
Applying Mutation Testing in Prolog Programs

Juliano R. Toaldo 1 and Silvia R. Vergilio1

1Federal University of Parana (UFPR), CP: 19081,
CEP: 81531-970, Curitiba - Brazil

jtoaldo@yahoo.com.br, silvia@inf.ufpr.br

Abstract. Several testing criteria and tools have been proposed lately, with the
goal of selecting and evaluating test data sets. However, most works focus only
procedural and object-oriented programs and little has been said about logic
programming languages, such as Prolog. Some works address the test of Prolog
programs however, do not introduce a testing criterion and not offer coverage
testing metrics. This work investigates the application ofthe Mutation Analysis
criterion for testing Prolog programs. In experiments of literature, this criterion
has been considered one of the most efficacious. A set of mutation operators for
this language is proposed, based on common mistakes made by the programmers
using this paradigm. A tool, named MutProlog, is described.This tool supports
the proposed operators and eases the development of Prolog programs. Results
from an experiment, using MutProlog, show the applicability of the proposed
operators and allow comparison with structural criteria.

1. Introduction

In the software development process, software testing is one of the most important ac-
tivities for software quality assurance. However, the testing activity is very expensive;
the testing teams should be properly trained and in some cases, adequate tools are not
available. Because of this, some works introduced testing techniques and criteria, with
the goal of revealing a great number of faults with minimal effort and costs.

Since to execute the program for all inputs of its domain, that is, to perform
an exhaustive testing is not always possible, the testing criteria were proposed to help
the tester in the task of selecting test data and/or of evaluating a given test set T.
A testing criterion is a predicate to be satisfied to considerthe testing activity ended
[Rapps and Weyuker 1985]. It offers a metric, based on the coverage of certain el-
ements, named required elements. This metric is used to consider whether a pro-
gram has been tested enough. For example, functional criteria consider functional as-
pects of the program. Structural criteria, such as control and data-flow based criteria
[Rapps and Weyuker 1985], consider internal aspects of the program or the specification
to generate the test data. Fault-based criteria derive testdata to show the presence or
absence of typical faults in a program, based on common errors in the software develop-
ment.

The different criteria are considered complementary because they can reveal dif-
ferent kind of faults. However, some empirical studies showthat the fault-based criteria
are the most efficacious to reveal faults [Mathur and Wong 1994, Wong 1993].

In spite of this great number of testing criteria and supporting tools, most of them
focus conventional procedural and object-oriented paradigms. Few works are dedicated
to logic programming languages, such as Prolog.

The majority of the works about test of Prolog programs, generates
test data considering only functional aspects [Choquet 1986, Denney 1991,
Gorlick et al. 1990, Hoffman and Strooper 1991]. The work of Bergadano et al
[Bergadano and Gunetti 1996] uses ILP (Inductive Logic Programming) and the works
described in [Boeck and Charlier 1990, Pereira 1986, Plumer1990] are related to debug-
ging and detection of anomalies. These works do not extend the testing criteria and not
allow the use of coverage metrics. To overcome this limitation, Luo et al [Luo et al. 1992]
propose the extension of structural criteria for testing Prolog programs. They propose a
control-flow graph for Prolog and two criteria based on this graph: all-branches, and all
pairs branch-to-branch.

In a complementary way, our work investigates the use of fault-based testing of
Prolog programs, particularly the use of mutation testing [De Millo et al. 1978]. Muta-
tion Analysis (MA) is based on two assumptions [De Millo et al. 1978]: 1) “competent
programmer hypothesis”, e.g. programmers do their programs very similar to the correct
program, according to a specification. When the users test a program, they use the correct
program that they have in mind, and if the program P being tested is not correct, there is
a set of alternatives (mutants) for P that can include at least one correct program; and 2)
coupling effect: complex faults are usually revealed by revealing simpler ones.

Mutation testing [De Millo et al. 1978] consists basically of generating mutant
programs for the program P being tested. A mutant is represented by a single muta-
tion in the original program established by a mutation operator. All mutants are executed
using a given input test data set T. If a mutant M presents different results from P it is said
to be dead. Otherwise, either there is no test data in T that iscapable to distinguish M
from P, or M and P are equivalent. Our goal must be to find a test data set able to kill all
non-equivalent mutants. The mutation score allows the adequacy evaluation of T.

The existence of equivalent mutants is a limitation to determine the mutation
score, because there is no algorithm to determine whether two programs compute the
same functions. Similar limitation is found when applying structural criteria. Some paths
required by these criteria are infeasible and they can not beautomatically determined.
The identification of infeasible paths and equivalent mutants are un-decidable questions
[Baldwin and Sayward 1979, Craft 1989, Frankl and Weyuker 1986].

In spite of the above limitations, we find in the literature tools that support struc-
tural and fault-based criteria. To allow the application ofmutation testing, a tool is funda-
mental. Proteum [Delamaro and Maldonado 1996] and Mothra [De Millo et al. 1988] are
examples of tools that implement Mutation Analysis, respectively for C and FORTRAN
languages.

To permit the application of mutation testing in Prolog programs it is necessary
the existence of mutation operators for this language and a tool to make possible the
automatic execution of the mutants and the evaluation of thetest data sets. With this goal
in mind, this paper introduces a set of mutation operators for Prolog and describes a tool,
named MutProlog that supports the proposed operators and the application of mutation

testing in this context.

The work is organized as follows. Section 2 describes related works that address
the test of Prolog programs. Section 3 describes a fault model for Prolog programs and,
based on this model, introduces the set of mutation operators. Section 4 shows functional
aspects of MutProlog. Section 5 describes procedures of usefor MutProlog. Section 6
presents the main results of an experiment conducted for evaluation of the introduced
operators. Section 7 concludes the paper.

2. Related Works

In the last decades, many works addressed the testing activity. Several testing criteria
and tools were proposed to easy the test. However, most of them focus only procedural
and object-oriented languages. Few works explore these criteria in the logic or functional
programming languages.

The works described in [Choquet 1986, Denney 1991, Gorlick et al. 1990,
Hoffman and Strooper 1991] generate test cases based on functional aspects of the
specification. Other works are related to debugging and detection of anomalies
[Boeck and Charlier 1990, Pereira 1986, Plumer 1990]. The work of Bergadano et al
[Bergadano and Gunetti 1996] uses ILP (Inductive Logic Programming) for generating
the test data without offers a coverage metric. Emer and Vergilio proposes the use of
Genetic Programming [Emer and Vergilio 2003] for generating mutant programs. They
comment that the approach can be used for any paradigm, however it is necessary a tool
based on genetic programming for evolving complete programs. The authors only explore
the test of C programs.

Luo et al [Luo et al. 1992] explore the use of structural criteria for testing Prolog
programs. They propose a control-flow graph for Prolog and two criteria based on the
graph: all-branches, and all pairs branch-to-branch. To satisfy these criteria, it is nec-
essary to execute the program with test data that exercise paths in the graph. The paths
must to include all the branches in the graph and all pairs of branches. In some cases,
the required elements (branches or pair of branches) can be infeasible, if all the paths
that exercise them are also infeasible. The tool TGT (Test Data Generation Tool) was
implemented to validate the structural criteria.

The work of Luo et al is the most similar to ours. In next section, we also ex-
plore the use of criteria for Prolog programs. However, we propose the use of Mutation
Analysis, that is a fault-based criterion. The main motivation to do this is that results
from experiments reported in the literature [Mathur and Wong 1994, Wong 1993] show
that this criterion is the most efficacious and we did not find any work that explores these
criteria in the mentioned context.

3. Mutation Operators for Prolog

This section introduces a set of mutation operators for Prolog based on our experi-
ence as programmers and on the characteristics of Prolog programs [Luo et al. 1992,
Moura and Vergilio 2000].

• the data structures are recursive lists, recursion is very used in Prolog.

• the unification of sub-goals in Prolog can proceed on two directions; the existence
of backtracking is a very important characteristic.

• there are not pre-defined types for the variables, they matchwith different kind of
variables, there is the anonymous variable.

• there are no routines, a set of clauses is used, and the concept of unit testing needs
to be redefined.

These characteristics are related to the main mistakes madeby the programmers
that most frequently do not have the explicit control. Considering these aspects, a clas-
sification for the main non syntactical faults of the programs is established and a muta-
tion operator for each class is introduced. They were classified in four groups. Table 1
presents a description and examples showing the transformation of the program caused
by each operator in each group.

1. clause mutation: each Prolog rule, finalized with a “.” is considered a clause. This
group includes changes in conjunction and disjunction, operations withcut (“!”),
changes in predicates, etc. The changes in predicates happens only in adjacent
predicates, because we are considering the hypothesis of the competent program-
mer [De Millo et al. 1978]. However, changes in operations with cut happens be-
long all the programs; errors usingcutare much more frequent.

2. operator mutations: differently of conventional languages there are few operators
in Prolog. We include the arithmetic and relational ones. The idea is to change
them by similar operators.

3. variable mutation: two types of variable are considered:anonymous or not. A
variable is changed by other one in the same clause, independently of its type.

4. constant mutation: constants are changed by other constants or variables of any
type in the same clause.

The introduced operators are capable of revealing the faults that they describe.
However, based on the coupling effect assumption [De Millo et al. 1978], complex faults
are combination of simpler faults and can be detected when simple faults are revealed. We
illustrate this fact with the programmerge[Bergadano and Gunetti 1996] (Figure 1a) and
its incorrect version with only four clauses (Figure 1b). The incorrect program does not
eliminate duplicates. A test set satisfying all-branches criterion may not reveal the fault.
However, a test data selected to kill the mutants generated by the operator “Relational
Operator” necessarily reveals the fault.

merge(A,[],A). merge(A,[],A).
merge([],B,B). merge([],B,B).
merge([A|],[B|Rb],[A|M]) :- A < B, merge([A|Ra],[B|Rb],[A|M]) :- A <= B,

merge(Ra,[B|Rb],M). merge(Ra,[B|Rb],M).
merge([A|Ra],[B|Rb],[A|M]) :- A = B, merge([A|Ra],[B|Rb],[B|M]) :- A > B,

merge(Ra,Rb,M). merge([A|Ra],Rb,M).
merge([A|Ra],[B|Rb],[B|M]) :- A > B,

merge([A|Ra],Rb,M).

Figure 1. Program mergea) Program original. b) Incorrect Version.

4. MutProlog

The complete automation of a testing criterion is impossible due to many testing limita-
tions. Considering these limitations, a tool, named MutProlog was developed to support

Table 1. Mutation Operators
Operator Description Original Program Example of Mutant

Group 1: Clause Mutations
Delete remove predicate P writel([]). writel([]).
Predicate in clause C writel([H|T]) :- write(H),nl, writel([H|T]) :- nl,

writel(T). writel(T).
Swap change the order likes(ana,X) :- toy(X), likes(ana,X) :- plays(ana,X),
Predicate in adjacent plays(ana,X). toy(X).

predicates
Conjunction change conjunction subset(S,[H|T]) :- subset(R,T), subset(S,[H|T]) :- subset(R,T),
by of predicates (S=R , S=[H|R]). (S=R ; S=[H|R]).
Disjunction by disjunction subset([],[]). subset([],[]).
Replacement
Disjunction change disjunction leastnum(X,[H|T]) :- leastnum(X,[H|T]) :-
by of predicates leastnum(Y,T), leastnum(Y,T),
Conjunction by conjunction (H=<Y,X=H,H>Y,X=Y). (H=<Y,X=H;H>Y,X=Y).
Replacement
Insert Cut insert cut bubblesort(L,L1) :- bubblesort(L,L1) :-

between swap(L,L2,0), swap(L,L2,0),!,
predicates bubblesort(L2,L1). bubblesort(L2,L1).

bubblesort(L,L). bubblesort(L,L).
Remove Cut remove cut not(G) :- G,!,fail. not(G) :- G,fail.

operator not(G). not(G).
Permute Cut change the insert(X,[H|T],[H|T1] :- !,X>H, insert(X,[H|T],[H|T1] :- X>H,!,

place of a cut insert(X,T,T1). insert(X,T,T1).
Group 2: Operator Mutation

Arithmetic change an arithmetic length([],0). length([],0).
Operator operator by other length([|T],N) :- length([|T],N) :-
Mutation arithmetic operator length(T,M),N is M+1. length(T,M),N is M*1.
Relational change a relational fault(X) :- fault(X) :-
Operator operator by other non(respond(X,Y)),X\ ==Y. non(respond(X,Y)),X>Y.
Mutation relational operator

Group 3: Variable Mutation
Variable by change a variable member(X,[T|]). member(X,[X|]).
Variable in clause C member(X,[|T]) :- member(X,T). member(X,[|T]) :- member(X,T).

by other one in C
Variable by change a variable length([],0). length([],0).
Anonymous by an anonymous length([H|T],N) :- length([|T],N) :-
Variable variable length(T,M),N is M+1. length(T,M),N is M+1.
Anonymous change anonymous member(X,[X|]). member(X,[X|T]).
Variable variable in clause C member(X,[|T]) :- member(X,T). member(X,[|T]) :- member(X,T).
by Variable by other variable in C

Group 4:Constant Mutation
Constant by change a constant length([],0). length([],1).
Constant in clause C length([|T],N) :- length([|T],N) :-

by other one length(T,M),N is M+1. length(T,M),N is M+1.
Constant by change a constant likes(ana,jose). likes(ana,jose).
Anonymous in clause C likes(jose,ana). likes(jose,).
Variable by an anonymous

variable
Anonymous change anonymous likes(ana,apple). likes(ana,apple).
Variable by variable in clause C likes(paulo,). likes(paulo,apple).
Constant by a constant in C
Constant by change a constant append([],L,L). append(L2,L,L).
Variable in clause C by append([H|T1],L2,[H|T]) :- append([H|T1],L2,[H|T]) :-

a variable in C append(T1,L2,T). append(T1,L2,T).

Variable by change a variable nth(N,X,[X|T]). nth(1,X,[X|T]).
Constant in clause C by a nth(N,X,[Y|T]) :- nth(N,X,[Y|T]) :-

constant in C nth(M,X,T),N is M+1. nth(M,X,T),N is M+1.

the introduced operators and to allow the fault-based testing. MutProlog was implemented
in C language and operational system Linux. It has four modules, illustrated in Figure 2
and described below.

Generate mutants: receives the source code in SWI Prolog and the configuration
file. It produces a directory(Mutants), that contains files and descriptions for the transfor-
mations to be applied. All the clauses in the source code are considered to generate the
mutants individually. The configuration file contains the percentage to be applied for each
operator. For example, for programmerge, a configuration file from Figure 3 indicates a
percentage of 50 to the operator “Insert cut”. This means, iffor a clause, 4 mutants can
be generated applying this operator, only 50% (2) are generated.

Generate scripts: generates a script for automatic execution of the mutants.It
is executed after the generation of the mutants. This moduleuses the parameters “in-
put variable” and “outputvariable” given in the configuration file. For example,merge
has two input variables and only one output.

Execute mutants: this module is used in two cases. In the first one, the user adds
test data to the existent ones, and the source code is executed, its input and outputs are
saved in a directory. In the second case, the mutants are executed and their outputs are
compared with the original outputs. This module can be executed many times, but only
the alive and enabled mutants are executed. To each mutant isassociated to a status that
can be: dead, alive, anomalous or equivalent. Mutants that produce an execution error,
such as division by zero, are identified as anomalous. Equivalent mutants produce the
same original output for all inputs; they are identified by the tester, because determining
equivalence between programs is an un-decidable question [Baldwin and Sayward 1979,
Craft 1989]. The tester can also enable or not a test data.

Evaluate mutants: the coverage is calculated using the formula below:

MS(P, T) =
Md(P, T)

M(P) − Me(P)
, where :

• P : program under test;
• T : set of given test data;
• MS(P, T): mutation score;
• Md(P, T): number of dead mutants;
• M(P): number of no anomalous generated mutants;
• Me(P): number of equivalent mutants.

According to the obtained coverage the tester decides to stop testing or to add
more test data to reach the desired coverage.

Scripts

Coverage

Mutants

Results

Config. File

Test Data

Equivalent
Mutants

Source Code

Generate Mutants

Generate Scripts

Execute Mutants

Evaluate

Figure 2. Main Modules of MutProlog

5. An Example of Use
As mentioned in Section 2, a testing criterion requires a setof elements to be exercised
by the test data. It can be used for selection or evaluation oftest data sets. In the case of
MutProlog, the required elements are mutants programs thatshould be dead by the test
data.

5.1. Selection of Test Data

Suppose that we have to test a program P, but we do not have any test case set. We can use
Mutation Analysis and MutProlog as a guideline for the selection of test data. We should
conduct the following steps:

1. Create a configuration file for the program.
2. Generate the mutants, using MutProlog.
3. For each generated mutant, generate a test data t to produce different outputs exe-

cuting P and the mutant. If such case does not exist, set the mutant as equivalent.
4. Generate scripts using MutProlog and execute the mutantsand P with t. The test

data is saved. If the output produced by P is not correct, the fault needs to be
removed and a regression testing is necessary. If the outputproduced by a mutant
is correct, it is very easy to correct the original program, since P and the mutant
differs only by a syntactical change.

5. If the outputs are really different, then the mutant is really dead. MutProlog cal-
culates the mutation score (or coverage).

6. If the desired score was obtained, stop testing. Otherwise, choose another mutant
and repeat Steps 3, 4 and 5.

At the end of the process we have tested P and now we have a set T of test data
generated using the Mutation Analysis criterion and a levelof reliability, given by the

input_variable=X
input_variable=Y
output_variable=Z
ClauseMutationPredicateDeletion=100
ClauseMutationSwapPredicates=100
ClauseMutationConjunctionByDisjunctionReplacement=100
ClauseMutationDisjunctionByConjunctionReplacement=100
ClauseMutationInsertCut=50
ClauseMutationRemoveCut=100
ClauseMutationPermuteCut=100
OperatorMutationArithmetic=100
OperatorMutationRelational=100
VariableMutationVariableByVariable=100
VariableMutationVariableByVariableAnonymous=100
VariableMutationVariableAnonymousByVariable=100
ConstantMutationConstantByConstantReplacement=100
ConstantMutationConstantByVariableAnonymous=100
ConstantMutationVariableAnonymousByConstant=100
ConstantMutationConstantByVariable=100
ConstantMutationVariableByConstant=100

Figure 3. Configuration File for merge

obtained coverage of T. Observe that if we have an initial setT, Step 3 is not necessary,
we can execute the mutants, check the outputs and calculate the mutation score for all the
test data in T. After this, we decide to continue or not, usingMutProlog to improve T. This
allows the combination of other testing techniques with fault-based testing. The initial set
of test data could be generated using, for example, functional or structural techniques.

5.2. Evaluation of Test Data Sets

A testing criterion is also used to assess the quality of a test dataset. For example, consider
two test sets:T1 andT2, and the question: Which set is better? We can answer the question
using MutProlog and the following steps:

1. Create a configuration file for the program.
2. Generate the mutants, using MutProlog.
3. Generate the scripts and execute the mutants and the original program usingT1

andT2.
4. Calculate the scores and choose the test set with the greatest score.

This procedure can also be used to evaluate a particular testset T, to know how
good it is by considering the Mutation Analysis criterion.

6. Experiments

The experiment used four programs (elemrep, numap, ord selemerge). The goal of the
experiment is a preliminary evaluation of the proposed operators. The steps below were
followed for every program:

1. generation of the configuration file and of the mutants. Allthe operators were
applied 100%.

2. generation of test data, execution of the mutants e evaluation of the results.
3. generation of additional test data to kill the alive mutants and determination of the

equivalent mutants.
4. execution of the mutants with the new test data.

5. repetition of the last two steps until all non-equivalentmutants are dead. At the
end of this step, we obtained MutProlog-adequate test sets (Tmp), composed only
by test data that really killed a mutant. Table 2 shows the obtained results. For
programmerge186 mutants were generated, 171 died with 4 test data and 15 are
equivalents.Tmp for mergehas 4 elements.

6. generation of the control-flow graphs for all programs andof the required elements
for the all-branches criterion.

7. identification of infeasible structural elements. Table3 shows the required and
infeasible branches found.

8. evaluation ofTmp. Table 4 shows the results of this step. TheTmp sets always get
a 100% coverage of all branches. That is, theTmp sets are all-branches adequate.
We can observe in that table, that some test data ofTmp do not contribute to cover
any branch. Only 6 test data are necessary. Considering onlythese necessary test
data, we obtainedTb sets, all-branches adequate test sets, which are sub-sets of
Tmp.

9. submission ofTb sets in MutProlog. The scores are in the last colunms of Table4.

Table 2. Generated and Equivalent Mutants and, Required Tes t data
Program Generated Equivalent Test data

Mutants Mutants (Tmp)
elemrep 314 21 (6,68%) 3
num ap 208 18 (8,65%) 3
ord sel 187 9 (4,81%) 3
merge 186 15 (8,06%) 4
Total 895 63 (7,03%) 13

Table 3. Required and Infeasible Branches
Program Required Infeasible
elemrep 17 0
num ap 14 0
ord sel 10 0
merge 26 0
Total 67 0

The numbers in Table 2 are very small when compared with the ones obtained
in experiments with traditional programs. The number of generated mutants and neces-
sary test data are very small. This happens because Prolog programs are smaller than C
programs.

The percentage of equivalent mutants found, around 7%, is also low, showing that
the operators set generated a small number of equivalent mutants. This is very important,
because the manual determination of equivalent mutants spends a lot of effort and time in
the testing activity. We observe that there are no infeasible branches.

To compare mutation testing and structural testing we used three factors, usually
used in works from the literature: cost, given by the number of test data; strength, related
to the difficulty of satisfying a criterion, given that another one was satisfied; and efficacy,
related to the number of revealed faults.

Table 4. Strenght Results
MutProlog X All-Branches All-Branches X MutProlog

Program Test data Control Flow Test Data MutProlog
Coverage Coverage

elemrep 1 100% 1 79,8%
num ap 1 100% 1 93,75%
ord sel 1 100% 1 92,5%
merge 3 100% 3 97,07%
Total 6 100% 6 90,25%

Table 5. Number of Faults Revealed by the Test Sets
Program Faults Revealed faults Revealed faults

Tb Tmp

elemrep 5 4 (80%) 5 (100%)
num ap 5 5 (100%) 5 (100%)
ord sel 5 4 (100%) 4 (80%)
merge 5 5 (60%) 5 (100%)
Total 20 18 (90%) 19 (95%)

• Cost: the cost of mutation testing is 2 times greater than the costof the structural
criterion. In traditional programs this cost can be until 3 times more, because of
this, the obtained cost was smaller than we expected.

• Strength: The MutProlog adequate sets covered 100% of the required branches.
However, 10% of the non-equivalent mutants were not killed by the all-branches
adequate sets. This can mean that the all-branches adequatesets may be not in-
clude test data capable to reveal the faults described by theoperators that generated
those not dead mutants.

• Efficacy: With the goal of evaluating the efficacy of both criteria, wecreated wrong
versions for the programs, introducing one or more faults ineach program. Table
5 shows the total number of faults introduced in a random way in each program.
The wrong versions were executed by theTb andTmp sets. TheTmp sets found
one error (5%) more than theTb sets.

7. Conclusions

This work addressed the application of Mutation Analysis for testing Prolog programs
and described a supporting tool.

We introduced a set of mutation operators, based on Prolog characteristics and on
typical faults found in the programs. As illustrated in Section 4, the operators allow the
discovering of the faults described, as well as their combination.

A tool that implements the operators and supports the practical application of the
criterion was described. MutProlog generates and executesthe mutants automatically,
and calculate the coverage obtained for a given test data set. The use of MutProlog can
ease the development of Prolog programs and to reduce the cost of the testing activity.

The results of the experiment accomplished are very promising and show the ap-
plicability of the mutant operators proposed. The percentage of generated and equiva-

lent mutants is lower than for traditional programs, because Prolog programs are usually
smaller.

When compared with structural testing, the results are similar to traditional pro-
grams. Mutation testing requires a greater number of test data than the all-branches cri-
terion. The strength results show that to satisfy the mutantcriterion is harder than the
structural criterion. We have a greater probability of satisfying all-branches criterion if
the mutant criterion was satisfied.

The results also indicate a greater efficacy but new studies should be conducted.
This is only a preliminary work. The set of operators herein introduced should be better
investigated. New operators should be proposed, mainly to help the inter-clause testing.
These operators can be proposed based on the concept of interface mutation applied to
integration testing [Delamaro and et al 1996].

In a second step, we intend to accomplish an experiment to investigate essential
operators for Prolog. Sets of operators could be established according to some aspects
and kind of application related to the program being tested.This has been successfully
done in conventional programs for decreasing costs.

Some improvements in MutProlog are necessary, such as, the development of a
graphical interface and mechanisms to help the tester in theidentification of equivalent
mutants and in the automatic generation of test data.

References

Baldwin, D. and Sayward, F. (1979).Heuristics for Determining Equivalence of Program
Mutations. CT, Res.Rep. 276, Department of Computer Science - Yale University,
New Haven.

Bergadano, F. and Gunetti, D. (1996).Inductive Logic Programming: From Machine
Learning to Software Engineering. The MIT Press.

Boeck, P. and Charlier, B. (1990). Static type analysis of prolog procedures for ensuring
correctness. InInternational Workshop PLILP, pages 223–237. Spring-Verlag, Lec-
tures Notes in Computer Science, 456.

Choquet, N. (1986). Test data generation using a prolog withconstraints. InProc. of
the Workshop on Software Testing, pages 132–141. Computer Science Press, Banff -
Canada.

Craft, W. (1989).Detecting Equivalents Mutants Using Compiler Optimization. Master
Thesis, Department of Computer Science, Clemson University, Clemson-SC.

De Millo, R., Gwind, D., and King, K. (1988). An extented overview of the mothra
software testing environment. InProc. of the Second Workshop on Software Testing,
Verification and Analysis, pages 142–151. Computer Science Press, Banff - Canada.

De Millo, R., Lipton, R., and Sayward, F. (1978). Hints on test data selection: Help for
the practicing programmer.IEEE Computer, Vol. C-11:34–41.

Delamaro, M. E. and et al (1996). Integration testing using interface mutation. InVII
International Symposium of Software Reliability Engineering (ISSRE), pages 112–121.
IEEE Computer Society Press, New York, NY.

Delamaro, M. E. and Maldonado, J. (1996). A tool for the assesment fo test adequacy
for c programs. InProceedings of the Conference on Performability in Computing
Systems, pages 79–95. East Brunswick, New Jersey, USA.

Denney, R. (1991). Test case generation form prolog-based specifications.IEEE Software,
pages 49–57.

Emer, M. and Vergilio, S. (2003). Selection and evaluation of test data sets based on
genetic programming.Software Quality Journal, pages 167–186.

Frankl, F. and Weyuker, E. (1986). Data flow testing in the presence of unexecutable
paths. InProceedings of the Workshop on Software Testing, pages 4–13. Computer
Science Press, Banff - Canada.

Gorlick, M., Kesselman, C., Marotta, D., and Parker, S. (1990). Mockingbird: A logical
methodology for testing.Journal of Logic Programming, (8):95–119.

Hoffman, D. and Strooper, P. (1991). Automated module testing in prolog. iEEE Trans-
actions on Software Engineering, 17(9):934–943.

Luo, G., Sarikaya, B., and Boyer, M. (1992). Control-flow based testing of prolog pro-
grams. pages 104–113.

Mathur, A. and Wong, W. (1994). An empirical comparison of data flow and mutation
based test adequacy criteria.The Journal of Software Testing, Verification an Reliabil-
ity, Vol. 4(1):9–31.

Moura, R. S. T. and Vergilio, S. R. (2000). Definição de operadores de mutação para o
teste de programas prolog.II Workshop de Testes e Tolerância a Falhas, 1:58–63.

Pereira, L. (1986). Rational debugging in logic programming. In Third International
Conference on Logic Programming, pages 203–210. Lectures Notes on Computer Sci-
ence.

Plumer, L. (1990). Termination proofs for logic programs. In Lectures Notes in Artificial
Intelligence. Spring-Verlag.

Rapps, S. and Weyuker, E. (1985). Selecting software test data using data flow informa-
tion. IEEE Transactions on Software Engineering, SE-11(4):367–375.

Wong, W. (1993).On Mutation and Data Flow. PhD Thesis, Department of Computer
Science, Purdue University, West Lafayette-IN, USA.

