Fast Adaptable Uniform Consensus Using Global State Digests

Andrey Brito !, Francisco Brasileiro?, Walfredo Cirne -2
Universidade Federal de Campina Grande
ICoordenado de Bs-Graduago em Infornatica
2Coordenago de Bs-Gradua&o em Engenharia Elrica
Av. Aprigio Veloso, 882 - 58.109-970, Campina Grande, PB, Brazil
Phone: +55 83 310 1433 Fax: +5583 310 1365
{fubica,andrey,walfredag@dsc.ufcg.edu.br

Abstract

Protocols that solve the consensus problem have been widely recognized as important building blocks
for the design of reliable distributed systems. This fact explains why considerable amount of work has
been devoted both to establish the minimal system requirements that allow a solution to the problem, as
well as to provide efficient protocols to solve it. We propose the uglbél state digest® design effi-
cient and adaptable consensus protocols. A global state digest is a bounded and consistent summarizec
representation of the local states of all processes that run the protocol. By frequently providing processes
with new global state digests, it is possible to allow processes to terminate the protocol soon after the
minimal condition necessary to solve the problem holds, whatever are the contention levels experienced
by the system. We present the design of a family of fast adaptable consensus protocols using this ab-
straction. Further, a global state digest provider can be implemented whenever the same assumptions
required to implement perfect failure detectors hold (basically the ability to convey a bounded amount
of information within a bounded interval of time).

Keywords agreement protocols; perfect failure detection; consistent global state; synchronous and
asynchronous distributed systems; wormholes.

1 Introduction

In this paper we focus on the fundamental problem of reaching consensus among a geicsses
that communicate exclusively via the exchange of messages [11]. In the consensus problem, each pro-
cessp; proposes a value, and every correct process must decide for the same commonwalumeng
the values proposed, despite the possible crashes of fipriacessesf < n. Designing a protocol that
guarantees these properties, however, is not trivial. There are two main sources of difficulties associ-

ated with the design of a fault-tolerant distributed consensus protocol, namely: i) the lack of synchrony
guarantees provided by the underlying distributed system; and ii) the occurrence of failures in both
processing and communication.

Synchronous systems provide strong synchrony guarantees for both processing schedule and com:
munication delays. Because of this, detection of benign failures (such as crashes) within synchronous
systems is straightforward. Therefore, solutions to the consensus problem for this kind of system have
long been known [7]. On the downside, the strong synchrony guarantees provided by synchronous
systems require an a priori knowledge of the worst case workloads to which the system will ever be sub-
ject. This makes it more difficult to develop such systems and reduces the applicability of fault-tolerant
distributed protocols designed to execute over a synchronous system.

On the other hand, in a pure asynchronous system model, no synchrony guarantees are given (in fact
the very notion of time is absent), thus, any distributed system can be considered a pure asynchronous
system. Unfortunately, it is well known that most practical fault-tolerant distributed problems are im-
possible to be solved in this kind of system. Particularly, it has been proved that there is no deterministic
solution to the consensus problem in pure asynchronous systems subject to even a single crash fail-
ure [12].

This result has prompted researchers to seek for the minimal synchrony guarantees that a distributed
system must provide in order to allow fault-tolerant solutions to fundamental distributed problems, such
as consensus. This effort is backed up by the observation that, although most off-the-shelf distributed
systems are not synchronous, they do have some level of synchrony, and are, therefore, generally classi
fied as partially synchronous systems [8, 10].

Within this context, the abstraction of unreliable failure detectors [5] is an important contribution.
An unreliable failure detector is a “black-box” that is associated with each process of an asynchronous
distributed system and encapsulates the synchrony required to solve fault-tolerant distributed problems.
This synchrony is specified via a pair of properties that describe the behavior of classes of failure detec-
tors. They define the failures that the failure detectors are able to detectdphgnietenesproperty)
and the mistakes that they are allowed to make (theauracyproperty). It has been shown that the
weakest failure detector class that allows a deterministic solution to consensus, ©&medist pro-
vide the following properties: eventually every process that crashes is permanently suspected by every
correct processsfrong completenegsand, there is a time after which some correct process is never
suspected by any correct procesggntual weak accuralyo].

Following this result, a number of consensus protocols based on failure detectors of the glass
have been proposee@.q. [16, 14, 13, 9, 15]). They all share the following characteristics: i) they
are only able to tolerate a minority of faulty processes, they requiref < n/2; and, ii) they are
indulgent[9] in relation to the failure detector.e. even if the failure detector misbehaves and does not
provide any synchrony guarantees, the safety properties of consensus are preserved. Other solutions t
the consensus problem based on stronger failure detectors have also been proposed [5, 1]. They are nc
indulgent towards the failure detector, but allow greater resilience to faults (typically, they are able to
tolerate up tow — 1 faults).

Implementations of stronger failure detectors require more synchrony guarantees from the underlying
distributed system, which, as mentioned before, are more difficult to be found in most systems available

today. To overcome this problem, hybrid architectunesr(nhole$ may be used [18, 17]. The idea

is to design protocols that assume an asynchronous system model and make no explicit requirement
for synchrony guarantees, relying only on a strong failure detector (for instance, a perfect one) that
encapsulates the required synchrony. In order to implement a perfect failure detector, the asynchronous
system is augmented with a synchronous subsystem that is solely used to support the implementation of
the failure detector. Note that the synchronous subsystem corresponds to just a small and well defined
portion of the whole system, thus, rendering the difficult task of engineering such subsystem much
simpler.

In a previous work [3] we discussed the implementation of a hybrid system, which relied on a
hardware-based synchronous subsystem. The usage of this system was exemplified with a service, the
Global State Digest Provider service (GSDP), that could be used to solve consensus. Later, we showed
how a cheap and safe synchronous subsystem could be built based on COTS components [4]. In this
paper, we give a detailed formalization of the GSDP abstraction. We then use the abstraction to design
a consensus protocol, providing detailed description of the protocol as well as correctness proofs and a
performance evaluation.

The rest of the paper is structured in the following way. Section 2 describes the system model assumed,
gives a general description of the abstraction of a global state digest provider, and formally defines the
uniform consensus problem. In Section 3, we present a family of uniform consensus protocols based
on a particular instantiation of the global state digest provider abstraction (the proof of correctness of
the protocols proposed is presented in Appendix A). In Section 4 we evaluate the performance of the
proposed protocols and compare their performance with that of other protocols previously published.
Section 5 concludes the paper with our final remarks.

2 System Model and Definitions

System Model The system model is patterned after the one described in [12]. It consists of a finite
setll of n processesp > 1, namely,Il = {p,...,p,}. A process can fail bgrashing i.e. by
prematurely halting, and a crashed process does not recover. A process behaves darecitp(ding

to its specification) until it (possibly) crashes. At mggprocessesf < n, may crash.

Processes are completely connected via a reliable network. Processes communicate with each othe
by message passing through the communication channels that comprise the reliable network: there are
no message creation, alteration, duplication or loss. Further, there are assumptions neither on the relative
speed of processes nor on message transfer delays.

The Global State Digest Provider To circumvent the impossibility result of [12] and allow the im-
plementation of fast and adaptable consensus protocols, we consider that the system is augmented witt
a synchronous subsystem that implements the abstractioglobal state digest providflGSDP). A

global state digestGSD) is a protocol-specific summarized description of the relevant events that hap-
pened within the system during a particular time interval, including an indication of the processes that
have crashed.

Each process has access to the GSDP via its local GSDP module. This module is able to perform

some bounded computation in a timely way and to exchange, through a reliable network, a bounded
number of messages whose sizes are also bounded. These restrictions allow end-to-end communicatiol
delays between any two correct GSDP modules to be bounded by a known constassume that

each GSDP module has access to a local clock that measures a clock intervalttima real time

interval At’, At x (1 — p) < At' < At x (1 + p), wherep is a known constant. Moreover, we assume

that a process and its associated GSDP module form a single unit, thus a crashed (resp. correct) proces
also implies a crashed (resp. correct) GSDP module. This assumption is supported by the following
arguments: (1) it is possible to implement the system such that both the GSDP and the process execute
in the same node [4], thus, if the node crashes, the GSDP and the process will both fail; (2) if the
GSDP could fail alone, the process remains stopped since it depends on the GSDP to make progress
also, it would not be considered in any distributed computation since the GSDP would not propagate its
information; finally, (3) if the process fails the operating system will break the link between the process
and the GSDP (for example, this link could be through an opened special file), and the GSDP will stop,
propagating the failure information.

The Uniform Consensus Problem Before presenting protocols to solve the uniform consensus prob-
lem, let us recall the formal definition of the problem. In the uniform consensus problem, every process
p; proposesa valuev; and all correct processes havediecideon some value, in relation to the set

of proposed values. More formally, the uniform consensus problem is defined by the following proper-
ties [12]:

e termination: every correct process eventually decides some value;

¢ uniform integrity : every process decides at most once;

¢ uniform validity : if a process decides for the valugethenv was proposed by some process;
and

¢ uniform agreement no two processes decide differently.

3 Designing Uniform Consensus Protocols Supported by a Global State Digest
Provider

We start the presentation of the protocols by defining the data structure of the GSDs that are delivered
by the GSDP. For the consenépsotocol presented in this paper, a suitable GSD contains the following
fields:

e detectionvector a status vector with bits, in which element represents the operational status
of procesy; (itis initially set to0, and it is set td if p; is faulty);

e receptionmatrix an x n matrix of bits in which the biti, j] indicates whethep; has received a
message from; or not (it is initially set to0, and it is set td if the message has been received);
and

e consensualdentity: an identity field with[logsn | bits used to hold the identity of the process
that provides the consensual value for the protocol (it is initially set)to

For the sake of brevity, from now on we will use simply the term consensus when referring to uniform consensus.

The family of consensus protocols supported by a GSDP have a synchronous part and an asynchronou:
part. There are two parameters that differentiate each member of the family of protocols. The first one,
namedquorum defines the maximum number of processes that are necessary to “elect” the process that
provides the consensual value. This parameter affects only the synchronous part of the protocol. The
value ofquorumis such thatf + 1 < quorum < n. The second parameter, nanm@adposers defines
the number of processes that are allowed to propose a value in the execution of the protocol. It affects
only the asynchronous part of the protocol, and its value is suclfthat < proposers < n. A pair of
values for the parametegsiorumandproposersiefines a particular protocol. Thus, each member of the
family of protocols is denoted b§SDP-consensus(q,pyhereq andp are thequorumand proposers
parameters, respectively. In the next two subsections we describe the functioning of the synchronous
and asynchronous parts of the protocols.

3.1 The Synchronous Part of the Protocol GSDP-consensysf)

The synchronous part of the protocol is executed by the GSDP modules that are associated with
each process executing the consensus protocol. They exchange digests with the relevant events locall
perceived in order to formonsistentGSDs. More formally, a GSDP provides the following properties:

e strong completeness of detectianif some procesp; crashes, then eventually all GSDs deliv-
ered by every GSDP module havetection vector(j| = 1;

e strong accuracy of detection if any GSD delivered hagetection_vector(j] = 1, thenp; has
indeed crashed;

e strong completeness of receptianif some correct process receives a message from some
processp;, then eventually all GSDs delivered by every GSDP module haveption_ma-
trizli, j] = 1;

e strong accuracy of reception if any GSD delivered haseception_matriz[i, j] = 1, thenp;
has indeed received a message frgm

e validity: if a GSD g hasg.consensual iidentity = x and f,...o 1S the number of entries in
g.detection_vector set tol (i.e. the number of processes whose failures have been detected),
then, there are at leagt f, ..., OCcurrences of 1 < i < n, that satisfyyg.detection_vector|i] =
0 A g.reception_matriz|i, x] = 1; also, ifg hasg.consensual _identity =1, then, there is np,
such that, there are at least f,....; Occurrences of, 1 < i < n, that satisfy.g.detection_vec-
tor[i] = 0 A g.reception_matriz[i,z] = 1; and

e write-once: if a GSD is ever delivered withonsensual _identity = x # 1, then every GSD de-
livered by any GSDP module that hasisensual identity #1 also hagonsensual _identity =
Z.

Each GSDP modulgsdp; maintains two GSDs variables, nameg:dy_for_delivery; andlocal;.
Initially, they have all bits of theidetection_vector and reception_matriz set to0, and theircon-
sensual _identity fields are set ta_. To access its local GSDP module, a progessvokes thegetGSD
primitive. Whenp; invokes this primitive, it receives in return the contents ofitb@dy_for_delivery;
variable. Thdocal; variable is used to locally compute valid GSDs. Whenever a valid GSD is formed
by a GSDP modulgsdp;, it copieslocal; into ready_for_delivery;, thus making this newly formed
GSD available for delivery.

To guarantee thetrong completeness of detectiand thestrong accuracy of detectioproperties,
the GSDP modules implement a perfect failure detector over the synchronous subsystem. The simplest
way to implement such a failure detector in a synchronous system is to have every module broadcast-
ing emptyheartbeatmessages at some a priori agreed rate. Assume that every correct GSDP module
broadcasts a heartbeat message evarpits of time. Letd = (7 + J)(1 + p) andt, be a time after
which all processes have already started the execution of the protocol. Thus, the failure of any GSDP
module that happens at some time > ¢, is detected by every correct module at latest byd. If
a GSDP modulgsdp; detects the failure of some process then it updates itéocal; GSD, such that
local;.detection_vector|j] = 1. This guarantees thetrong completeness of detectjmoperty, provided
thatlocal; eventually gets valid and is, therefore, copied intady_for_delivery;. Further, the upper
bound on end-to-end communication delays of the synchronous subsy3teogéther with the bound
on the maximum drift rated), guarantee that detection is perfect, hencestreng accuracy of detection
property also holds.

Thestrong completeness of receptiamd thestrong accuracy of receptigoroperties are also trivially
met. Whenever a procegsreceives a protocol message from a progegsis associated GSDP module
gsdp; is notified. Thengsdp; setslocal;.reception_matriz|i, j] = 1 and broadcasts dogon|-bit long
message containing the indgof the element that has been set onlitsil;.reception_matriz to all
other GSDP modules. When a GSDP modyiép, receives such a message it sets the corresponding
element of itslocaly.reception_matriz. This guaranteestrong accuracy of receptiomprovided that
the local GSDs eventually get valid and are, therefore, copied into the respectilte for_delivery
GSDs. Further, since the messages broadcast by a correct GSDP module are always received by al
correct GSDP modulestrong completeness of receptisralso guaranteed.

The most challenging aspect of the implementation of the GSDP is to guarantee thalidhg and
write-onceproperties are simultaneously met. TWadidity property is easy to be met, since it depends
only on the local information gathered by a GSDP module. The difficulty arises when, after updating
either thedetection_vector or thereception_matriz of its local GSD, a GSDP modulesdp; realizes
that it must updatécal;.consensual _identity (otherwise, no more valid GSDs may be made available).
To preservevalidity, from this point onwardsfocal; can only be copied inteeady_for_delivery; if
local;.consensual identity #1. However, since it is possible that a GSDP modydép; fails while
sending its heartbeat messages or while sending information abeutdigion_matriz, some GSDP
modules may receive such messages, while others do not. Thus, different GSDP modules might have
different views on the value that should be used to setcth@ensual_identity field. Therefore, to
guarantee therite-onceproperty, they must elect a common process. There are several possibilities to
achieve this, the simplest one being for a GSDP to atomically broadcast a message with its local view of
which process should be elected. The first message that is atomically delivered defines the identity of the
process to be used by all GSDP modules. The atomic broadcast protocol guarantees that the message
that are delivered by some GSDP module are delivered by every correct GSDP module; further, any two
messages that are delivered by some GSDP module are delivered in the same order by all GSDP module:
that deliver them [7]. This guarantees that all modules update their local GSD with the same value. Once
the value of theconsensual_identity of every correct GSDP module is set to the same value=+£ 1,
this value will never change, thus guaranteeing thatthie-onceproperty of the GSDP is met.

Algorithm 1 The pseudo-code afsdp; associated with procegsthat executes GSDP-consengug)

% shared variables and function

local;.detection_vector = ready_for_delivery;.detection_vector = 0 % set all bits to 0
local;.reception_matriz = ready_for_delivery;.reception_matrixz = 0 % set all bits to 0
local;.consensual_identification = ready-for_delivery;.consensual identification =L

while true do
sleep forr units of time
sendgsdp;'s heartbeat to all GSDP modules
end while
I
while true do
when p;’s failure has been detected
local;.detection_vector[j] = 1
if local; satisfies thevalidity propertythen ready._for_delivery; = local; end if
end when
end while
I
while true do
whenp; notifies thaip;’s consensus protocol message has been received
local;.reception-matriz(i, j] = 1
send index to all GSDP modules
if local; satisfies thevalidity propertythen ready-for_delivery; = local; end if
end when
end while
I
while true do
whenindexk has been received fropsdp;
local;.reception-matriz(j, k| = 1
if local; satisfies thevalidity propertythen ready-for_delivery; = local; end if
end when
end while
I
decision_reached = false
while not decision_reached do
whenlocal; does not satisfy thealidity property
atomically broadcast the identityof a proces®, whose message has been received by all correct processes
waituntil atomically deliver some identity
local;.consensual_identity = y; ready-for_delivery; = local;; decision_reached = true
end when
end while

Remark. It has been shown in [5] that a solution to atomic broadcast is also a solution to consensus.
Thus, a natural question is: why not use this atomic broadcast service to solve consensus for the appli-
cation? We recall that the bandwidth of the synchronous subsystem must be judiciously used, and since
the upper bound on the size of the messages that the applications will ever generate is unknown, they
cannot directly use the synchronous subsystem.

Algorithm 1 gives the pseudo-code of the concurrent tasks that implement the GSDP module associ-
ated with a procesg; that executes GSDP-consengygy.

3.2 The Asynchronous Part of the Protocol GSDP-consensys()

The asynchronous part of the protocol is structured as three concurrent tasks. In the first task (the
propositiontask)p processes send messages to the other processes containing their proposition values.
The second task (tHesteningtask) is responsible for receiving and storing the proposition messages that
have been sent by the other processes. It also notifies its associated GSDP module of the propositior

messages that have been received. The final tasldébisiontask) is responsible for detecting that a
decision can be made and that the execution of the protocol can be terminated. The decision task is alsc
very simple. It enters a loop constantly querying its local GSDP module. Whenever a GSD is delivered
such that theonsensuaidentityfield is equal to some, = # L, it verifies if it has already receivad’s
message. If not, it waits until,’'s message is received. In either case, after successfully retrigysg
message, it decides for the value contained in the message and terminates its execution of the protoco
by forwardingp,’s message to every correct process that have not yet received it. Algorithm 2 is the
pseudo-code of the concurrent tasks that implement the asynchronous part of the protocol.

Algorithm 2 The pseudo-code of GSDP-consengug) protocol executed by process

% shared variables
bagO f Messages; = ()
decided; = false

% Proposition task
when propose(v;) is invoked
if ¢ < pthen sendm;(v;) to all processesnd if
end when
I
% Listening task
while not decided; do
whenreceivem ; (v;) fromp;
if m;(v;) notin bagO f Messages; then
addm(vj) to bagO f Messages;
notify gsdp; of the reception of a proposition message from
end if
end when
end while
I
% Decision task
while not decided; do
g = getGSD()
x = g.consensusal_identity
if z #.1 then
waituntil mz (ve) in bagO f Messages;
mg(vz) = getConsensual Message(x, bagO f Messages;) % retrievegp,'s message
sendmg (vz) to all pi, such thay.detection_vector[k] = 0 A g.reception-matriz[k,xz] = 0
decided; = true
return(vg) % decides for the value proposed by
end if
end while

4 Performance Evaluation

In this section we analyze the performance of the protocols presented in this paper and compare
their performance with that of other protocols previously published. Performance prediction of most
consensus protocols for asynchronous systems augmented with unreliable failure detectors use a round
based model. Two metrics are normally used: i) the time complexity of the protocol, given by the number
of communication rounds that the protocol needs to execute in a particular run; and ii) the message
complexity, given by the number of messages that are sent by the processes executing a particular run
of the protocol. In the following we compare the performance of several consensus protocols, including
the GSDP-consensus() protocols, using these metrics.

In the GSDP-consensus(p) protocols, processes may send messages in two parts of the protocol:

when proposing their values, and, possibly, when diffusing the consensual message, just before decid-
ing. Thus, considering the number of rounds, the protocols GSDP-consgngugquire eitherl or 2
communication rounds, in the worst case. In particular, the protocols GSDP-consep¥usquire just

a single communication round, and are, therefore, optimal with respect to this metric. It is worth noting
that, like other protocols based upon strong failure detectors, the number of rounds is independent of the
number of failures that actually occur during a particular run of the protocol.

The message complexity of the protocols also vary from protocol to protocol. In failure-free runs,
the protocols GSDP-consenssf), sendn.p messages in the proposition phase, while in the decision
phase up te — ¢ messages are sent by each process that decides. Thus, in failure-free runs, the message
complexity of these protocols ist.p + n(n — q) = n(n + p — q). In summary, considering message
complexity, the most expensive protocol is GSDP-conserisus(, n) with a cost ofn(2n — f — 1),
while the cheapest protocol is GSDP-consensug(+ 1) with a cost ofn(f + 1). Finally, the message
complexity of all protocols is reduced as failures occur (this is obvious, since faulty processes do not
send messages).

Dutta and Guerraoui compare several indulgent consensus protocols considering a failure-free sce-
nario and several scenarios where failures occur [9]. The consensus protocols that they propose in [9]
achieve consensus arounds in all scenarios and are the most efficient among the protocols surveyed. It
is important to point out that these results consider only runs in which the failure detector makes no mis-
take. For those runs in which the failure detector may make mistakes, the maximum number of rounds
cannot be easily computed a priori. Considering message complexity, all indulgent consensus protocols
require the execution of at least one reliable broadcast. Thus, the message complexity is always greatel
than(n — 1)2.

Brasileiroet al. present a consensus protocol that is able to decide in a single round in “good” runs
(those in which enough processes propose the same value), however, in the other runs the protocol relie:
on an underlying consensus protocol, therefore requiring more rounds to decide [2]. The first part of the
protocol (that tries to achieve fast decision) requitésnessages, which is the message complexity of
the protocol in “good” runs.

Protocols based on stronger failure detectors may require as muchoasds to reach a decision.

requiresn rounds, each round requiring messages. Thus, in failure-free runs, the protocol requites
messages to be sent.

5 Conclusion

In this paper we have detailed the global state digest provider (GSDP), an abstraction to support the
implementation of distributed protocols. Informallyglobal state digesis a bounded and consistent
summarized representation of the local states of all processes that run the protocol (including their opera-
tional status: correct or crashed). It is a stronger abstraction than a perfect failure detector and, therefore,
provides a more powerful framework for the design of fault-tolerant distributed protocols. Regarding the
consensus problem, the main contribution of the GSDP is that it provides information that allows a con-
sensus protocol to adapt itself to the fluctuations on the contention levels experienced by the system
during a particular execution of the protocol - a feature that is present in no other consensus protocol

based upon perfect failure detectors. Nevertheless, the implementation of a GSDP requires no other
assumptions than those already required to implement perfect failure detection, namely the existence of
an (ideally fast) synchronous subsystem that is able to guarantee a known upper bound to the end-to-enc
communication delays between any two correct nodes.

Whether suitable GSDPs may be designed to support the design and implementation of other dis-
tributed protocols is an open issue that we are currently investigating. Nevertheless, we believe that a
GSDP is a useful abstraction to any distributed problem that can take advantage of receiving GSDs with
the following monotonicityproperty: letGSD, be the set of all GSDs that happen in any ruof a
protocol P that solves a given distributed problem, and assume that all elements in@yéry are
totally ordered, such that for any two elemegtsndg’ of GSD,., eitherg — ¢’ or g’ — g; let P be the
set of predicates thd? applies on the GSDs it is delivered on its ryrandg;, and g, two elements of
GSD,, such thayy; — go; GSD, is monotonic in relation tad iff Vp € P, if p holds ing, then it also
holds ing,. In a recent paper, we have shown how a cheap and safe GSDP service could be built using
off-the-shelf components such as Linux boxes connected via a switched Fast-Ethernet links [4].

References

[1] AGUILERA, M. K., LANN, G. L.,AND TOUEG, S. On the impact of fast failure detectors on real-
time fault-tolerant systems. In6" International Symposium on Distributed Computing (DISC
2002)(Tolouse, France, October 2002), pp. 354-3609.

[2] BRASILEIRO, F. V., GREVE, F., MOSTEFAOUI, A., AND RAYNAL, M. Consensus in one com-
munication step is possible. Research Report 1321, INRIA, 2001.

[3] BRITO, A., AND BRASILEIRO, F. Programando um subsistermia@ono para suporte a mecanis-
mos eficientes de tolaéncia a falhas. IiWorkshop de Toléncia a Falhag2004).

[4] BRITO, A., AND BRASILEIRO, F. A cheap and safe cots wormhole for local area network. In
Proceedings of the 10th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric
Systems (DPDNS’0%2005).

[5] CHANDRA, T., AND TOUEG, S. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM 432 (Mar 1996), 225-267.

[6] CHANDRA, T. D., HADZILACOS, V., AND TOUEG, S. The weakest failure detector for solving
consensusJournal of the ACM 434 (Jul 1996), 685-722.

[7] CRISTIAN, F., AGHILI, H., STRONG, R.,AND DOLEV, D. Atomic broadcast: from simple mes-
sage diffusion to Byzantine agreement.Aroceedings of thé5™ IEEE International Symposium
on Fault-Tolerant Computing (FTCS’8%\nn Arbor, Jun 1985), pp. 200-206.

[8] DOLEV, D., DWORK, C., AND STOCKMEYER, L. On the minimal synchronism needed for dis-
tributed consensuslournal of the ACM 341 (Jan 1987), 77-97.

[9] DuTTA, P.,AND GUERRAOUI, R. Fast indulgent consensus with zero degradatioRrateedings
of the4th European Dependable Computing Conference (EDQTdylouse, France, Oct 2002).

[10] DwoRK, C., LYNCH, N. A., AND STOCKMEYER, L. Consensus in the presence of partial syn-
chrony. Journal of the ACM 352 (Apr 1988), 288—323.

[11] FISCHER, M. J. The consensus problem in unreliable distributed systems. Research Report 273,
Yale University, Jun 1983.

[12] FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. D. Impossibility of distributed consensus
with one faulty processlournal of ACM 322 (Apr 1985), 374—-382.

[13] HURFIN, M., AND RAYNAL, M. A simple and fast asynchronous consensus protocol based on a
weak failure detectoDistributed Computing 124 (1999), 209-223.

[14] MoOSTEFAOUI, A., AND RAYNAL, M. Solving consensus using chandra toueg’s unreliable failure
detectors: a general quorum based approacRrdneedings of thé3" International Symposium
on Distributed Computing (DISC'99PBratislava, Slovaquia, Sep 1999), pp. 49-63.

[15] SAmPAIO, L. M. R., BRASILEIRO, F. V.,DA C. CIRNE, W., AND DE FIGUEIREDO, J. C. A.How
bad are wrong suspicions? towards adaptive distributed protocoRroteedings of the Interna-
tional Conference on Dependable Systems and Networks (DSN’2B88)Franciso, California,
USA, June 2003), pp. 551-560.

[16] ScHIPER, A. Early consensus in an asynchronous system with a weak failure defestoibuted
Computing 103 (Apr. 1997), 149-157.

[17] VERissIMO, P. Uncertainty and predictability: Can they be reconciled®iture Directions in
Distributed Computing, Springer Verlag LNCS 2584ay 2003), 108-113.

[18] VERissIMO, P.,AND CASIMIRO, A. The Timely Computing Base model and architect(i@ns-
actions on Computers - Special Issue on Asynchronous Real-Time Sysiéhiaigd. 2002).

Appendix A. Proof of Correctness of the GSDP-consensug(p) Protocols

Lemmal Every correct process that executes the protocol presented in Algorithm 2 eventually decides
some valuetérminatior).

Proof If a correct process ever decides it does so while executing the decision task of Algorithm 2. In this
task a decision is made only if the process is delivered a @3Dch thay.consensual -identity # 1.
Therefore, to prove the lemma, we must first show that eventually every correct process is delivered
such a GSD. From thealidity property, a GSDy with g.consensual iidentity #.1 can only be de-
livered if there is g, for which there are at leagt— f,...; Occurrences of, 1 < i < n, such that
g.detection_vector|i| = 0 andg.reception_matriz[i,z] = 1.2 Since channels are reliable and at least

p, p > f + 1, processes broadcasts their values to all processes, the proposition message of at least
process will be received by all processes that have not crasbed;- f,..... processes. Without loss of
generality, let, be such a process. Thgong completeness of receptiproperty guarantees that even-
tually, all GSDs delivered by every correct GSDP module haveption_matriz[i,z] = 1, for every
correctp;. On the other hand, th&grong completeness of detectimmperty guarantees that eventually,

all GSDs delivered by every correct GSDP module héutection vector|j] = 1 for everyp; that fails.

Thus, eventually all GSDs are delivered such that therevaref, ..., Occurrences of, 1 < ¢ < n, for

which detection_vector|i] = 0 andreception_matriz|i,x] = 1. Sincen — foetuar = ¢ — factuar, then

one must haveecision_identity #1. Since the decision task keeps constantly querying the GSDP,
eventually a GSDy with g.consensual_identity # 1 is delivered to every correct process.

To complete the proof we must show that the proposition message sent by the process whose identifi-
cation is
g.consensual_identity has indeed been received by every correct proggsd therefore, can be re-
trieved frombagO f Messages;. The strong accuracy of detectioproperty guarantees that, for any
correct procesg;, no GSDP module will ever deliver a GSD withdetection_vector[i] = 1, thus

°Notice that this condition does not guarantee thabnsensual_identity = x, but only thatg.consensual_iden-
tity #1.

the correct processes are a subset of the processeg ithdicates not to have failed.¢. every p;
such thatg.detection_vector[i] = 0). The strong accuracy of receptioproperty guarantees that if
g.reception_matriz|i, z] = 1thenp; has indeed received’s message. Sinee> f+1andf > fuctuals
then, there is at leastcorrect process among the- f,....; processes that have receiyecs message.
This process will complete,’s broadcast, thus even if, fails while broadcasting its message, it is
guaranteed that every correct process will receive message. Hence the lemma. O

Lemma 2 Every process that executes the protocol presented in Algorithm 2 decides at most once
(uniform integrity.

Proof This is trivially met by the protocol presented in Algorithm 2. As can be seen in the pseudo-code
of the protocol, there is only one decision point for any progeskat decides. Further, after deciding,
a process terminates its execution of the protocol. O

Lemma 3 If a process that executes the protocol presented in Algorithm 2 decides for the védar
v was proposed by some procesgsiform validity).

Proof In Algorithm 2, the decision value of a processs one that has been encapsulated in a message
contained irbagO f Messages;. The only messages that enteyO f M essages; of a procesg; are the
proposition messages sent by the processes executing the protocol. Hence the lemma. O

Lemma 4 No two processes that execute the protocol presented in Algorithm 2 decide differently
(uniform agreemeit

Proof Lemma 1 shows that every correct process decides. pldte the process whose proposi-
tion is the decision value of some corrggt Thus, p; must have been delivered a GSDsuch that
g.consensual _identity = x. From thewrite-onceproperty if any other process is delivered a G8D
with ¢'.consensual_identity #1 then it must havey.consensual identity = x. Thus, any process
that decides must also decide for the value proposed blience the lemma. O

Theorem 1 The protocol presented in Algorithm 2 solves consensus.

Proof The proof follows directly from lemmas 1, 2, 3 and 4. O

