
Engineering a Failure Detection Service for
Widely Distributed Systems

Bruno G. Catão , Francisco V. Brasileiro , Ana Cristina A. Oliveira

1Universidade Federal de Campina Grande
Coordenação de Pós-graduação em Informática

Laboratório de Sistemas Distribuı́dos
Av. Aprigio Veloso, 882, Bodocongó

58.109-970, Campina Grande, Paraı́ba, Brasil

{catao,fubica,cristina}@dsc.ufcg.edu.br
Abstract. Unreliable failure detectors are recognized as important building
blocks for implementing fault-tolerant distributed systems. Further, there has
been a lot of discussion on how to provide them with sophisticated features that
allow for adaptation, flexible use, scalability and quality of service enforce-
ment. Despite that, we are not aware of any real distributed system that uses a
sophisticated failure detection service. In fact, most systems deployed use the
trivial failure detection scheme provided by the underlying communication tech-
nologies (e.g. TCP/IP timeouts). We believe that this state of affairs is due to
two main reasons: i) there is no widely supported failure detection service API
that incorporates these advanced features in a suitable way; and ii) the bene-
fits of using a sophisticated failure detection service are not clearly understood.
This paper targets the first issue by proposing a failure detection service that
addresses the main necessities of widely distributed systems and implements
the state-of-the-art in failure detection mechanisms. Moreover, to improve the
usability of the service we took special care in the design of its programming
interface.

1. Introduction
In widely distributed systems it is normally not possible to establish an a priori upper
bound on the end-to-end communication delays between processes. Therefore, failure
detection in these systems is unreliable, since it is impossible to differentiate a crashed
process from one that is simply running very slowly.

Nevertheless, in a seminal work, Chandra and Toueg proposed a the-
oretical framework to define the properties of useful unreliable failure detec-
tors [Chandra and Toueg, 1996]. Following this theoretical work, various imple-
mentations of unreliable failure detectors were proposed (e.g. [Felber et al., 1999,
Défago et al., 2003, Stelling et al., 1999, Hayashibara et al., 2004, Bertier et al., 2002]).

In addition, a lot of work has been devoted to extend the simple implemen-
tation sketched by Chandra and Toueg [Chandra and Toueg, 1996] and add more so-
phisticated features to a failure detection service. For instance, the first failure de-
tection services proposed did not scale well. They generated too much control traffic
when a large number of processes were monitored at the same time, degrading both
the service as well as the network. Another problem is that these services were based
on static timeouts. This leads to poor quality of service (QoS) in face of fluctua-
tions in the execution environment. Further, earlier implementations did not provide



any guarantees concerning the QoS provided by the failure detection service. To ad-
dress these problems, many approaches have been proposed in the literature. They pro-
vide ways to allow for scalability [Gemmell, 1997, Chu et al., 2000, Birman et al., 1999],
adaptability [Chen et al., 2000, Bertier et al., 2002, Hayashibara et al., 2004], flexibil-
ity [Hayashibara et al., 2004] and QoS enforcement [Chen et al., 2000] to failure detec-
tion services.

Despite the many advances in the area, few (if any) real widely distributed systems
use the sophisticated technologies developed so far. Instead, most systems seem to rely on
very simple implementations based on the failure detection features provided by the un-
derlying communication technologies (e.g. the default timeouts of TCP/IP sockets). We
argue that two main reasons are responsible for this state of affairs. Firstly, since there is
no widely supported ready-to-use failure detection service providing these functionalities,
developers must cope with the cost of implementing the service from scratch. Secondly,
the benefits of using a sophisticated failure detection service are not clearly understood.
Therefore, it is not surprising that simpler solutions already available have been preferred.

As an attempt to reduce the gap between the state-of-the-practice and the state-of-
the-art in failure detection for widely distributed systems, we propose the architecture of
a failure detection service that encompasses sophisticated features in an easy to use way.
Differently from previous works, our focus is both on the software engineering issues to
develop a sophisticated and efficient failure detection service, as well as on the provision
of a suitable programming interface for the service.

The remaining of the paper is structured in the following way. Section 2 specifies
the requirements of a failure detection service for a widely distributed system. Section 3
summarizes the most suitable mechanisms proposed in the literature to implement the
specified requirements. Section 4 discusses the service programming interface. Then,
in section 5 we present the architecture of a failure detection service that efficiently ac-
commodates the mechanisms discussed in Section 3. Section 6 shows how an application
uses the service. Finally, Section 7 concludes the paper and presents some perspectives
for future work.

2. Service Requirements
As discussed before, a failure detection service targeted for widely distributed systems
must provide QoS guarantees at the same time that is scalable, adaptable and flexible. In
this section we will explain in more details each one of these features.

Providing QoS guarantees is the ability of the service to be dynamically configured
by applications to maintain a certain QoS level at runtime. The primary QoS metrics
proposed by Chen et al. [Chen et al., 2000] are: detection latency, mistake recurrence
time and mistake duration. The first metric is a random variable representing the total
time that elapses from the time a process fails until its failure is permanently indicated
by the failure detection service. The second metric is a random variable that represents
the time between two consecutive mistakes (wrong suspicions of the failure detection
service). Finally, the third metric is a random variable that represents the interval of time
during which the failure detection service remains wrongly suspecting a process. Ideally,
a client of the failure detection service should be able to define different upper and lower
bounds1 on the expected values of these metrics on a per-process basis.

A scalable failure detection service is able to monitor a large number of entities
simultaneously without suffering a significant impact on its performance. The basic prob-

1Upper bounds for the first and third metrics, and lower bound for the second metric.



lem concerning scalability in widely distributed systems is how to transfer control mes-
sages from many sources to different distributed destinations without saturating neither
the network nor the processing nodes, yet sustaining acceptable QoS levels.

Similarly, adaptability is the ability of the service to maintain an acceptable QoS
even in face of changes in the execution environment. The environment over which widely
distributed systems execute are very susceptive to these fluctuations. This is due to various
factors, such as momentary increase on network traffic or CPU loads. A service designed
to run in a widely distributed environment should be affected as less as possible by these
fluctuations.

Finally, flexibility is the ability of the service to be usable by different applications.
Conceptually, any service should be usable by the most different kinds of applications. In
the context of a failure detection service this means that applications should be able to
interfere in the task of deciding whether a process should be suspected or not. It is worth
to point out that different decision requirements do not necessarily mean different QoS
guarantees. A failure detection service for widely distributed systems must provide this
flexibility level.

3. Providing the desired properties

Although the necessity of a failure detection service is evident, there are no ready-to-use
failure detection service that provide all the desired properties described before. In this
section we summarize the main contributions in the literature regarding the provision of
these properties.

3.1. Providing scalability

To address this issue many works were developed. We can classify these works in two
groups, the hierarchic and the epidemic solutions. The hierarchic solutions organize
the entities in tree-based arrangements, in order to optimize the communication among
the entities of the system [Ballardie et al., 1995, Chu et al., 2000, Jannotti et al., 2000].
On the other hand, the epidemic solutions work by diffusing its data using a random
pattern that mimics the way infectious deceases spread themselves [Birman et al., 1999,
Ganesh et al., 2001, Gupta et al., 2002]. Both solutions reduce the impact of the com-
munication from an order of O(n2) to an order or O(n log n), where n is the number of
processes that monitor each other.

The main proposals to address scalability that relies on hierarchic approaches are
based on multicast provided by the underlying network technologies (e.g. IP multicast)
or data diffusion using overlay networks. The main advantage of the proposals based on
native multicast technologies is that they are the most efficient way to transmit data from
multiple sources to multiple destinations [Gemmell, 1997]. Other advantage is that all
multicast functionalities are already implemented by the transport layer of the commu-
nication protocol. However, although there is more than a decade that such technologies
have been released, the majority of routers still do not support them. Finally, another great
disadvantage of these proposals is that some applications need QoS on the data diffusion,
and native multicast technologies do not ensure this.

The main advantage of multicast trough overlay networks is that there is no ne-
cessity of a specific infrastructure. There is not even the necessity of a specific network
protocol such TCP/IP. Other advantages are: it is possible to create specific solutions for
each problem domain; the diffusion is transparent to the routers involved; the gain on scale
due to the reduction of the amount of information stored and exchanged among routers;



and the simplified management. The main disadvantages of multicast through overlay
networks are: bigger latency than in native multicast technologies, and the replication of
messages in some links of the network.

Finally, a very interesting approach, that does not rely on explicit hierarchies, is
the epidemic diffusion. Epidemic, or gossip, diffusion simulates the transmission of a
infectious disease; an infected individual transmits its illness to other individuals in a ran-
domized way. Besides being very simple, this method is also very effective. The first
attempt to implement an epidemic protocol was done in the early 1980’s. This protocol
was developed for the USENET News Protocol. This protocol constructs a communi-
cation graph of a set of processes that should communicate. When a process wants to
communicate with other processes it gossips its data to a subset of processes by choosing
randomly some processes (at least logn processes) and sending them the desired data.
The processes that receive this data repeat this process several times, until reaching some
probabilistic condition.

3.2. Providing adaptability

The main proposals to address adaptability in failure detection services are based on the
use of dynamic timeouts. Following we will discuss the most important proposals.

One very important adaptable failure detector was proposed by Chen et
al. [Chen et al., 2000]. Roughly speaking, this failure detector adapts itself by dynam-
ically adjusting the timeout that each module sets when waiting for a heartbeat message
(the lack of such message causes the service to start suspecting the process). This dy-
namic adjustment is done in a statistical way, sampling the heartbeat arrival times in order
to estimate the future arrival times. A safety margin defined at deployment time is added
to this estimated arrival time.

Another important adaptable failure detector was presented by Bertier et
al. [Bertier et al., 2002]. Its adaptation mechanism is similar to the one shown in the pre-
vious solution with the difference that its safety margin is dynamically calculated using a
mechanism based on the Jacobson’s algorithm [RFC, 2000].

3.3. Providing flexibility

The first approaches intended to provide flexibility to failure detection services were based
on the use of two timeouts [Defago, 2000, Defago et al., 1999, Defago et al., 1998]. By
using these timeouts it is possible to configure the service to work at the same time with
both applications that have conservative requirements (e.g. few wrong suspicions), as
well as applications that have aggressive requirements (e.g. low detection latency).

The approaches based on two timeouts are useful, but they are not flexible enough
for the wide range of requirements of widely distributed applications. To circumvent
this problem, a new failure detector paradigm was proposed - the accrual failure detec-
tor [Hayashibara et al., 2003]. The main innovation introduced by the accrual failure de-
tectors was the information provided by them. Traditional failure detectors export to
applications binary information about the state of the monitored processes (suspected or
correct). Accrual failure detectors, on the other hand, provide a probabilistic value asso-
ciated with each monitored process, and this value indicates the confidence level about
the liveness of the process.

3.4. Ensuring the quality of service

The proposals to ensure the QoS of a failure detection service are based on monitoring the
QoS metrics, and, if required, adjusting the value of some control variables of the failure



detection service (e.g. the rate of heartbeat messages emission) so that it maintains its
QoS as near as possible from an established set point [Chen et al., 2000].

In a heartbeat based implementation the heartbeat arrival times are stored in a
sliding window of a pre-defined length, and the QoS metrics are calculated as a function
of the values contained in this window. The length of the window is directly proportional
to the accuracy of the QoS metrics and inversely proportional to the reactivity of these
metrics. Also, the frequency of heartbeat sending, for each monitored process, is adjusted
dynamically to meet the QoS requirements. For instance, if the detection latency is higher
than the desired, the frequency of heartbeat sending is increased as a function of the
difference between the desired and the measured detection latencies.

4. Service Programming Interface
Most of the papers that propose failure detection services pay little attention to the pro-
gramming interface that applications use to have access to the service. They normally
assume only a synchronous interface that allows clients to query the failure detection
service for the status of a particular process. However, our experience developing real
distributed systems [Our, 2005] shows that most of the time asynchronous interactions
are preferred. This is because most systems are designed to act upon the occurrence of a
failure. In other words, it is easier to program mechanisms for fault-tolerance by having
them notified of the occurrence of a failure on a process, instead of having them con-
stantly querying the failure detection service for the status of this process. This is also
evident in the pseudo-code of many fault-tolerant algorithms presented in the literature
(e.g. [Chandra and Toueg, 1996, Guerraoui and Raynal, 2005]). Of course, in some less
frequent scenarios, synchronous interactions are also useful. For instance, before per-
forming a costly task, it is worth querying the failure detection service to avoid the waste
of resources (even though a query that returns that a process is correct gives no guarantees
that it will remain correct in the near future).

In this section we propose an extended interface for a failure detection service
that we believe is more useful for developers of fault-tolerant distributed systems. It pro-
vides both query-style and callback-style interactions. Different from previous proposals,
it incorporates an asynchronous notification scheme that allows applications to register
callback functions that are invoked whenever important events happen.

The architecture of the service proposed, shown in Figure 1, is based on the
classic model that has three basic types of entities: monitors, monitorables and notifi-
ables [Felber et al., 1999]. Monitor entities are responsible for probing the monitorable
entities and notifying the notifiable entities whenever a failure happens. We extend this
architecture by adding new relevant events, as described later in this section. Moreover,
the monitor functionality is extended to allow for the monitoring of the QoS that is being
provided, as well as the extra resource consumption due to the execution of the failure
detection service.

There are four classes of events that may trigger a notification. The first class is
related with the failure detection capabilities of the service. There are failure notification
and wrong suspicion notification events. The second class comprises the QoS related
notification events. They are used to notify applications when the current QoS levels
attained by the service are below the QoS requirements defined by the application. There
are three events in this class, one for each primary QoS metric (see Section 2). The third
class comprises the events that are related with the impact that the service has on its
execution environment. It has two events that are used to indicate, respectively, when the
bandwidth consumption is above or below a given threshold. Finally, the fourth class is



Figure 1: The main entities of the failure detection service.

related with configuration events. The single event of this class is used to notify notifiable
entities of monitorable entities that are registered with some monitor entity. These events
are useful for allowing notifiable entities to discover monitorable entities dynamically.

5. Implementing the service

In Section 2 we discussed the desirable properties that a failure detection service must
possess. Then, in Section 3 we presented a summarized description of the most suitable
mechanisms proposed in the literature to implement these properties. In this section we
show how we packed together some of these mechanisms to implement a failure detection
service that provides the programming interface described in the previous section.

The core of the failure detection service is implemented by the monitor entities.
Monitorable and notifiable entities just implement simple interfaces to allow information
to flow from monitorables to notifiables through a collection of monitors that cooper-
atively implement the service. The monitorable interface allows a monitor to probe a
monitorable entity, while the notifiable interface allows a monitor to inform a notifiable
entity that a relevant event has happened. This provides a lot of flexibility, since relevant
events are specified on a per-entity basis. For instance, a given application may imple-
ment a notifiable entity that registers with a monitor to receive notifications of failures
of a particular monitorable entity, whenever the probability of failure of the monitorable
entity is above a particular confidence level.

To allow for adaptability and QoS enforcement it is important to have control on
the rate with which control messages are exchanged between monitor and monitorable
entities. Moreover, since the monitors are the entities responsible for controlling the be-
havior of the failure detection service, the communication among monitorable and mon-
itor entities follows a pull style, i.e., the monitor entities send “are you alive” messages
to monitorable entities, and monitorable entities respond to these messages by sending
back “I am alive” messages. The pull communication model simplifies the control of the
rate with which heartbeat messages are exchanged. If a push style were used, whenever
a change in this rate was required, monitors would have to inform this to all monitorable
entities.

The functionality of the monitor entities is implemented by three modules: the
statistical module, the notification module, and the QoS module.

The statistical module receives control messages from monitorable entities and



computes two statistics about them: i) the probability that a process has failed, and; ii) the
bandwidth generated by the failure detection service. It maintains a sliding window con-
taining the size and the arrival time of each control message received. The probability that
a process has failed is computed by calculating the average and the standard deviation of
arrival times, using them to build a probability distribution and then, using its cumulative
distribution function to obtain the probability value. By default the service uses a normal
distribution, but other distributions can be used. The bandwidth generated by the failure
detection service is calculated by adding the total of bytes received and dividing this by
the time elapsed between the reception of the first and the last message in the window.

The notification module provides one of the interfaces that the notifiable entities
have with the failure detection service. It allows the notifiable entities to specify the events
whose occurrence will trigger the execution of a callback function. The other interface
available to the notifiable entities is provided by the QoS module. It allows for both the
definition of the desired levels of QoS, as well as the registration of callback functions that
will be invoked whenever the current level of QoS attained is below the QoS requested.

Scalability was addressed in our implementation in an hierarchical way. Monitor
entities were developed to behave also as notifiable entities. In this way, monitor entities
could register with other monitor entities their interest in the state of some monitorable
entities. Therefore, applications can build hierarchies of any number of levels following
this pattern, as shown in Figure 2.

Figure 2: The monitors of the domain A, B, C and D compose a tree-based hier-
archy; the notifiable entities of domain A could be registered as inter-
ested in monitorable entities of domain C.

To provide an asynchronous, transparent and simple way by which the entities of
the system communicate, we have devised an event-based messaging service. This service
is based on the concepts presented in [Starovic et al., 1995] and [Brasileiro et al., 2002].

The main entities of the messaging service are: Event Channel, Event Source,
Event Listener, and Notification Context, as shown in Figure 3. The Event Channel hides
from developers issues related to distributed communication. The Event Source entities
are responsible for generating events and sending them to the event channel. The job
of the Event Listener entities is to consume the events produced by the Event Source
entities. Finally, the Notification Context is an abstraction of a domain within which the
events exchanged by the entities will transit; this abstraction is very useful to reduce the
network traffic delivering events only to the entities interested on them.



Figure 3: The entities of the messaging service.

It is worth to mention that the messaging service can be implemented in several
ways. Our implementation uses Jini [JIN, 2005] as the communication technology. An-
other possibility is to use a gossip-style communication technology. We note that such
an implementation would provide an alternative way to address the scalability issue in a
more transparent way.

6. Using the Service
Figure 4 shows the interfaces of the main components of the failure detection service
implemented.

Figure 4: Simplified class diagram of the failure detection service displaying its
main entities.

To use the service, applications must firstly obtain a monitor instance and then
register with it the required monitorable and notifiable instances. A monitorable instance
must be associated with every entity of the system that should be monitored. A notifiable
instance must be associated with every entity of the system that is interested on the occur-
rence of relevant events. The actual monitoring is started by invoking the startMonitoring
method on the appropriate monitor. For each pair of notifiable and monitorable entities a
call to startMonitoring must be issued. By doing that, the invoker can define distinct QoS
levels for each pair of notifiable and monitorable entities.

The process of locating and publishing entities in the failure detection service is
accomplished through the messaging service. It defines primitives to manage the mem-



bership of the entities of the service. For every new instance of the service, the developers
must call the publish method of the messaging service, passing to this method a name
that uniquely identifies this instance in the system. The instances of the failure detection
service can be searched by either their unique names or by their interfaces. In both cases
the developers must call the lookup method, passing as a parameter the desired name or
interface. The functionality of searching entities based on the interface is in fact a dy-
namic resource discovery mechanism. By using this feature, a monitor can, for instance,
discover all the monitorable entities that are registered in the messaging service and start
monitoring them, with no a priori knowledge about them. This is an alternative to using
the configuration events described in Section 4. The sequence diagram in Figure 5 shows
the steps that an application should take to use the failure detection service.

Figure 5: Sequence diagram showing how an application could use the failure
detection service.

The monitorable interface is implemented by defining its areYouAlive method.
This method is called by the monitor entities with which the monitorable is associated.
A trivial implementation for this interface is to have the areYouAlive method always
returning the Monitorable.I AM ALIVE value.

To implement the notifiable interface, developers must code the method that will
be triggered by the monitor. The notifiable interface defines several methods that applica-
tions should implement according to their needs. See the notifiable interface in Figure 4.

The process of registering monitorable entities within a monitor entity is done in
the following way. Firstly, it is necessary to obtain an instance of the monitor interface.
Then, the application can call the registerMonitorable method of the monitor instance,
passing to this method the required level of QoS and an instance for the corresponding
monitorable entity.

The process of registering notifiable entities with a monitor entity is done in the
following way. Again, the first step is to obtain an instance of a monitor entity. Then, it
is possible to call one of the monitor’s register methods. Applications must pass to these
methods the parameters that specify when a notification should be triggered (e.g. the level
of confidence that triggers a suspicion) and an instance for the correspondent notifiable
entity.

The notification mechanisms are normally used as follows. First an appropriate
QoS level is defined for each pair of notifiable and monitorable entities. This is indicated
by invoking the startMonitoring method on the appropriate monitor passing as parame-
ters the references for the notifiable and monitorable entities, as well as the QoS level



required. Since the QoS required may not be enforced by the failure detection service
(for instance, because of the current load conditions of the environment), it is advisable
that notifiable entities register to be notified whenever one of the QoS metrics is violated.
When such a notification is received, the application may configure new QoS levels. For
instance, sustain the level of mistake duration by augmenting the minimal detection la-
tency required. Also, to balance acceptable QoS levels and resource usage, one can define
lower and upper bounds on bandwidth consumption and register notification actions that
are triggered whenever one of these thresholds are surpassed. When the upper limit on
bandwidth consumption is signalled, the application may want to define less restrictive
QoS levels in order to reduce control message traffic. On the other hand, when the re-
source consumption falls below the lower limit defined, application may want to increase
its QoS level requirements.

Now we discuss the use of the failure detection service in the context of a par-
ticular example. Let us suppose that one wants to implement a service for supporting
the installation, configuration and management of distributed applications. Such a sys-
tem may be implemented by a centralized coordinator that executes at the management
node and a number of distributed agents that run at the deployment nodes. The coordina-
tor is responsible for instructing the appropriate agents to install a particular distributed
application in all nodes that must run part of the application. Each agent is responsible
for the installation of the part of the application that must execute at the agent’s node.
Moreover, a failure detection service is used for detecting the failures of both agents and
applications, as well as crashes at the remote nodes. For simplicity, we assume that the
coordinator does not fail. Whenever the part of the application or the agent that is run-
ning at a remote node are suspected, the coordinator is notified and takes the necessary
actions to restart the application or the agent. Likewise, when a node fails, the coordinator
chooses a new node to restart a new agent and the part of the application that was running
at the faulty node. The failure detection service is used to notify the coordinator about
failures on applications, agents and nodes.

To set the failure detection service up, first the coordinator instantiates a local
monitor entity and registers itself to be notified of any monitorable entity that registers
with this monitor. Whenever the coordinator is notified about a new monitorable, it reg-
isters itself with the monitor to be notified of the failures suspicions associated with this
monitorable entity (with a confidence level that the coordinator indicates). Further, the co-
ordinator starts the monitoring of the monitorable entity by invoking the startMonitoring
method on the local monitor, passing as a parameter the required QoS level. Whenever a
failure suspicion occurs, if the monitorable entity is associated with an application, then
the coordinator contacts the corresponding agent, instructing it to reinstall the appropriate
part of the application. On the other hand, if the monitorable entity is associated with an
agent, then the coordinator may take one of two actions: i) if the application that runs on
the same node of the agent is not suspected of having failed, then the coordinator will try
to reinstall the agent at that node; ii) if both agent and application are suspected, then the
coordinator assuming that the node has crashed, chooses a new node to start the agent and
then tries to reinstall the application on this node.

At the distributed nodes, the failure detection service is set up in the following
way. Each agent instantiates a local Sensor2 that implements the monitorable interface
on behalf of the agent. This Sensor locates the appropriate coordinator’s monitor and
registers itself with it. When an agent installs an application at its node, it instantiates
a new Sensor to implement the monitorable interface on behalf of the application. This

2An auxiliary class Sensor that already implements the monitorable interface for generic Java objects is
provided with the failure detection service API.



monitorable entity is also registered with the coordinator’s monitor.

In this example the monitor that runs at the coordinator’s node is responsible for
probing all monitorable entities. If the number of monitorable entities is high, this may
lead to a bottleneck. A trivial solution for this problem is to implement a hierarchy of
monitors as discussed in Section 5.

7. Conclusion

Despite the many advances in the area of failure detection, few (if any) real distributed
systems use failure detection services that implement the sophisticated mechanisms pro-
posed in the literature. We believe that one of the causes of this state of affairs is the
unavailability of a ready-to-use service that provides the appropriate API for most distrib-
uted applications. This paper tries to fill in this gap by presenting the architecture and the
implementation of such a service3.

As future work, we intend to provide alternative implementations of the messaging
service based on gossip-style protocols. Further, we are integrating the service into the
OurGrid4 system [Our, 2005], a distributed grid middleware to support the execution of
bag-of-task parallel applications. Our intent is to evaluate the benefits that a sophisticated
failure detection service can bring to real distributed systems. We believe that the lack of
perception of these benefits is another impairment to the broad utilization of services such
as the one presented in this paper.

Acknowledgements

This work was partially developed in collaboration with HP Brazil R&D. Francisco
Brasileiro would like to thank the financial support from CNPq/Brazil (grant 300.646/96).

References

(2000). Computing tcp’s retransmission. N. W. Group. Rfc 2988. http://www.rfc-
editor.org/rfc/rfc2988.txt.

(2005). The Jini Community. Sun Microsystems. http://www.jini.org.

(2005). The OurGrid Project. http://www.ourgrid.org.

Ballardie, T., Francis, P., and Crowcroft, J. (1995). Core based trees (cbt): An architecture for
scalable multicast routing. In ACM Sigcomm, pages 88–95, San Francisco, USA.

Bertier, M., Marin, O., and Sens, P. (2002). Implementation and performance evaluation of an
adaptable failure detector. In DSN ’02: Proceedings of the 2002 International Conference on
Dependable Systems and Networks, pages 354–363. IEEE Computer Society.

Birman, K. P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., and Minsky, Y. (1999). Bimodal
multicast. ACM Transactions on Computer Systems, 17(2):41–88.

Brasileiro, F. V., Greve, F., Hurfin, M., Narzul, J. P. L., and Tronel, F. (2002). Eva: an event-
based framework for developing specialised communication protocols. In IEEE International
Symposium on Network Computing and Applications, pages 108–119.

3The software is available for download at http://www.spotter.lsd.ufcg.br/.
4Available at http://www.ourgrid.org/.



Chandra, T. and Toueg, S. (1996). Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267.

Chen, W., Toueg, S., and Aguilera, M. K. (2000). On the quality of sevice of failure detectors. In
International Conference on Dependable Systems and Networks (DSN’2000), pages 191–200,
New York, USA.

Chu, Y.-H., Rao, S. G., and Zhang, H. (2000). A case for end system multicast. In Measurement
and Modeling of Computer Systems, pages 1–12.

Defago, X. (2000). Agreement-Related Problems: From SemiPassive Replication to Totally Or-
dered Broadcast. PhD thesis, École Polytechnique Fédérale de Lausanne, Switzerland. Number
2229.

Defago, X., Felber, P., and Schiper, A. (1999). Optimization techniques for replicating corba
objects. In 4th Int’l Workshop on Object-oriented Real-time Dependable Systems (WORDS’99),
pages 1–8, Santa Barbara, CA, USA.

Défago, X., Hayashibara, N., and Katayama, T. (2003). On the design of a failure detection service
for large scale distributed systems. In Proc. Int’l Symp. Towards Peta-Bit Ultra-Networks (PBit
2003), pages 88–95, Ishikawa, Japan.

Defago, X., Schiper, A., and Sergent, N. (1998). Semi-passive replication. In Symposium on
Reliable Distributed Systems, pages 43–50.

Felber, P., Guerraoui, R., Défago, X., and Oser, P. (1999). Failure detector as first class objects.
In International Symposium on Distributed Objects and Applications (DOA), pages 132–141,
Edinburgh, Scotland,.

Ganesh, A. J., Kermarrec, A.-M., and Massoulie, L. (2001). SCAMP: Peer-to-peer lightweight
membership service for large-scale group communication. In Networked Group Communica-
tion, pages 44–55.

Gemmell, J. (1997). Scalable reliable multicast using erasure-correcting re-sends. Technical report
msr-tr-97-20, Microsoft Research Center.

Guerraoui, R. and Raynal, M. (2005). The information structure of indulgent consensus. IEEE
Transactions on Software Enginnering, 54(4):453–466.

Gupta, I., Kermarrec, A., and Ganesh, A. (2002). Efficient epidemic-style protocols for reliable
and scalable multicast. In IEEE International Symposium on Reliable Distributed Systems
(SRDS), pages 180–189.

Hayashibara, N., Défago, X., and Katayama, T. (2004). The ϕ accrual failure detector. In Sympo-
sium on Reliable Distributed Systems (SRDS’2004), pages 66–78, Florianópolis, Brazil.

Hayashibara, N., Défago, X., and Katayama, T. (2003). Two-ways adaptive failure detection with
the ϕ-failure detector. In Workshop on Adaptive Distributed Systems (WADiS03), pages 22–27.

Jannotti, J., Gifford, D. K., Johnson, K. L., Kaashoek, M. F., and O’Toole, Jr., J. W. (2000).
Overcast: Reliable multicasting with an overlay network. pages 197–212.

Starovic, G., Cahill, V., and Tangney, B. (1995). An event based object model for distributed
programming. In OOIS (Object-Oriented Information Systems) ’95, pages 72–86, London.
Springer-Verlag.

Stelling, P., DeMatteis, C., Foster, I. T., Kesselman, C., Lee, C. A., and von Laszewski, G. (1999).
A fault detection service for wide area distributed computations. Cluster Computing, 2(2):117–
128.


