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Abstract. Xception is an automated and comprehensive fault injection and 
robustness testing environment that enables accurate and flexible V&V 
(verification & validation) and evaluation of mission and business critical 
computer systems and computer components, with particular emphasis to 
software components. In this paper we focus on the new robustness testing 
features of Xception and illustrate them with a concrete example of robustness 
testing of the Real Time Executive for Multiprocessor Systems (RTEMS) 
performed under a European Space Agency (ESA) contract. To the best of our 
knowledge, this is the first time that robustness testing results for this real time 
operating system are presented. The testing revealed a significant number of 
critical flaws in RTEMS 4.5.0 and shows the effectiveness of Xception toolset. 

1. Introduction 
Test and dependability evaluation of computer systems and components are complex 
tasks and the growing complexity of both the hardware and software tend to make them 
even more difficult. Even the e valuation of very specific mechanisms such as error 
detection and recovery methods, which are relatively minor parts of the overall 
dependability evaluation, is traditionally a challenging task. Furthermore, the notion 
that functionality and performance are related to dependability is an established facet, as 
many systems operate often in degraded modes or with reduced performance due to 
faults. 

 Given the complexity of the task, there is no single generalized approach for 
testing and evaluating dependability features. Instead, several methods have been used 
ranging from pure modeling and analytical techniques to simulation and experimental 
approaches based on fault injection and robustness testing. These methods essentially 
complement each other, and depending on the phase of the design process, some of 
these methods could be more adequate or easy to use than others. 

 In general, analytical modeling and simulation are used to support architectural 
decisions at design phase. Detailed modeling techniques are also used for the evaluation 
of the dependability measures of the computer prototypes or even computer systems in 
field operation, but in these cases modeling needs the support of experimental 
approaches such as fault injection and field measurement. The experimental techniques 



  

are used in computer prototypes or actual systems for system/components verification 
and validation, and constitute a very effective way to assess the efficiency of fault-
tolerance mechanisms and to obtain the detailed characterization of the behavior of the 
whole system (or specific components) in the presence of faults or stressful conditions. 

 Xception is a comprehensive set of tools for experimental dependability 
evaluation. The Xception family started ten years ago with the proposal of a very low 
intrusiveness SWIF (software implemented fault injection) tool specifically targeted for 
very complex processors [Madeira 95, Carreira 95]. Since then, Xception has evolved to 
a comprehensive framework for experimental test and evaluation for dependability 
mechanisms and features, including several fault injection methods for a variety of 
target systems and a complete set of modules to assist the execution of testing 
campaigns and analysis of results. Xception has been used in many research and 
industrial projects and is being marketed by Critical Software SA 
(www.criticalsoftware.com).  

 In this paper we present the new robustness testing features of Xception and 
illustrated these features with an actual case-study of robustness testing of the RTEMS. 
Next section briefly describes Xception framework. Section 3 focus the robustness 
testing features and section 4 presents detailed example of the type of robustness tests 
that can be done by Xception. Section 5 concludes the papers and briefly describes 
future features. 

2. Xception overview 

2.1. Hybrid SWIFI Xception core 

Xception has started and is best known as a SWIFI tool [Carreira 98]. The basic idea of 
SWIFI consists of interrupting the application under execution in some way and 
executing specific fault injection code that emulates hardware faults by inserting errors 
in different parts of the system such as the processor registers, the memory, or the 
application code. In general, the errors inserted are intended to emulate hardware 
transient faults, such as the ones that cause bit flips. 

 The first SWIFI approaches (i.e., prior to Xception proposal) inserted software 
traps in the code to mark the points during the code execution where the faults should 
be injected. However, these initial approaches had limited flexibility and the fault 
models were too simplistic, especially because no events related to time or data 
manipulation could be used as triggers. An alternative was to execute the code in trace 
mode, but this had enormous intrusiveness. 

 The Xception fault injection methodology uses a hybrid approach instead of a 
pure SWIFI methodology. The idea is to use the advanced debugging and performance 
monitoring features existing in modern processors (i.e., specific hardware inside the 
target processor) to inject more realistic faults by software and to monitor the activation 
of the faults and their impact on the target system behavior in detail. This approach has 
become a de facto standard for later SWIFI tools, like FTAFE [Tsai 96], MAFALDA 
[Rodríguez 99], and GOOFI [Aidemark 01]. 

 The breakpoint registers available in the processors play a particularly important 
role in Xception basic fault injection approach, as they allow the definition of many 



  

fault triggers, including fault triggers related to the manipulation of data. The processor 
is running at full speed and the injection of a fault corresponds normally to the 
execution of a small exception routine.  

 The performance monitoring hardware inside the processor is also used to 
collect detailed information on the behavior of the system after the injection of a fault. 
Particularly, the combination of the trigger mechanisms provided by the debugging 
hardware and the performance monitoring features of the processor, allows to monitor 
other aspects of the target behavior after the fault with minimal intrusion. For example, 
it is possible to detect if a given memory cell was accessed after the fault or if some 
program function (e.g., error recovery routine) was executed. Another important aspect 
is that, because Xception operates very close to the hardware (at the exception handler 
level), the injected faults can affect any process running on the target system including 
the kernel. It is also possible to inject faults in applications for which the source code is 
not available. 

 The hybrid SWIFI engine of Xception directly emulates physical transient faults 
in internal target processor units, main memory, and other peripheral devices that can be 
accessed by software. The fault triggers are based on breakpoint registers and allow the 
injection of faults in practically all circumstances related to code execution, data 
manipulation, or timing. The fault types consist of bit manipulations, which is a widely 
accepted model for hardware faults. Xception has been enhanced with specific modules 
to support several target processors include PowerPC, Intel Pentium and SPARC based 
platforms running Windows and Linux OSs and several real-time systems such as 
LynxOS, SMX, RTLinux, and ORK.  

2.2. Current Xception toolset 

The Xception tool has evolved from the initial hybrid SWIFI version into a 
comprehensive toolset including other fault injection methodologies and the new 
robustness testing features (presented in this paper for the very first time).  

The Xception family includes the following tools: 
– The original Xception tool, based on hybrid SWIFI technology. 
– The extended Xception tool with the fault injection extensions based on scan 

chain technology (SCIFI). 
– The new robustness testing tool. 
– The Easy Fault Definition (EFD) and Xception Analysis (Xtract) add-on tools. 

 All tools share a common and key component: a graphic user interface named 
Experiment Manager Environment (EME), providing the backbone for the whole 
family of tools, thus offering a consistent view to the user.   

 The Xception toolset may result in a variety of different configurations, 
depending on the type of target system addressed and on the dependability evaluation 
needs. In addition to the generic components (EME, EFD, and Xtract), the actual 
Xception configuration required for each concrete case is achieved through the use of a 
set of modules (plug-ins) that implement specific fault injection or robustness testing 
methodologies for the different types of target systems. Figure 1 shows the Xception 
components and plug-ins currently available, including the new robustness testing plug-
ins. 



  

Figure 3. EME main window 
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Figure 1. Xception components and plug-ins 

 The Xception architecture (see Figure 2) resembles the client-server model. It 
comprises a front-end module, which runs in a host computer and is responsible for 
experiment management/control (the EME components and, optionally, the EFD and 
Xtract components), and a lightweight injection core (FI hook) and monitoring elements 
(readout collector), which runs in the system under evaluation and is responsible for the 
insertion of the faults.  

 The connection between the host and the target is done by means of a high level 
protocol, built on top of TCP-IP. Experiment and fault configuration data flows from 
the host to the target, while fault injection raw data results flow in the opposite 
direction. The Xception tool includes all the components running on the host computer 
and the injection core and monitoring elements installed in the target system (see Figure 
2). 

 

 
 

Figure 2. Xception components and plug-ins 
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experiment execution and result analysis. The use of an open standard such as SQL 
(Structured Query Language) also allows the user to execute specific SQL queries or 
use other tools available in the market to explore the results, in addition to the tool 
already provided by the Xception. 

3. Xception robustness testing methodology 
The robustness testing methodology used by Xception is inspired on the robustness 
testing proposals from Carnegie-Mellon University [Koopman 97, Koopman 99] and 
LAAS [Rodríguez 99, Arlat 02].   The idea of classical robustness testing is to evaluate 
API (application programming interfaces) robustness in the presence of invalid inputs 
parameters. This idea has been applied to operating system calls but it can be 
generalized to inject faults in the interface parameters of any software component (we 
actually did that generalization in Xception robustness testing).  

 In robustness testing, interface faults change the input parameters turning them 
into invalid or exceptional values that may cause component failures. In principle, 
software components should behave in a robust way, even when they are submitted to 
invalid parameters (for example returning an error code). Unfortunately, most of the 
APIs are not robust, either because engineers assume that it is not practical to test and 
handle all the possible invalid inputs or because they just decide to overlook some input 
tests for performance reasons. The reality is that many API’s are not robust as has been 
shown in several robustness testing works (e.g., [Koopman 99, Rodríguez 99]). 

 Once the input patterns that cause a given component to fail are identified, the 
problem can be solved either by changing the API, if the source code is available, or 
using wrapping when the source code is not available, which is normally the case of 
COTS components. 

 
Figure 4 - Classical ([Koopman 99]) robustness testing approach. 
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• It is not specifically tied to operating systems or micro-kernel APIs (application 
programming interfaces) as it can be used to test the robustness of interfaces of 
any software component, including COTS (commercial off-the-shelf) and 
custom components. This generalization of robustness testing approaches is 
similar to Interface Propagation Analysis [Voas 98] and to the technique 
proposed in [Moraes 04]. 

The Xception robustness testing methodology comprises three phases (see 
Figure 5): 

• Preparation:  Includes all the tasks needed to define test cases. 

• Test Execution: Execution of the defined test cases. 

• Log Analysis: Analysis of the results of the test cases and identification of the 
RTEMS faults. 

 
Figure 5 - Xception robustness testing methodology. 

Preparation phase comprises the following tasks: 



  

• Product Analysis and Scope Definition: Analysis of the product/component 
under evaluation and selection of the API calls that will be subjected to the 
evaluation. 

• Environment Characteristics Analysis: Identification of extra requirements 
imposed by the environments (other target components and external 
environment) in the product/component under evaluation. 

• Fault Model Definition: Definition of the in-bound and out-of-bound values that 
will be used as interface faults for each data type of the product/component 
under evaluation. 

• Construction of the Workloads: Definition and implementation of the 
applications that will exercise the product/component under evaluation APIs. 

• Definition of the Test Campaigns and Test Suites: Definition of the test suites 
that will be used to automatically generate the test cases (using the workload and 
fault model previously defined). Test suites are grouped logically in test 
campaigns. 

The Test Execution phase follows the Preparation. During this phase test cases are 
executed and the results are collected to the Xception database. This task is performed 
in unattended mode by Xception. 

The final phase of the robustness testing is the Log Analysis. In this phase detailed 
analysis of the log of each test case is performed comparing the obtained results against 
the expected values. This phase may be quite time consuming. For this reason it is 
important to have a concise workload output that enables the analyst to quickly find out 
if the result of the test case is consistent with the input parameters or not. 

A very important aspect of robustness testing is the definition of the interface faults for 
each data type (see preparation phase described above). For each data type, a class of 
test values is defined in order to facilitate the definition of the test cases. For practical 
reasons, a test case is generated as mutants of the workload.  Each mutant is the source 
code file of the workload that results from the application of a single mutation on a data 
parameter. These values differ from typical data values fed to functional tests (or unit 
tests) since they are specifically meant to exercise the error handling and robustness 
features of the component under test. These values typically reflect boundary or 
“magic” values in the data type range, or values that are semantic out-of-bounds in the 
scope of usage in a function call. 

The test values (interface faults) for the basic data types were defined taking into 
account preparatory experiments and published data on robustness testing techniques, 
namely from Ballista project [Koopman 99]. The test values candidates are as follows 
(assuming C syntax): 

• Integers data types: 0, 1, -1, MAX_INTEGER, MIN_INTEGER, selected 
powers of two, powers of two minus one, powers of two plus one. 

• Pointers data types: NULL, -1 (cast to a pointer), pointers to free()’ed memory, 
pointers to malloc()’ed buffers of various powers of two in size. 

• Floats data types: 0.0, 1.0, -1.0, ±MAX_FLOAT, ±MIN_FLOAT, PI and e. 



  

 

  In order to prevent an explosion in the number of test cases, but keeping good 
test coverage at the same time, a subset of the specified test values are normally 
selected. These test values do not represent all the possible values that may be 
interesting to test with the given data types. They have been chosen to provide a 
reasonable range of exceptional (non-nominal) input conditions to the software under 
test. Still, some rules apply. If the type to be used in a mutation is a pointer to a 
function, then the only possible value that will be used to create mutants is the NULL 
pointer. This decision is based on the fact that it is not interesting to pass invalid 
function pointers as parameters. 

 A final aspect (and also very important) is the failure mode classification. That 
is, when injecting interface faults in a given software component it may fail in several 
ways (failure modes).  Xception has adopted the Ballista classification [Kropp 98] as a 
first step classification scale. This scale is known as CRASH and measures non-robust 
responses from the component under test. CRASH is an acronym for the following 
failures modes: 

• Catastrophic failures: a complete system crash that requires a system reboot. 

• Restart failures: the application hangs and requires application restart. 

• Abort failures: abnormal termination of an application. 

• Silent failures: occur when it is reported that the called function or system call 
was completed successfully instead of returning an error indication (as it would 
be expected due to the invalid parameter values used in the call).  

• Hindering failures: incorrect error indication such as the wrong error reporting 
code.  

 As mentioned, Xception uses the CRASH scale only as a first step classification. 
In fact, as the impact of a robustness failure is highly dependent on the concrete 
application, in many cases is enough to identify robustness failures, without going into a 
detailed classification that may not apply to the concrete testing scenario. Another 
limitation of the CRASH scale is that it is assumes robustness testing of operating 
systems and is not adapted to other software components.  

 The natural alternative to the CRASH scale is to use the simplified scale 
suggested by Figure 4, which consider two possible responses: robust operation and 
robustness failure. In many cases it is useful (and easier) to classify robustness failures 
in critical and minor failures, according to the fault impact. 

4. RTEMS case-study 
This section presents a robustness testing study of the RTEMS 4.5.0 (Real Time 
Executive for Multiprocessor Systems) performed under a European Space Agency 
(ESA) contract.  

4.1. RTEMS and experimental setup  

Figure 6 shows the application architecture of RTEMS. It includes three sets of APIs: 
classic, POSIX and Itron. Only the first two API sets were tested in the present study.  



  

 The internal architecture for RTEMS can be regarded as a set of layers that work 
closely with each other to provide the necessary services to real time applications. The 
executive interface presented to the application is formed by grouping directives (API 
calls) into logical sets called resource managers. Scheduling, dispatching and object 
management are provided by the executive core, which depends only on a small set of 
CPU dependent routines. 

 
Figure 6. RTEMS Application Architecture 

 The Classic API provides seventeen resource managers as presented in Figure 7. 
For space reasons, we do not describe the resource managers as they represent 
traditional features provided by operating systems to real-time applications (a detailed 
description can be found in www.rtems.com). 

 
 

 

 

 

 

 

 

Figure 7. RTEMS Classic API resource managers 

 The POSIX API is based on the standard IEEE 1003.1b and provides nineteen 
managers, as shown in Figure 8.  
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 The RTEMS executive core is responsible for the low level system management, 
including all CPU specific features and low level device drivers (see Figure 6). In the 
version tested, the CPU specific features belong to the SPARC/ERC32 processor. The 
RTEMS executive core also implements several handlers to be used by the API’s to 
perform each specific function. These handlers include the message handler, the mutex 
handler, the semaphore handler, etc. The core was not designed to be used directly by 
the user’s application, although no restrictions are imposed, at either compilation or 
linking time. 

 The experimental setup is the typical Xception setup, including the host 
computer and the target system, where the RTEMS is running (see Figure 9). For 
practical reasons, we have used a target system simulator instead of an actual board 
with the ERC32 processor. However, as the code executed in the target simulator is the 
actual RTEMS 4.5.0 code, the results are not affected by the fact the RTEMS is running 
in a processor simulator instead of an actual ERC32 board. 

 The Xception host is responsible for all the phases of the robustness testing 
experiment, as described in section 2. During the execution of the test cases, Xception 
creates the mutants following the test case definition. Then, the executable binary is 
built and the faulty application (mutant) is finally uploaded to the target system and 
executed. Data related to the execution is logged in order to allow the result analysis 
process. 

 
Figure 9. Experimental setup 

4.2. Results  

Tables 1 and 2 shows the summary of the results obtained for the resource managers 
already tested for the Classic API and the POSIX API, respectively. The first thing to 
note is the high number of robustness failures found in RTEMS 4.5.0, especially to what 
concerns critical failures.  

 We used the simplified classification of robustness failures mentioned in section 
3 (instead of the CRASH classification). All the robustness failure situations have been 
manually analyzed and classified as critical or as minor failures, depending on the 
complexity of the recovery that would have been required in a real situation. In general 
critical failures include system and application crashes and minor failures include 
hindering cases. In most of the minor failures, RTEMS has returned a wrong error code. 

The detailed analysis of the robustness failures cases has shown a variety of situations, 
all of them representing critical weak points of RTEMS. Note that all the failure cases 



  

represent situations in which the RTEMS should have behaved in a robust way, for 
example returning a correct error code to the test program (instead of crashing or 
producing other unacceptable behavior). The following points show some examples of 
erroneous behavior observed: 

• Unexpected change of the program control flow (e.g., when the task identifier is 
set to 0 on the rtems_task_start call). 

• In several situations the test cases end up with unhandled traps such as  data 
access, memory not aligned, and illegal instruction exceptions. 

• Several situations where the RTEMS did not return any error code (silent 
failures). These cases are particularly dangerous, as they may affect the 
application in an unpredictable way. 

• Several hindering failures where wrong error codes have been returned (i.e., 
instead of returning the error code specified in the documentation a different 
error code is returned). 

Table 1. Classic API robustness testing results 

Robustness failures Manager Test Cases Critical Minor Total 
Clock 68 0 0 0 
Event 18 0 0 0 
Fatal Error 3 0 0 0 
Interrupt 5 0 0 0 
IO 50 5 1 6 
Message 83 2 6 8 
Partition 27 0 2 2 
Rate Monotonic 24 0 1 1 
Region 67 4 3 7 
Semaphore 33 0 1 1 
Signal 10 0 1 1 
Task 55 2 2 4 
Timer 67 2 1 3 
User Extensions 17 0 1 1 
Total 527 15 19 34 

Table 2. POSIX API robustness testing results 

Robustness failures Manager Test Cases Critical Minor Total 
Clock 32 0 0 0 
MESSAGE 122 2 1 3 
MUTEX 223 1 3 4 
Signal 122 1 4 5 
Timer 29 0 3 3 
Total 528 4 11 15 

  Due to space restrictions we cannot present a more detailed description of the 
results observed. The interested reader can find the full results in [Maia 04]. The 
detailed results also include code coverage results showing the lines of robustness 
testing code executed in each test case (zero lines in many of them) and the results of a 
comprehensive stress testing campaign (i.e., workloads that make extremely high usage 
of system resources). 



  

4. Conclusion 
This paper surveys the current features of the Xception fault injection and robustness 
testing family of tools. The main focus is on the new robustness testing features of 
Xception that are illustrated through a concrete case-study of testing the robustness of 
the RTEMS 4.5.0. To the best of our knowledge, this is the first time that robustness 
testing results for this real time operating system are presented. The results show a 
significant number of robustness failures situations (49 failures in total), including a 
large percentage of critical failures. These results clearly show that RTEMS should be 
improved for robustness before being used in critical applications. 
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