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Abstract. Grid middleware such as OurGrid offer solutions for executing parallel  
tasks  on  a  grid  system.  In  such  systems,  users  submit  their  applications  for  
executions through a client broker. MyGrid is the client broker used for the OurGrid  
system;  it  is  in  charge  of  managing  task  executions  that  a  user  has  submitted.  
Although the broker is able to detect task failures and reschedule them, MyGrid itself  
constitutes  a  single  point  of  failure  from  the  user  perspective.  If  it  fails,  all  
knowledge of task executions is lost. Moreover, MyGrid is also a bottleneck, since 
hundreds,  or  even  thousands,  of  executions  could  potentially  be  spawned by  an  
application and need to be managed at the same time by a single broker. In this  
paper  we  present  the  design  and  implementation  of  a  fault-tolerant  distributed 
execution service that allows for load balancing and improves MyGrid performance.  
A checkpointing mechanism is used to ease the implementation of the service and to  
further increase system reliability.

1. Introduction

A  grid  system comprises  a  set  of  distributed,  heterogeneous  resources,  such  as:  personal 
computers, storage space, clusters, servers, etc., connected through a network. Grid computing 
has been proposed to cater for the high computational demand in different areas of research, such 
as physics, biology, astronomy and computer science itself. A grid user gains access to a grid 
system by using a grid middleware; with it the user can access a variety of services, such as: 
resource management, security services, monitoring services and execution services [Foster et. 
al., 2001][Foster and Iamnitchi, 2003].

The OurGrid system [Cirne et. al., 2006] is a peer-to-peer grid middleware in which sites 
lend their idle resources to gain access to resources from other sites when they need. The goal 
behind the use of the system is the execution of Bag of Tasks (BoT) applications, those parallel 
applications  in  which tasks  do  not  need to  communicate  among each  other.  The  OurGrid 
middleware has been used to support OurGrid's free-to-join community, which is in production 
since December 2004 (see http://status.ourgrid.org/ for a fresh snapshot of the running system).

Three main services compose the OurGrid system; these are the brokers, resources and 
peers. Peers are in charge of delivering resources, known as Grid Machines or simply GuMs, to 
the broker, known as MyGrid [Cirne et. al., 2003]. MyGrid runs in the user machine, named the 
home machine. GuMs offer an environment for the execution of tasks, computation requested by 
the broker is done on these .  A machine is available as a GuM if the User Agent service is 
running at  it,  this  service is  available  for  Linux,  Windows or  using OurGrid´s sandboxing 
solution called SWAN[Cirne et. al., 2006]. Peers also exchange resources amongst themselves, 
using the Network of Favours incentive mechanism [Cirne et. al., 2006]. An OurGrid site is a 
Local Area Network with Peers, Brokers and GuMs running on the machines that compose it.

Current  fault-tolerance in OurGrid is  only available for  the GuMs,  such failures are 
treated with checkpointing mechanisms [OurGrid Team, 2006] or with task replication [Cirne et. 

http://status.ourgrid.org/


al.,  2006][Cirne et. al.,  2003]. Home machine failures are not dealt with in any way, though 
proposals have been made to deal with such [Silva and Chao, 2004]. If it fails, all information on 
replica executions is lost. The fact that execution information is lost makes such failures have a 
great cost, since a MyGrid user will have to restart all pending executions, even if those have not 
failed. There is also a scalability problem with the current architecture; the home machine has to 
manage all pending executions, limiting the maximum number of executions that can be executed 
at a time.

In this paper we present the design and implementation of a distributed execution service 
for MyGrid, which is able to recover from failures and also load balance the management of 
pending tasks. We have decoupled the service from MyGrid and implemented a checkpointing 
mechanism that  is able to tolerate faults  in the home machine, at  the same time that  allows 
disconnected operation, ie. a user may submit an application, log off, and later log in the system 
to access the results  of the computation. With these mechanisms in place we hope to bring 
scalability and reliability solutions to MyGrid. Though implemented in the OurGrid system, this 
solution can be applied on other grid architectures  that  have a  similar  execution service as 
MyGrid´s.

The rest of this paper is structured in the following way. Section 2 describes MyGrid's 
current architecture, showing the life-cycle of a BoT application execution. Section 3 presents the 
design of a distributed execution service for MyGrid, named the Replicated Replica Executor, 
RRES. In section 4 implementation details for each of the RRES modules are described. Section 
5 concludes the paper with our final remarks in directions for future work.

2. MyGrid's Current Architecture

The MyGrid broker is the user interface for the OurGrid system. Whenever an application (or 
job) is submitted by the user, the broker contacts one of the peers in the peer-to-peer grid, named 
the local peer, and submits a request for the number of GuMs required to executing the job. The 
local peer routes the query to other peers and returns any available GuM to the broker. As the 
local peer starts providing the broker with GuMs, the broker initiates the scheduling of tasks in 
these GuMs.  To  improve performance tasks  may be  replicated and  executed in  parallel  in 
different GuMs. When one of the replicas finishes its execution, the results are collected and the 
other replicas of the same task are aborted. Soon after the job is completed, ie. all tasks have 
finished their execution, the broker returns the received GuMs to the local peer, which in turn 
returns each GuM to the peer that manages it. In summary, the broker encapsulates a scheduling 
service (Scheduler) that  matches replicas of a  task to GuMs and a  replica execution service 
(Replica  Executor  or  RE),  which manages  the  execution of  these replicas  on the  allocated 
machines.

The execution of a  task  is  performed in three phases: the INIT  phase in which file 
transfers occur from the home machine to the GuM on which the task will execute; the REMOTE 
phase in which computations of the task are executed on the remote GuM; and, the FINAL phase 
in which files are transferred from the GuM to the home machine.

The RE creates a thread for each new replica that  it needs to execute. These threads 
contact the remote GuM to perform the actual task execution. Each replica execution has to run 
the three phases of a task to conclude properly. To avoid replicas from overwriting each others 
outputs,  when one of these replicas finishes the REMOTE phase, MyGrid aborts the rest and 
concludes the task, executing its FINAL phase. Also, to provide fault tolerance, a replica that 
fails is executed again a few times. If the maximum number of executions is reached, MyGrid 
will declare the task as failed; also, if a user cancels a job then its tasks and replicas are set as 
cancelled. After  the replica  execution is  concluded RE  will send a  status  to  the Scheduler, 
according to the way the replica ended its execution (finished, failed, aborted or cancelled) [Cirne 
et. al., 2003]. The scheduler will then treat the result, according to its status, if necessary it also 
contact's the local peer to ask for more resources or to cancel requests for resources. Figure 1 
presents a graphical representation of the elements that constitute MyGrid and the interactions 



amongst them.

Figure 1. MyGrid's Current Architecture

3. A Distributed Execution Service

The Replicated Replica Executor Service (RRES) is a distributed execution service for MyGrid. 
It is composed of various REs that work individually and execute in an address space that is 
different from that  of the broker.  Each of these REs will run on a  different machine, named 
Replica Executor Machine (REM). By decoupling the broker from the RRES we allow several 
brokers to share a single RRES. The REES is an execution service for brokers running on the 
same site, being used for a single site we can assume that REMs will run on machines that are 
located on the same  local area network (the same one that composes the site).

The design of the RRES uses a master-slave replication model. The Master’s job is to 
schedule executions to Slaves and communicate with MyGrid, while the Slave’s job is simply to 
execute replicas. There is only one active Master process running inside the system, only this 
Master is known by the MyGrid brokers. Slaves will be able to contact the Master but not each 
other.  Slaves  will  also  be  able  to  communicate  with  MyGrid,  but  such  communication  is 
unilateral, Slave to MyGrid. Masters and Slaves are independent processes; they can be started 
separately, but in the RRES each REM will start both of them. The Slave process will be ready 
to execute replicas, but the Master process starts in sleeping mode and does nothing until it has 
to assume Master functionalities of the system. Being this way, if a Master fails another machine 
can promptly assume its position. Also, if there is only one machine running the server, than it 
can perform both functionalities.

Both the broker and joining Slaves discover the Master by reading a configuration file 
stored in the Network File System, NFS. This configuration file is created by the first REM that 
is initiated, being the first, this REM will immediately wake up its Master process. The file will 
contain only information necessary to lookup this REM's  host name and port.  When another 
REM starts up it will not alter the configuration file. From now on we shall refer to Master as the 
REM who is performing the Master’s functionalities within the RRES and as Slaves every other 
REM. The Scheduler module will be mentioned as MyGrid only.

The RRES will, from the MyGrid's perspective, work the same way as it does in the 
design discussed in the previous section.  Obviously, since they run in different address spaces, 
the actual mechanism used for them to communicate should allow for appropriate inter-process 
communication. For instance, in our implementation we use Remote Method Invocations (RMI). 
The other difference is that  a  different REM,  most likely unknown to MyGrid will probably 
execute the replica being sent for execution.

An execution on the new architecture is as follows: MyGrid brokers will submit jobs to 
the Scheduler the same way as they do in the previous design. The scheduler will now contact the 



Master, sending it information about this new request. When the Master receives new execution 
requests, information about the execution is sent to one Slave in the system, this Slave is chosen 
based on a simple load-balancing function. The chosen Slave will then execute the Replica as it 
does in the previously discussed architecture and then send the result back to the Master, who 
will then send back the result to MyGrid (see Figure 2).

Figure 2. RRES Architecture

Failures in MyGrid will no longer affect the RE,  and vice-versa,  since they now run 
independently. However, connection problems now rise, in the previous architecture they ran in 
the same address space and such a problem was impossible. To solve communication problems 
we must offer a reliable communication service for the contacts made within the system.  There 
must also be a failure detector monitoring the REMs in the system, so in case a Slave fails we 
can reschedule its  current  executions,  in case  the Master  fails  a  Slave must  take its  place. 
MyGrid's  home machine failure  and  Master  REM  failures  are  solved  using  checkpointing 
mechanisms. Also, to guarantee that the scalability problem is solved we must guarantee that 
each slave within the RRES has approximately the same load of executions.

The RRES solution is similar to the Master-Worker (MW) framework describe in [Goux 
et. al., 1999] and [Goux et. al.,2000]. Similarly task executions are submitted to the Master who 
takes care of dividing the work to the Workers. The difference is that  the Workers are the ones 
that  actually  perform task  executions.  This  creates  a  scalability  problem. The Master  must 
forward the whole task to the Worker; tasks with large data to be executed can cause the Master 
to become a bottleneck [Goux et. al., 2000]. Also, a task-dependency issue arises; applications 
that have task-dependencies implies on idle Workers while the dependencies are not computed 
[Goux et. al., 2000].

Some of OurGrid´s characteristics  and the RRES  features  are  enough to  handle these 
issues. BoT applications have no dependencies by nature, addressing the task-dependency issue. 
The scalability issue is addressed by the fact that no real computation is done by RRES Slaves, 
the GuMs  are  the ones who perform computation.  Also,  with the NFS,  no data  transfer  is 
required within the RRES. Slaves already have access to all the data that needs to be transferred 
in order to perform task executions, each Slave will handle these transfers according to tasks that 
are scheduled to them.



3.1. Load Balancing

A Load Balancer guarantees that every Slave will have approximately the same load. Since each 
REM is composed of one Slave and one Master,  we can assume that  each REM will have 
approximately the same load according to replica executions, because only the Slave process is 
always active. The load balancer depends on the ordering of replica executor ids. We have chosen 
to identify our REMs using the last byte of their IP addresses, ie. a machine with IP address 
150.165.85.61 will  be  identified by  id=61,  and such  identification is  unique inside a  LAN, 
guaranteeing that each REM will have a unique id.

Suppose the system is composed of 4 REs, one being the Master and their ids are 32, 72, 
51 and 79. The Master id is the REM who started first, ie. 32; the first Slave to join the service is 
identified by id 72; it is also the next Master, if the first one fails. When the time comes for a 
Slave to become Master it will wake-up the Master process running at its machine, it will also 
update the configuration file that points to the Master of the system.

Replicas are submitted from MyGrid to the Master. Each replica contains information so 
that  one can identify its  owner,  job,  task and replica  number.  The Master  maintains a  task 
counter, n, that is incremented when replicas of a new task, ie. replicas with different owner-job-
task fields, are received. These new replicas will then have an associated task number, based on 
the counter, and one of the Slaves will be scheduled to execute the replica. The replica with task 
number n will be assumed by the RE with id x obeying the following relation x = n % (number of  
REs in the system), where a % b is the remainder of the division of a by b; x is not the id of the 
Slave that will execute the replica, but its position in the ordered list. Supposing the ids are 32, 
72, 51, 79 and x = 2; the chosen Slave is the one with id 72.

The reason that the function is based on a task counter and not a replica counter, is that 
only one replica of a task may enter the FINAL phase. This is a MyGrid solution to avoid more 
than one finished replica of a task, avoiding duplicated/corrupted results. Managing this condition 
is easier if every replica of a task goes to the same Slave. If that was not the case, the system 
would be more overloaded with messages indicating which replicas should be allowed to enter the 
FINAL phase.

3.2. Reliable Communication

3.2.1. Contacts from the MyGrid broker to the Master and from the Master to the Slaves

In the system three messages are sent from the MyGrid broker to the Master, they are: 1. Use 
Service; 2. Execute Replica; 3. Cancel Task. The first message is to be processed only by the 
Master, but the other two have to be forwarded by the Master to the Slaves. So a guarantee has 
to  be made that  both Slaves and Master  received the message.  These messages have to  be 
processed in the order that they are issued; we cannot have a Cancel Task being processed before 
an Execute Replica, if the replica is of the same task. Also we cannot have any of the two last 
messages before the first one. To solve this problem, messages sent from the MyGrid broker to 
the Master obey a queue policy; the first message of the queue has to be confirmed before the 
following is sent. When the message is confirmed it is removed from the queue, and the next 
message can be sent. Message receivers ignore duplicate messages, and just confirm them again, 
since the problem may have occurred with the acknowledgement message.

Previously it was said that the MyGrid uses cancels job operation. This was changed to 
cancel task to guarantee that the queue based communication would work. If it were the contrary 
the master would receive a cancel job and forward it to all Slaves. MyGrid knows information on 
executing tasks, it is simpler for MyGrid to find out which of its tasks have to be cancelled and 
send only the according messages.

The Use Service message is sent only to the Master; when it is processed the Master will 
acknowledge the reception of message to the MyGrid broker. The other two messages have to be 
forwarded to the Slaves, and also confirmed by them. Figures 3 and 4 depict these messages.



Figure 3. Use Service Message Exchange

Figure 4. Replica Execution Message Exchange

3.2.2. Contacts from Slave to Master and Master to MyGrid

Two messages are sent from Slaves to the Master, they are: 1. Join Service; 2. Replica Execution 
Result. Unlike the previous messages these ones do no have to follow any order; they correspond 
to execution results which are naturally unordered (there is no way of telling which execution will 
end first). MyGrid already treats them as unordered.

Slaves also have to contact the Master informing their arrival in the system. Like MyGrid
´s message, this one has to be processed before any other. This is because the Slave will only be a 
part of the system after its join message is processed, and will have no other messages to send 
before this one. Since these messages do not follow any given order, they have to be identified in 
some way. So that it is known which message the acknowledgement is for.  Messages will be 
identified  by  their  replicas,  since  replicas  are  unique  in  the  system  there  is  no  risk  of 
acknowledging the wrong message. Figures 5 and 6 depicts these interactions. 

Figure 5. Join Service Message Exchange



Figure 6. Replica Result Message Exchange

3.2.3. Failure Detection Service

Being composed by different machines,  the RRES  will need to  know when instances of the 
service have failed. Knowing these it will be able to recover from such failures. Since the RRES 
is designed to run on OurGrid sites, it is assumed that it will be running on a local area network. 
Perfect Failure Detectors require synchronous systems over which they can be built [Larrea M. 
et. al., 2004]. With the limitation that the RRES will run from within a LAN, we are able to use 
the Perfect Failure Detector (PFD) described in [Brito A. and Brasileiro F.,  2004]. This PFD 
runs directly from a Linux Kernel, creating a hybrid system - an asynchronous system with a 
small part of it that is synchronous. It is on this synchronous part that the PFD will run.

We call a Failure Detection Service (FDS) the set of failure detections modules running 
in distributed machines; REMs will be started only on these machines. Machines inside the FDS 
are identified through ids given when the PFD is loaded on such machine.  As said before the 
system identifies REMs using the last byte of their IP addresses, these are unique in a LAN and 
help to guarantee that the PFD does not make any wrong suspicions.

3.3. Checkpointing

3.3.1. MyGrid checkpointing

MyGrid´s checkpoint will store a unique broker id that is a randomly generated long value, a job 
counter and the status of all pending jobs. The unique id is used to identify brokers in the RRES; 
it guarantees that if the same broker is started on a different machine. The RRES will be able to 
identify it. Using MyGrid´s id and the job counter, we are able to make any replica unique in the 
system; these are identified by the String “mygridId.jobId.taskId.replicaId”. The checkpointing 
mechanism for MyGrid job status work as follows:

1. Job submission. When a job is submitted, the job counter is incremented and its initial 
state is checkpointed.

2. Execution. After submission, all replicas are in a READY state. When any of them has 
its state changed to RUNNING, i.e. when the scheduler matches a replica with a GuM, 
the state of the replica is checkpointed again.

3. Final phase. When a result for the running replica is returned, its state will change to 
either  FINISHED,  FAILED,  CANCELLED  or  ABORTED.  This  new state  is  now 
checkpointed. When all replicas of the job are finished, the checkpoint information on 
that job is removed.

3.3.2. Master checkpointing

Checkpointing mechanisms are also included in the Master, this mechanism is composed of two 



checkpoints:  Replica  Execution  Status  checkpoint  and  Broker  results  checkpoint.  These 
checkpoints  have to  be stored on an  NFS  accessible by  every REM  in the system; this  is 
necessary so that the checkpoint is available to any REM in case it has to become the Master.

The first checkpoint will contain replica execution status. This checkpoint also contains 
information on Slaves. This guarantees that in case of failures, replicas will not have to start over 
and it works as follows:

1. New Slave wants to join the system. The new Slave sends a remote object and the id 
being used by the FDS to the Master. The remote object will contain methods that the 
Master  will use to contact  it.  The id and the remote object are  checkpointed by the 
system.

2. Execute Replica Request. When a new execute replica request is received the state of 
the replica and the allocated GuM is checkpointed. A Slave will be scheduled to execute 
the request.

3. Slave has sent back a result. When the Slave sends a result back to the Master, the state 
of this result is checkpointed. The previous information regarding the replica execution is 
removed from the checkpoint. Information on this broker will be looked up and the result 
will be sent back to MyGrid; information on this replica execution is removed from this 
checkpoint. The information looked up is the remote object used to contact the broker. 
The id of the broker will be contained inside the replica as well as its result.

4. Slave leaves the system.  When a  Slave leaves the system for any reason,  including 
failures,  information  on  this  Slave  is  removed  from  the  checkpoint.  Any  pending 
executions are re-scheduled by the Master.

The other checkpoint will contain information on MyGrid brokers. This guarantees that 
in case of failures the Master will still know how to contact MyGrid brokers. It works as follows:

1. New Broker wants to use the RRES. When a new broker wants to use the system, it 
will send to the Master its id and a remote RMI object, with the methods that RRES will 
use to contact it. This information is checkpointed at this moment.

2. Old broker wants to use the RRES. If a broker has changed the machine that it was 
running on, it will contact the Master the same way as it did before. Its new remote 
object will be checkpointed with the same id. This information will overwrite the old one.

3. A result has been received for a Broker. When a Slave sends a result to the Master, 
this result is associated with the broker inside the checkpoint (according to the id of the 
broker) and is also checkpointed.

4. MyGrid confirms a result.  MyGrid will now have to confirm when it has received a 
result. When this is done information on the result is removed from the checkpoint. There 
will now be no more information about the replica in the system.

3.4. Failure recovery

3.4.1. Slave Failures

Let us first explain the possible states of a replica execution: (1) The replica is known by the 
RRES but has not started execution on the chosen Slave; (2) The replica is executing on a Slave; 
(3) A replica is finished, but its result has not yet been sent to the broker; (4) The broker received 
the result of the replica and the replica can be removed from the system. The failure recovery will 
vary  according to  the state  that  the replica  execution was  in,  these recovery actions are  as 
follows:

1. A Slave failed in states 1 or 2.  When the failure detector warns the system that the 
Slave has failed, the Master will lookup the replicas that this failed Slave was responsible 



for, these will be re-schedule these to other Slaves. The Slave that is now in charge of the 
execution must kill the execution that the previous Slave started.

2. A Slave failed in states 3 or 4. Information on the result is known by the Master, since 
the Slave will send the result back to it. Nothing has to be done with a result in case the 
Slave that was executing its replica has failed; this result has to be sent back to MyGrid 
as usual.

3.4.2. Master Failures

Since the Master represents a bridge between contacts made by MyGrid brokers and Slaves, a 
failure in the Master it will cut the connection between brokers and Slaves. The system cannot 
wait for the Master to come back up, so that these connections are re-established. In this case a 
Slave will assume the Master’s responsibilities. To allow this recovery, some problems need to be 
addressed. (1) Which Slave will become the new Master? (2) How will MyGrid brokers and other 
Slaves know the new Master? (3) How will the new Master continue activities like nothing had 
happened? (4) Who will be responsible for the replicas that the Master was executing? Solutions 
to these problems are:

1. Problem 1: Slaves know when they have to become Masters because they receive the list 
of ids that came before them when they join the RRES. When all of these ids have failed 
they know that  they have to  assume the Master  role.  The fact  that  ids  are  unique 
guarantees this property.

2. Problem 2: The new Master will update the configuration Master that pointed to the old 
Master, so that it now points to the new Master.

3. Problem 3: The new Master will read the checkpoints, and based on the information 
contained in the checkpoint it can wait for messages and continue scheduling activities.

4. Problem 4: In this case, the solution will be the same as if a Slave had failed. The new 
Master will act the same way but the failed id will be the id of the old Master. 

4. Design and Implementation

4.1. Master Interface

The Master,  being contacted by both MyGrid brokers and Slaves,  must define methods that 
provide ten  basic  functionalities.  These  functionalities  can  be  divided into  three  types:  (1) 
methods used by MyGrid broker; (2) methods used by Slaves; (3) one wake-up method called 
when the sleeping master process has to assume the Master role of the RRES.

Methods of type (1) and (2) represent the messages exchanged from the MyGrid broker 
to the Master  (executeReplica, cancelReplicasOfTask, confirmResult and useTheService); and 
from the Slaves to the Master (replicaAborted, replicaFailed, replicaFinished, replicaCanceled 
and joinTheService). The first two methods of type (1) are scheduled to a Slave, the third used to 
acknowledge a result, and the fourth used so that the Master can identify that a MyGrid will use 
the service.

The first four methods of the type (2) are called by the Slaves so that the Master can send 
back the corresponding result to MyGrid. The other method is used to signal that a new Slave 
wants to join the service. The wake-up method, named reallyBecomeMaster, is used by the slave 
process when it detects that it is time for this machine to become the Master.

4.2. Slave Interface

The Slave interface must  define only execution related methods,  and  two acknowledgement 
methods, all of them are called by the Master only. Executions methods are: executeReplica and 
cancelReplicasOfTask.  Different  from the Master's  versions  of  these methods,  they actually 



perform  the  action  requested.  The  acknowledgement  methods  are  confirmResult  and 
confirmMembership. The first being used so to acknowledge that the Master has received the 
result and the later used to confirm that this Slave is a member of the service.

4.3. Remote Scheduler Interface

MyGrid´s Scheduler module must also have a new remote interface used to receive contacts from 
the Master. This interface is called RemoteSchedulerInterface. It defines the following methods: 
replicaAborted,  replicaFailed,  replicaFinished,  replicaCanceled,  youMayUseTheService,  
taskCanceled and executionStarted. The first four methods are used to receive results and are 
forwarded to be treated by the scheduler as it currently does.

The other three messages are used for confirmations, they unblock the communication 
queue so that other messages can be processed.

4.4. Reliable Communication Service

When any module of the OurGrid system sends a message to a different module, this message is 
identified as an event. Events are stored inside a queue and only one event will be removed from 
the queue to be processed inside a module at a time [Cirne et. al., 2006]. This is used so that only 
one thread will be executing the code at a given time.

We have not broken this property in the new RRES architecture; the architecture is also 
composed with events and event queues. Currently no guarantee can be made if a event is ever 
processed, a failure may occur while the event is still in the queue, now a possibility since the 
modules are in different machines. In case this happens we cannot have the module that made the 
contact believe that this event was processed. This guarantee has to be sent back by the module 
that  was contacted, to guarantee that  a  message is processed we will have the sender of the 
message resending it until a confirmation is received.

To support  reliable communication a  simple Messaging System was developed. It  is 
composed by  CommunicationEvents,  CommunicationRequests  and  EventProcessors.  A sender 
module  will  manage  communications  being  made  using  the  CommunicationEvents and  the 
EventProcessor. CommunicationEvents encapsulate CommunicationRequests. The event is used 
only by the processors. The receiver module will receive a  CommunicationRequest,  these will 
have a  method called  acknowledge() that  takes care of communicating back with the sender 
module acknowledging the request.

Two  kinds  of  EventProcessor have  been  developed.  Both  of  them keep  trying  to 
communicate with the receiver until told otherwise. The difference between them is in the order 
which events are processed. The first obeys a queue in which an event is processed only after the 
one before  it  is  removed,  following a  FIFO  policy;  this  kind of  event  processor  is  called 
QueueBasedCommunicationEventProcessor.  The first  event will be re-processed in fixed time 
intervals until it is removed, then the second event will follow the same steps and so on.

In the second kind, events are independent; they are processed in no fixed order, each 
event being re-processed in fixed time intervals independent from any other. To support removal 
of events these have to be identified in some way, for this reason this kind of event processor 
receives an  Object with the event,  used to identify the event.  This  event processor is  called 
IDBasedCommunicationEventProcessor.  Normally, when  acknowledge()  is called the receiver 
takes care of removing the event from the processor.

4.5. Failure Detection Service

Being a Java Application, the RRES cannot talk directly to the PFD without the use of native 
code (pure Java code cannot talk directly to the Operating System). A simpler approach has been 
chosen to make this communication possible. A mediator is used; this mediator is a device file 
that is controlled by the PFD, such file is called pfdfile. When the file is read it will show a list 
containing the correct  ids,  in other words,  ids that  are  alive within the service.  The failure 



detection can start execution by writing RPFD (Run Perfect Failure Detector) to the file; it can 
be stopped by writing SPFD (Stop Perfect Failure Detector). 

A Java Library was developed, it is able to communicate with the Failure Detector using 
the file; it is called PFDOracle (Perfect Failure Detection Oracle). With it a user can inform a set 
of machines to monitor and will be notified of failures when such machines fail. It is also able to 
start  and stop the Failure Detector by writing to the file. The PFDOracle has a basic service 
interface called PFDOracleServices that defines the basic methods for working with the PFD. It 
also has another interface called PFDOracleListener. Implementers of this interface are notified 
when an id has failed through the method idHasFailed.

4.6. Checkpointing

Checkpoints are based on Java Serialization. Serialization allows a user to store Java Objects to a 
file and recover such objects, all a user has to do is make the Class that represents the object 
implement the  Serializable interface. With checkpoints the Master and MyGrid will have the 
capability of performing crash-recovery. Java checkpointing mechanisms like the ones described 
in [Silva et. al., 2002] and [Lawall and Muller, 1999], store the state of an object in fixed time 
intervals or whenever a certain method is called. We have developed journal based checkpoints to 
have more control  over the failure-recovery.  When recovering failures  the journal  will have 
information on what was happening with the system before failure and not only a set of persistent 
objects.

Some parts  of the RRES will need to be constantly performing checkpoint, supposing 
that MyGrid sends a task execution to the Master. If this information is not checkpointed before 
acknowledging MyGrid, the execution information can be lost forever if the Master fails. For this 
reason we do not use timely checkpoints. The checkpoint system developed stores information in 
real time, synchronized with the file-system, i.e. as soon as some information is received it will be 
stored  in  the  checkpoint.  This  kind  of  checkpointing  was  also  developed  to  decrease 
checkpointing time; it will probably increase recovery time, since the whole journal will have to 
be read and interpreted.

This incremental checkpointed will probably become very large with time; to limit the 
size of the journal a  second journal  is  kept within the checkpointer’s memory. The memory 
journal is update on the same time as the file one, but the memory journal will trim old entries 
according to the status of new ones. So, supposing that a Job has finished, any entry related to 
that Job can be removed from the journal; to do this constantly on disk can be quite an overhead. 
When the file journal reaches a maximum size limit it will be replaced with the one in memory. 
At the time of replacement the checkpointer will freeze the checkpoints by preventing current 
threads  to  use  it.  When the replacement is  done and the checkpoint  is  completed,  they are 
unfrozen.  This  freeze operation is  implemented by blocking any Java  Threads  accessing the 
checkpoint.

There  are  three  main  entities  involved  with  checkpointing.  The  two  interfaces 
JournalWriter and JournalReader, and the class JournalEntry. Implementations of the first two 
are used to write and read the checkpoint. In the RRES we use a FreezeBasedJournalWriter that 
adds the freezing functionalities. The  JournalEntry contains the information that  will actually 
compose the checkpoint.

5. Conclusions

In conclusion we can list the main characteristics of the RRES:

1. Adaptability –  New Slaves can join the system and no new configuration is needed so 
that executions can be scheduled to these Slaves. Also the system can easily adapt to 
REM failures.

2. Dynamism –  New execution requests  sent  by  MyGrid  are  scheduled to  Slaves  on 



demand. Results are also sent back to MyGrid as soon as they are available. Only in the 
case  that  MyGrid fails  are  these characteristics  broken. Nevertheless,  they are  valid 
again, as soon as MyGrid recovers.

3. Reliability –  Communication is  reliable inside the system, also,  faults  are  tolerated. 
Using both reliable communication and fault recovery, failures do no affect the system 
and are unnoticed by both MyGrid and REMs.

4. Scalability –  REMs do not perform large computations,  their job is only to manage 
executions. Since this management is distributed amongst REMs, a system with demand 
proportional with the number of REMs will not have any scalability issue.

The system brings fault-tolerance to MyGrid. It also makes its architecture more service-
oriented. We expect that the functionalities performed by MyGrid will improve in execution-time, 
now that  the replica execution overhead has been removed from it.  The next step will be to 
experiment with the RRES and verify these assumptions, and also to verify the cost of fault-
tolerance in a MyGrid.

A prototype of the system has  been developed, experiments will be made using this 
prototype so that the REES may become a part of OurGrid's production releases.
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