Fault-based criteria derivedtgatto show the presence or
absence of typical faults in a program, based on commonseimdhe software develop-
ment.

The different criteria are considered complementary beedloey can reveal dif-
ferent kind of faults. However, some empirical studies shiost the fault-based criteria
are the most efficacious to reveal faults [Mathur and Wongt19%ng 1993].

In spite of this great number of testing criteria and suppgrtools, most of them
focus conventional procedural and object-oriented pgradi Few works are dedicated
to logic programming languages, such as Prolog.

The majority of the works about test of Prolog programs, gaes

test data considering only functional aspects [Choque6l9®enney 1991,
Gorlick et al. 1990, Hoffman and Strooper 1991]. The work oérdgadano et al
[Bergadano and Gunetti 1996] uses ILP (Inductive Logic Paogning) and the works
described in [Boeck and Charlier 1990, Pereira 1986, Plur@80] are related to debug-
ging and detection of anomalies. These works do not extemtkesting criteria and not
allow the use of coverage metrics. To overcome this linotatLuo et al [Luo et al. 1992]
propose the extension of structural criteria for testingldy programs. They propose a
control-flow graph for Prolog and two criteria based on thispd: all-branches, and all
pairs branch-to-branch.

In a complementary way, our work investigates the use otdaaged testing of
Prolog programs, particularly the use of mutation testibg Millo et al. 1978]. Muta-
tion Analysis (MA) is based on two assumptions [De Millo etH#78]: 1) “competent
programmer hypothesis”, e.g. programmers do their prognaery similar to the correct
program, according to a specification. When the users tastgrgm, they use the correct
program that they have in mind, and if the program P beingtkeist not correct, there is
a set of alternatives (mutants) for P that can include at &@as correct program; and 2)
coupling effect: complex faults are usually revealed byeedwg simpler ones.

Mutation testing [De Millo et al. 1978] consists basicallfy generating mutant
programs for the program P being tested. A mutant is repteddny a single muta-
tion in the original program established by a mutation ofmerall mutants are executed
using a given input test data set T. If a mutant M presenter@ifft results from P it is said
to be dead. Otherwise, either there is no test data in T thagpable to distinguish M
from P, or M and P are equivalent. Our goal must be to find a st €kt able to kill all
non-equivalent mutants. The mutation score allows the @watggevaluation of T.

The existence of equivalent mutants is a limitation to detee the mutation
score, because there is no algorithm to determine whetheptagrams compute the
same functions. Similar limitation is found when applyitigustural criteria. Some paths
required by these criteria are infeasible and they can naubematically determined.
The identification of infeasible paths and equivalent mist@ne un-decidable questions
[Baldwin and Sayward 1979, Craft 1989, Frankl and Weyuk&®6].9

In spite of the above limitations, we find in the literatureltothat support struc-
tural and fault-based criteria. To allow the applicatiommuftation testing, a tool is funda-
mental. Proteum [Delamaro and Maldonado 1996] and MotheaNIlo et al. 1988] are
examples of tools that implement Mutation Analysis, resipety for C and FORTRAN
languages.

To permit the application of mutation testing in Prolog paogs it is necessary
the existence of mutation operators for this language armabltd make possible the
automatic execution of the mutants and the evaluation aigfiedata sets. With this goal
in mind, this paper introduces a set of mutation operatar®folog and describes a tool,
named MutProlog that supports the proposed operators andpghlication of mutation

testing in this context.

The work is organized as follows. Section 2 describes relatarks that address
the test of Prolog programs. Section 3 describes a fault hfod®rolog programs and,
based on this model, introduces the set of mutation opearafarction 4 shows functional
aspects of MutProlog. Section 5 describes procedures ofouddutProlog. Section 6
presents the main results of an experiment conducted fduati@n of the introduced
operators. Section 7 concludes the paper.

2. Related Works

In the last decades, many works addressed the testingtactieveral testing criteria
and tools were proposed to easy the test. However, most of fibeus only procedural
and object-oriented languages. Few works explore thetiarin the logic or functional
programming languages.

The works described in [Choquet 1986, Denney 1991, Gorliek.€1990,
Hoffman and Strooper 1991] generate test cases based otiohalcaspects of the
specification. Other works are related to debugging andctiete of anomalies
[Boeck and Charlier 1990, Pereira 1986, Plumer 1990]. Thekwd Bergadano et al
[Bergadano and Gunetti 1996] uses ILP (Inductive Logic Paogning) for generating
the test data without offers a coverage metric. Emer andi@igroposes the use of
Genetic Programming [Emer and Vergilio 2003] for genegtmutant programs. They
comment that the approach can be used for any paradigm, kowes necessary a tool
based on genetic programming for evolving complete progrdrhe authors only explore
the test of C programs.

Luo et al [Luo et al. 1992] explore the use of structural crétéor testing Prolog
programs. They propose a control-flow graph for Prolog amal ¢viteria based on the
graph: all-branches, and all pairs branch-to-branch. Tigfgahese criteria, it is nec-
essary to execute the program with test data that exercths pathe graph. The paths
must to include all the branches in the graph and all pairsrafd¢hes. In some cases,
the required elements (branches or pair of branches) canfeasible, if all the paths
that exercise them are also infeasible. The tool TGT (Tesa @&eneration Tool) was
implemented to validate the structural criteria.

The work of Luo et al is the most similar to ours. In next settiwve also ex-
plore the use of criteria for Prolog programs. However, wappse the use of Mutation
Analysis, that is a fault-based criterion. The main motoaato do this is that results
from experiments reported in the literature [Mathur and Wa&894, Wong 1993] show
that this criterion is the most efficacious and we did not fingwaork that explores these
criteria in the mentioned context.

3. Mutation Operatorsfor Prolog

This section introduces a set of mutation operators fordgrddased on our experi-
ence as programmers and on the characteristics of Prolaggms [Luo et al. 1992,
Moura and Vergilio 2000].

e the data structures are recursive lists, recursion is veed in Prolog.

¢ the unification of sub-goals in Prolog can proceed on twactives; the existence
of backtracking is a very important characteristic.

e there are not pre-defined types for the variables, they nwaitbihdifferent kind of
variables, there is the anonymous variable.

¢ there are no routines, a set of clauses is used, and the ¢aicept testing needs
to be redefined.

These characteristics are related to the main mistakes matle programmers
that most frequently do not have the explicit control. Cdesing these aspects, a clas-
sification for the main non syntactical faults of the progsamsiestablished and a muta-
tion operator for each class is introduced. They were dladsin four groups. Table 1
presents a description and examples showing the trangfiormaf the program caused
by each operator in each group.

1. clause mutation: each Prolog rule, finalized with a “.”assidered a clause. This
group includes changes in conjunction and disjunctionratpens withcut (“!"),
changes in predicates, etc. The changes in predicatesrsppéd in adjacent
predicates, because we are considering the hypothesis obthpetent program-
mer [De Millo et al. 1978]. However, changes in operationthwut happens be-
long all the programs; errors usiiegtare much more frequent.

2. operator mutations: differently of conventional langesthere are few operators
in Prolog. We include the arithmetic and relational onese idea is to change
them by similar operators.

3. variable mutation: two types of variable are consider@tgonymous or not. A
variable is changed by other one in the same clause, indepndf its type.

4. constant mutation: constants are changed by other cissiavariables of any
type in the same clause.

The introduced operators are capable of revealing thesfalitt they describe.
However, based on the coupling effect assumption [De Millal€1978], complex faults
are combination of simpler faults and can be detected wimeplsifaults are revealed. We
illustrate this fact with the programerge[Bergadano and Gunetti 1996] (Figure 1a) and
its incorrect version with only four clauses (Figure 1b).eTihcorrect program does not
eliminate duplicates. A test set satisfying all-branché&gmon may not reveal the fault.
However, a test data selected to kill the mutants generategtidooperator “Relational
Operator” necessarily reveals the fault.

merge(A [],A). merge(A [1,A).
merge([], B, B). merge([], B, B).
merge([Al],[B/Ro],[AIM) :- A<B, merge([Al Ra],[B|Ro],[A|M) :- A <= B,
merge(Ra, [B|Rb] , M. merge(Ra, [B|Rb], M.
merge([Al Ra], [B| Rb],[AIM) A = B, merge([A Ra],[B|Rb],[B|M) :- A > B,
merge(Ra, Rb, M . merge([Al Ra], Rb, M.
merge([AlRa],[B|Rb],[B|[M) :- A >B,
nerge([ARa],Ro, M.

Figure 1. Program mergea) Program original. b) Incorrect Version.

4. MutProlog

The complete automation of a testing criterion is impossthle to many testing limita-
tions. Considering these limitations, a tool, named Mutiyavas developed to support

Table 1. Mutation Operators

Operator | Description | Original Program | Example of Mutant
Group 1: Clause Mutations
Delete remove predicate P | writel([]). writel([]).
Predicate in clause C writel([H|T]) :- write(H),nl, writel([H|T]) - nl,
writel(T). writel(T).

Swap change the order likes(ana,X) :- toy(X), likes(ana,X) :- plays(ana,X),
Predicate in adjacent plays(ana,X). toy(X).

predicates
Conjunction | change conjunction | subset(S,[HT]) :- subset(R,T), subset(S,[HT]) :- subset(R,T),
by of predicates (S=R, S=[HRY)). (S=R ; S=[HRY)).
Disjunction by disjunction subset([],[])- subset([],[])-
Replacement
Disjunction change disjunction leastnum(X,[H|T]) :- leastnum(X,[H|T]) :-
by of predicates leastnum(Y,T), leastnum(Y,T),
Conjunction | by conjunction (H=<Y,X=H,H>Y,X=Y). (H=<Y,X=H;H>Y,X=Y).
Replacement
Insert Cut insert cut bubblesort(L,L1) :- bubblesort(L,L1) :-

between swap(L,L2,0), swap(L,L2,0),!,

predicates bubblesort(L2,L1). bubblesort(L2,L1).

bubblesort(L,L). bubblesort(L,L).

Remove Cut | remove cut not(G) :- G,!fail. not(G) :- G,fail.

operator not(G). not(G).
Permute Cut| change the insert(X,[HTL,[H|T1] :- ,X>H, insert(X,[H/T],[H|T1] :- X>H,!,

place of a cut

insert(X,T,T1).

insert(X,T,T1).

Group 2: Operator Mutation

Arithmetic change an arithmetic| length([],0). length([],0).
Operator operator by other length(L|T],N) :- length(L|T],N) :-
Mutation arithmetic operator length(T,M),N is M+1. length(T,M),N is M*1.
Relational change a relational fault(X) :- fault(X) :-
Operator operator by other non(respond(X,Y)),X ==Y. non(respond(X,Y)), %Y.
Mutation relational operator
Group 3: Variable Mutation
Variable by | change a variable member(X,[T_]). member(X,[X_.]).
Variable in clause C member(X,[|T]) :- member(X,T). | member(X,[|T]) :- member(X,T).
by other one in C
Variable by | change a variable length([],0). length([],0).
Anonymous | by an anonymous length((HT],N) :- length(L|T],N) :-
Variable variable length(T,M),N is M+1. length(T,M),N is M+1.
Anonymous | change anonymous | member(X,[X.]). member(X,[XT]).
Variable variable in clause C | member(X,[|T]) :- member(X,T). | member(X,[|T]) :- member(X,T).
by Variable by other variable in C

Group 4:Constant Mutation

Constant by
Constant

change a constant
in clause C
by other one

length([],0).
length(L|T],N) :-
length(T,M),N is M+1.

length([],1).
length(L|T],N) :-
length(T,M),N is M+1.

Constantby | change a constant likes(ana,jose). likes(ana,jose).
Anonymous | in clause C likes(jose,ana). likes(jose,).
Variable by an anonymous
variable
Anonymous | change anonymous | likes(ana,apple). likes(ana,apple).
Variable by | variable in clause C | likes(paulo,). likes(paulo,apple).
Constant by a constant in C
Constant by | change a constant append([],L,L). append(L2,L,L).
Variable in clause C by append([HT1],L2,[H|T]) :- append([HT1],L2,[H|T]) :-
a variable in C append(T1,L2,T). append(T1,L2,T).
Variable by | change a variable nth(N,X,[X|T]). nth(1,X,[X|T]).
Constant in clause C by a nth(N,X,[Y|T]) :- nth(N,X,[Y|T]) :-

constant in C

nth(M,X, T),N is M+1.

nth(M,X, T),N is M+1.

the introduced operators and to allow the fault-basedtgsiutProlog was implemented
in C language and operational system Linux. It has four megjullustrated in Figure 2
and described below.

Generate mutantgeceives the source code in SWI Prolog and the configuration
file. It produces a directoriutantg, that contains files and descriptions for the transfor-
mations to be applied. All the clauses in the source code@sidered to generate the
mutants individually. The configuration file contains thegamtage to be applied for each
operator. For example, for programerge a configuration file from Figure 3 indicates a
percentage of 50 to the operator “Insert cut”. This mean®rif clause, 4 mutants can
be generated applying this operator, only 50% (2) are géstbra

Generate scriptsgenerates a script for automatic execution of the mutaltts.
Is executed after the generation of the mutants. This mods#s the parameters “in-
put.variable” and “outputvariable” given in the configuration file. For examplaerge
has two input variables and only one output.

Execute mutantghis module is used in two cases. In the first one, the uses add
test data to the existent ones, and the source code is ededsteput and outputs are
saved in a directory. In the second case, the mutants aretexeand their outputs are
compared with the original outputs. This module can be eleetmany times, but only
the alive and enabled mutants are executed. To each mutasgadsiated to a status that
can be: dead, alive, anomalous or equivalent. Mutants tloaluge an execution error,
such as division by zero, are identified as anomalous. Elgmvanutants produce the
same original output for all inputs; they are identified by thster, because determining
equivalence between programs is an un-decidable que&aldyin and Sayward 1979,
Craft 1989]. The tester can also enable or not a test data.

Evaluate mutantshe coverage is calculated using the formula below:

My(P,T)
M(P) - Me(P)

MS(P,T) = , where :

P: program under test;

T set of given test data;

MS(P,T): mutation score;

My(P,T): number of dead mutants;

M (P): number of no anomalous generated mutants;
M. (P): number of equivalent mutants.

According to the obtained coverage the tester decides fotstiing or to add
more test data to reach the desired coverage.

Source Code

Generate M utants

Mutants \Config. File

Generate Scripts

Y

Y Scripts
| ExecuteMutants |- TestData
! Results
- Equivalent
Evaluate MUtants
Coverage

Figure 2. Main Modules of MutProlog

5. An Example of Use

As mentioned in Section 2, a testing criterion requires aoketements to be exercised
by the test data. It can be used for selection or evaluatidesbfdata sets. In the case of
MutProlog, the required elements are mutants programsstiwaild be dead by the test

data.

5.1. Selection of Test Data

Suppose that we have to test a program P, but we do not havestroase set. We can use
Mutation Analysis and MutProlog as a guideline for the sbecof test data. We should
conduct the following steps:

1.
2.
3.

Create a configuration file for the program.

Generate the mutants, using MutProlog.

For each generated mutant, generate a test data t to prdifgrent outputs exe-
cuting P and the mutant. If such case does not exist, set tkentras equivalent.
Generate scripts using MutProlog and execute the muaizwt® with t. The test
data is saved. If the output produced by P is not correct, db# heeds to be
removed and a regression testing is necessary. If the ootpdticed by a mutant
IS correct, it is very easy to correct the original program¢s P and the mutant
differs only by a syntactical change.

If the outputs are really different, then the mutant idlyedead. MutProlog cal-
culates the mutation score (or coverage).

If the desired score was obtained, stop testing. Otherwlsoose another mutant
and repeat Steps 3, 4 and 5.

At the end of the process we have tested P and now we have a $¢¢3t data

generated using the Mutation Analysis criterion and a le¥ekliability, given by the

i nput _vari abl e=X

i nput _vari abl e=Y

out put _vari abl e=Z

Cl auseMut ati onPr edi cat eDel eti on=100

Cl auseMut at i onSwapPr edi cat es=100

Cl auseMut ati onConj uncti onByDi sj uncti onRepl acenent =100
Cl auseMut at i onDi sj uncti onByConj uncti onRepl acenent =100
Cl auseMut ati onl nsert Cut =50

Cl auseMut at i onRenpveCut =100

Cl auseMut at i onPer nut eCut =100

Oper ator Mut ati onArithneti c=100

Oper at or Mut ati onRel at i onal =100

Vari abl eMut ati onVari abl eByVari abl e=100

Vari abl eMut ati onVari abl eByVari abl eAnonynmous=100

Vari abl eMut ati onVari abl eAnonynousByVari abl e=100

Const ant Mut at i onConst ant ByConst ant Repl acerment =100
Const ant Mut at i onConst ant ByVar i abl eAnonynous=100

Const ant Mut ati onVar i abl eAnonynpusByConst ant =100

Const ant Mut at i onConst ant ByVari abl e=100

Const ant Mut ati onVari abl eByConst ant =100

Figure 3. Configuration File for merge

obtained coverage of T. Observe that if we have an initialfs&tep 3 is not necessatry,
we can execute the mutants, check the outputs and calchdateutation score for all the
testdata in T. After this, we decide to continue or not, udfgProlog to improve T. This
allows the combination of other testing techniques withtfaased testing. The initial set
of test data could be generated using, for example, furaitiomstructural techniques.

5.2. Evaluation of Test Data Sets

A testing criterion is also used to assess the quality oftaleaset. For example, consider
two test sets7; and7s, and the question: Which set is better? We can answer théopes
using MutProlog and the following steps:

1. Create a configuration file for the program.

2. Generate the mutants, using MutProlog.

3. Generate the scripts and execute the mutants and thearjgogram using’;
and’s.

4. Calculate the scores and choose the test set with theegtsabre.

This procedure can also be used to evaluate a particulaseest to know how
good it is by considering the Mutation Analysis criterion.

6. Experiments

The experiment used four progranetgmrep, numap, ord_sele mergg. The goal of the
experiment is a preliminary evaluation of the proposed afoes. The steps below were
followed for every program:

1. generation of the configuration file and of the mutants. tAdl operators were

applied 100%.

generation of test data, execution of the mutants e ewaifuaf the results.

3. generation of additional test data to kill the alive migaand determination of the
equivalent mutants.

4. execution of the mutants with the new test data.

N

. repetition of the last two steps until all non-equivalenitants are dead. At the
end of this step, we obtained MutProlog-adequate test $gt3,(composed only

by test data that really killed a mutant. Table 2 shows thaiobt results. For
programmergel86 mutants were generated, 171 died with 4 test data ande15 ar
equivalentsT,,, for mergehas 4 elements.

. generation of the control-flow graphs for all programsaiitie required elements
for the all-branches criterion.

. identification of infeasible structural elements. TaBlehows the required and
infeasible branches found.

. evaluation ofl},,,. Table 4 shows the results of this step. Thg, sets always get

a 100% coverage of all branches. That is, Thg sets are all-branches adequate.
We can observe in that table, that some test dafig,pfdo not contribute to cover
any branch. Only 6 test data are necessary. Consideringloedg necessary test
data, we obtained; sets, all-branches adequate test sets, which are subtsets o
Tonp-

. submission of;, sets in MutProlog. The scores are in the last colunms of Hable

Table 2. Generated and Equivalent Mutants and, Required Tes t data
Program| Generated Equivalent| Test data
Mutants Mutants (Tonp)
elemrep 314 21 (6,68%) 3

numap 208 18 (8,65%) 3
ord_sel 187 9 (4,81%) 3
merge 186 15 (8,06%) 4
Total 895 63 (7,03%) 13
Table 3. Required and Infeasible Branches
Program| Required| Infeasible
elemrep 17 0
numap 14 0
ord_sel 10 0
merge 26 0
Total 67 0

The numbers in Table 2 are very small when compared with tles obtained

in experiments with traditional programs. The number ofeggated mutants and neces-
sary test data are very small. This happens because Pralggaprs are smaller than C
programs.

The percentage of equivalent mutants found, around 7%sasl@lv, showing that

the operators set generated a small number of equivaleaimsufThis is very important,
because the manual determination of equivalent mutantgisgelot of effort and time in
the testing activity. We observe that there are no infeasibhnches.

To compare mutation testing and structural testing we usesttfactors, usually

used in works from the literature: cost, given by the numliéest data; strength, related
to the difficulty of satisfying a criterion, given that anetlone was satisfied; and efficacy,
related to the number of revealed faults.

Table 4. Strenght Results

MutProlog X All-Branches| All-Branches X MutProlog
Program| Testdata Control Flow | Test Data| MutProlog
Coverage Coverage
elemrep 1 100% 1 79,8%
numap 1 100% 1 93,75%
ord_sel 1 100% 1 92,5%
merge 3 100% 3 97,07%
Total 6 100% 6 90,25%

Table 5. Number of Faults Revealed by the Test Sets

Program| Faults| Revealed fault§ Revealed faultg
Ty Trnp
elemrep 5 4 (80%) 5 (100%)
numap 5 5 (100%) 5 (100%)
ord_sel 5 4 (100%) 4 (80%)
merge 5 5 (60%) 5 (100%)
Total 20 18 (90%) 19 (95%)

e Cost the cost of mutation testing is 2 times greater than the @iote structural
criterion. In traditional programs this cost can be untilrBdés more, because of
this, the obtained cost was smaller than we expected.

e Strength The MutProlog adequate sets covered 100% of the requitthes.
However, 10% of the non-equivalent mutants were not killedhe all-branches
adequate sets. This can mean that the all-branches adegisitmay be not in-
clude test data capable to reveal the faults described mpir@tors that generated
those not dead mutants.

e Efficacy With the goal of evaluating the efficacy of both criteria, eveated wrong
versions for the programs, introducing one or more faultsach program. Table
5 shows the total number of faults introduced in a random wagaich program.
The wrong versions were executed by theandT,,, sets. Thel,,, sets found
one error (5%) more than thg sets.

7. Conclusions

This work addressed the application of Mutation Analysisté&sting Prolog programs
and described a supporting tool.

We introduced a set of mutation operators, based on Prolagcteristics and on
typical faults found in the programs. As illustrated in $&ct4, the operators allow the
discovering of the faults described, as well as their couiodm.

A tool that implements the operators and supports the paapplication of the
criterion was described. MutProlog generates and exethéemutants automatically,
and calculate the coverage obtained for a given test data betuse of MutProlog can
ease the development of Prolog programs and to reduce thefdbs testing activity.

The results of the experiment accomplished are very prognand show the ap-
plicability of the mutant operators proposed. The peraggtaf generated and equiva-

lent mutants is lower than for traditional programs, beed@olog programs are usually
smaller.

When compared with structural testing, the results arelaino traditional pro-
grams. Mutation testing requires a greater number of tdatttdan the all-branches cri-
terion. The strength results show that to satisfy the mutdtdrion is harder than the
structural criterion. We have a greater probability of >nhg all-branches criterion if
the mutant criterion was satisfied.

The results also indicate a greater efficacy but new stutiiesld be conducted.
This is only a preliminary work. The set of operators herainaduced should be better
investigated. New operators should be proposed, mainlgl the inter-clause testing.
These operators can be proposed based on the concept tddptenutation applied to
integration testing [Delamaro and et al 1996].

In a second step, we intend to accomplish an experiment &siigate essential
operators for Prolog. Sets of operators could be estalliabeording to some aspects
and kind of application related to the program being testigds has been successfully
done in conventional programs for decreasing costs.

Some improvements in MutProlog are necessary, such asgetropment of a
graphical interface and mechanisms to help the tester ind#hification of equivalent
mutants and in the automatic generation of test data.

References

Baldwin, D. and Sayward, F. (1973)leuristics for Determining Equivalence of Program
Mutations CT, Res.Rep. 276, Department of Computer Science - Yaledisity,
New Haven.

Bergadano, F. and Gunetti, D. (1996nductive Logic Programming: From Machine
Learning to Software Engineerindhe MIT Press.

Boeck, P. and Charlier, B. (1990). Static type analysis ofqy procedures for ensuring
correctness. Irnternational Workshop PLILPpages 223-237. Spring-Verlag, Lec-
tures Notes in Computer Science, 456.

Choquet, N. (1986). Test data generation using a prolog edatistraints. InProc. of
the Workshop on Software Testingages 132—-141. Computer Science Press, Banff -
Canada.

Craft, W. (1989).Detecting Equivalents Mutants Using Compiler OptimizatiMaster
Thesis, Department of Computer Science, Clemson UniyeSikmson-SC.

De Millo, R., Gwind, D., and King, K. (1988). An extented ovew of the mothra
software testing environment. Froc. of the Second Workshop on Software Testing,
Verification and Analysipages 142-151. Computer Science Press, Banff - Canada.

De Millo, R., Lipton, R., and Sayward, F. (1978). Hints ontteata selection: Help for
the practicing programmelEEE Computer\Vol. C-11:34-41.

Delamaro, M. E. and et al (1996). Integration testing usitgrface mutation. VIl
International Symposium of Software Reliability Engineg({ISSRE)pages 112-121.
IEEE Computer Society Press, New York, NY.

Delamaro, M. E. and Maldonado, J. (1996). A tool for the asszd fo test adequacy
for ¢ programs. InProceedings of the Conference on Performability in Conmauti
Systemspages 79-95. East Brunswick, New Jersey, USA.

Denney, R. (1991). Test case generation form prolog-basstifications|IEEE Software
pages 49-57.

Emer, M. and Vergilio, S. (2003). Selection and evaluatibrest data sets based on
genetic programmingSoftware Quality Journapages 167-186.

Frankl, F. and Weyuker, E. (1986). Data flow testing in thespnee of unexecutable
paths. InProceedings of the Workshop on Software Testpages 4—13. Computer
Science Press, Banff - Canada.

Gorlick, M., Kesselman, C., Marotta, D., and Parker, S. @9®ockingbird: A logical
methodology for testingJournal of Logic Programming8):95-119.

Hoffman, D. and Strooper, P. (1991). Automated modulengsh prolog.iEEE Trans-
actions on Software Engineeringj7(9):934-943.

Luo, G., Sarikaya, B., and Boyer, M. (1992). Control-flow &&sesting of prolog pro-
grams. pages 104-113.

Mathur, A. and Wong, W. (1994). An empirical comparison ofadfiow and mutation
based test adequacy criteriehe Journal of Software Testing, Verification an Reliabil-
ity, Vol. 4(1):9-31.

Moura, R. S. T. and Vergilio, S. R. (2000). Definicao de epleres de mutacao para o
teste de programas prolotj.Workshop de Testes e Tofarcia a Falhas1:58-63.

Pereira, L. (1986). Rational debugging in logic programgmirin Third International
Conference on Logic Programmingages 203—-210. Lectures Notes on Computer Sci-
ence.

Plumer, L. (1990). Termination proofs for logic programsLectures Notes in Artificial
Intelligence Spring-Verlag.

Rapps, S. and Weyuker, E. (1985). Selecting software téatugang data flow informa-
tion. IEEE Transactions on Software Engineer,iisiE-11(4):367-375.

Wong, W. (1993).0n Mutation and Data Flow PhD Thesis, Department of Computer
Science, Purdue University, West Lafayette-IN, USA.

