
Fast Adaptable Uniform Consensus Using Global State Digests

Andrey Brito 1, Francisco Brasileiro1,2, Walfredo Cirne1,2

Universidade Federal de Campina Grande
1Coordenaç̃ao de Ṕos-Graduaç̃ao em Inforḿatica

2Coordenaç̃ao de Ṕos-Graduaç̃ao em Engenharia Elétrica
Av. Aprı́gio Veloso, 882 - 58.109-970, Campina Grande, PB, Brazil

Phone: +55 83 310 1433 Fax: +55 83 310 1365
{fubica,andrey,walfredo}@dsc.ufcg.edu.br

Abstract

Protocols that solve the consensus problem have been widely recognized as important building blocks
for the design of reliable distributed systems. This fact explains why considerable amount of work has
been devoted both to establish the minimal system requirements that allow a solution to the problem, as
well as to provide efficient protocols to solve it. We propose the use ofglobal state digeststo design effi-
cient and adaptable consensus protocols. A global state digest is a bounded and consistent summarized
representation of the local states of all processes that run the protocol. By frequently providing processes
with new global state digests, it is possible to allow processes to terminate the protocol soon after the
minimal condition necessary to solve the problem holds, whatever are the contention levels experienced
by the system. We present the design of a family of fast adaptable consensus protocols using this ab-
straction. Further, a global state digest provider can be implemented whenever the same assumptions
required to implement perfect failure detectors hold (basically the ability to convey a bounded amount
of information within a bounded interval of time).

Keywords: agreement protocols; perfect failure detection; consistent global state; synchronous and
asynchronous distributed systems; wormholes.

1 Introduction

In this paper we focus on the fundamental problem of reaching consensus among a set ofn processes
that communicate exclusively via the exchange of messages [11]. In the consensus problem, each pro-
cesspi proposes a valuevi and every correct process must decide for the same common valuev among
the values proposed, despite the possible crashes of up tof processes,f < n. Designing a protocol that
guarantees these properties, however, is not trivial. There are two main sources of difficulties associ-

ated with the design of a fault-tolerant distributed consensus protocol, namely: i) the lack of synchrony
guarantees provided by the underlying distributed system; and ii) the occurrence of failures in both
processing and communication.

Synchronous systems provide strong synchrony guarantees for both processing schedule and com-
munication delays. Because of this, detection of benign failures (such as crashes) within synchronous
systems is straightforward. Therefore, solutions to the consensus problem for this kind of system have
long been known [7]. On the downside, the strong synchrony guarantees provided by synchronous
systems require an a priori knowledge of the worst case workloads to which the system will ever be sub-
ject. This makes it more difficult to develop such systems and reduces the applicability of fault-tolerant
distributed protocols designed to execute over a synchronous system.

On the other hand, in a pure asynchronous system model, no synchrony guarantees are given (in fact
the very notion of time is absent), thus, any distributed system can be considered a pure asynchronous
system. Unfortunately, it is well known that most practical fault-tolerant distributed problems are im-
possible to be solved in this kind of system. Particularly, it has been proved that there is no deterministic
solution to the consensus problem in pure asynchronous systems subject to even a single crash fail-
ure [12].

This result has prompted researchers to seek for the minimal synchrony guarantees that a distributed
system must provide in order to allow fault-tolerant solutions to fundamental distributed problems, such
as consensus. This effort is backed up by the observation that, although most off-the-shelf distributed
systems are not synchronous, they do have some level of synchrony, and are, therefore, generally classi-
fied as partially synchronous systems [8, 10].

Within this context, the abstraction of unreliable failure detectors [5] is an important contribution.
An unreliable failure detector is a “black-box” that is associated with each process of an asynchronous
distributed system and encapsulates the synchrony required to solve fault-tolerant distributed problems.
This synchrony is specified via a pair of properties that describe the behavior of classes of failure detec-
tors. They define the failures that the failure detectors are able to detect (theircompletenessproperty)
and the mistakes that they are allowed to make (theiraccuracyproperty). It has been shown that the
weakest failure detector class that allows a deterministic solution to consensus, named3S, must pro-
vide the following properties: eventually every process that crashes is permanently suspected by every
correct process (strong completeness); and, there is a time after which some correct process is never
suspected by any correct process (eventual weak accuracy) [6].

Following this result, a number of consensus protocols based on failure detectors of the class3S
have been proposed (e.g. [16, 14, 13, 9, 15]). They all share the following characteristics: i) they
are only able to tolerate a minority of faulty processes,i.e. they requiref < n/2; and, ii) they are
indulgent[9] in relation to the failure detector,i.e. even if the failure detector misbehaves and does not
provide any synchrony guarantees, the safety properties of consensus are preserved. Other solutions to
the consensus problem based on stronger failure detectors have also been proposed [5, 1]. They are not
indulgent towards the failure detector, but allow greater resilience to faults (typically, they are able to
tolerate up ton− 1 faults).

Implementations of stronger failure detectors require more synchrony guarantees from the underlying
distributed system, which, as mentioned before, are more difficult to be found in most systems available

today. To overcome this problem, hybrid architectures (wormholes) may be used [18, 17]. The idea
is to design protocols that assume an asynchronous system model and make no explicit requirement
for synchrony guarantees, relying only on a strong failure detector (for instance, a perfect one) that
encapsulates the required synchrony. In order to implement a perfect failure detector, the asynchronous
system is augmented with a synchronous subsystem that is solely used to support the implementation of
the failure detector. Note that the synchronous subsystem corresponds to just a small and well defined
portion of the whole system, thus, rendering the difficult task of engineering such subsystem much
simpler.

In a previous work [3] we discussed the implementation of a hybrid system, which relied on a
hardware-based synchronous subsystem. The usage of this system was exemplified with a service, the
Global State Digest Provider service (GSDP), that could be used to solve consensus. Later, we showed
how a cheap and safe synchronous subsystem could be built based on COTS components [4]. In this
paper, we give a detailed formalization of the GSDP abstraction. We then use the abstraction to design
a consensus protocol, providing detailed description of the protocol as well as correctness proofs and a
performance evaluation.

The rest of the paper is structured in the following way. Section 2 describes the system model assumed,
gives a general description of the abstraction of a global state digest provider, and formally defines the
uniform consensus problem. In Section 3, we present a family of uniform consensus protocols based
on a particular instantiation of the global state digest provider abstraction (the proof of correctness of
the protocols proposed is presented in Appendix A). In Section 4 we evaluate the performance of the
proposed protocols and compare their performance with that of other protocols previously published.
Section 5 concludes the paper with our final remarks.

2 System Model and Definitions

System Model The system model is patterned after the one described in [12]. It consists of a finite
set Π of n processes,n > 1, namely,Π = {p1, . . . , pn}. A process can fail bycrashing, i.e. by
prematurely halting, and a crashed process does not recover. A process behaves correctly (i.e. according
to its specification) until it (possibly) crashes. At mostf processes,f < n, may crash.

Processes are completely connected via a reliable network. Processes communicate with each other
by message passing through the communication channels that comprise the reliable network: there are
no message creation, alteration, duplication or loss. Further, there are assumptions neither on the relative
speed of processes nor on message transfer delays.

The Global State Digest Provider To circumvent the impossibility result of [12] and allow the im-
plementation of fast and adaptable consensus protocols, we consider that the system is augmented with
a synchronous subsystem that implements the abstraction of aglobal state digest provider(GSDP). A
global state digest(GSD) is a protocol-specific summarized description of the relevant events that hap-
pened within the system during a particular time interval, including an indication of the processes that
have crashed.

Each process has access to the GSDP via its local GSDP module. This module is able to perform

some bounded computation in a timely way and to exchange, through a reliable network, a bounded
number of messages whose sizes are also bounded. These restrictions allow end-to-end communication
delays between any two correct GSDP modules to be bounded by a known constantδ. We assume that
each GSDP module has access to a local clock that measures a clock interval time∆t in a real time
interval∆t′, ∆t× (1− ρ) ≤ ∆t′ ≤ ∆t× (1 + ρ), whereρ is a known constant. Moreover, we assume
that a process and its associated GSDP module form a single unit, thus a crashed (resp. correct) process
also implies a crashed (resp. correct) GSDP module. This assumption is supported by the following
arguments: (1) it is possible to implement the system such that both the GSDP and the process execute
in the same node [4], thus, if the node crashes, the GSDP and the process will both fail; (2) if the
GSDP could fail alone, the process remains stopped since it depends on the GSDP to make progress;
also, it would not be considered in any distributed computation since the GSDP would not propagate its
information; finally, (3) if the process fails the operating system will break the link between the process
and the GSDP (for example, this link could be through an opened special file), and the GSDP will stop,
propagating the failure information.

The Uniform Consensus Problem Before presenting protocols to solve the uniform consensus prob-
lem, let us recall the formal definition of the problem. In the uniform consensus problem, every process
pi proposesa valuevi and all correct processes have todecideon some valuev, in relation to the set
of proposed values. More formally, the uniform consensus problem is defined by the following proper-
ties [12]:

• termination : every correct process eventually decides some value;
• uniform integrity : every process decides at most once;
• uniform validity : if a process decides for the valuev, thenv was proposed by some process;

and
• uniform agreement: no two processes decide differently.

3 Designing Uniform Consensus Protocols Supported by a Global State Digest
Provider

We start the presentation of the protocols by defining the data structure of the GSDs that are delivered
by the GSDP. For the consensus1 protocol presented in this paper, a suitable GSD contains the following
fields:

• detectionvector: a status vector withn bits, in which elementi represents the operational status
of processpi (it is initially set to0, and it is set to1 if pi is faulty);

• receptionmatrix: an×n matrix of bits in which the bit[i, j] indicates whetherpi has received a
message frompj or not (it is initially set to0, and it is set to1 if the message has been received);
and

• consensualidentity: an identity field withdlog2ne bits used to hold the identity of the process
that provides the consensual value for the protocol (it is initially set to⊥).

1For the sake of brevity, from now on we will use simply the term consensus when referring to uniform consensus.

The family of consensus protocols supported by a GSDP have a synchronous part and an asynchronous
part. There are two parameters that differentiate each member of the family of protocols. The first one,
namedquorum, defines the maximum number of processes that are necessary to “elect” the process that
provides the consensual value. This parameter affects only the synchronous part of the protocol. The
value ofquorumis such thatf + 1 ≤ quorum ≤ n. The second parameter, namedproposers, defines
the number of processes that are allowed to propose a value in the execution of the protocol. It affects
only the asynchronous part of the protocol, and its value is such thatf + 1 ≤ proposers ≤ n. A pair of
values for the parametersquorumandproposersdefines a particular protocol. Thus, each member of the
family of protocols is denoted byGSDP-consensus(q,p), whereq andp are thequorumandproposers
parameters, respectively. In the next two subsections we describe the functioning of the synchronous
and asynchronous parts of the protocols.

3.1 The Synchronous Part of the Protocol GSDP-consensus(q, p)

The synchronous part of the protocol is executed by the GSDP modules that are associated with
each process executing the consensus protocol. They exchange digests with the relevant events locally
perceived in order to formconsistentGSDs. More formally, a GSDP provides the following properties:

• strong completeness of detection: if some processpj crashes, then eventually all GSDs deliv-
ered by every GSDP module havedetection vector[j] = 1;

• strong accuracy of detection: if any GSD delivered hasdetection vector[j] = 1, thenpj has
indeed crashed;

• strong completeness of reception: if some correct processpi receives a message from some
processpj, then eventually all GSDs delivered by every GSDP module havereception ma-
trix[i, j] = 1;

• strong accuracy of reception: if any GSD delivered hasreception matrix[i, j] = 1, thenpi

has indeed received a message frompj;
• validity : if a GSD g hasg.consensual identity = x andfactual is the number of entries in

g.detection vector set to1 (i.e. the number of processes whose failures have been detected),
then, there are at leastq−factual occurrences ofi, 1 ≤ i ≤ n, that satisfy:g.detection vector[i] =
0∧ g.reception matrix[i, x] = 1; also, ifg hasg.consensual identity =⊥, then, there is nopx

such that, there are at leastq − factual occurrences ofi, 1 ≤ i ≤ n, that satisfy:g.detection vec-
tor[i] = 0 ∧ g.reception matrix[i, x] = 1; and

• write-once: if a GSD is ever delivered withconsensual identity = x 6=⊥, then every GSD de-
livered by any GSDP module that hasconsensual identity 6=⊥ also hasconsensual identity =
x.

Each GSDP modulegsdpi maintains two GSDs variables, namedready for deliveryi and locali.
Initially, they have all bits of theirdetection vector and reception matrix set to0, and theircon-
sensual identity fields are set to⊥. To access its local GSDP module, a processpi invokes thegetGSD
primitive. Whenpi invokes this primitive, it receives in return the contents of theready for deliveryi

variable. Thelocali variable is used to locally compute valid GSDs. Whenever a valid GSD is formed
by a GSDP modulegsdpi, it copieslocali into ready for deliveryi, thus making this newly formed
GSD available for delivery.

To guarantee thestrong completeness of detectionand thestrong accuracy of detectionproperties,
the GSDP modules implement a perfect failure detector over the synchronous subsystem. The simplest
way to implement such a failure detector in a synchronous system is to have every module broadcast-
ing emptyheartbeatmessages at some a priori agreed rate. Assume that every correct GSDP module
broadcasts a heartbeat message everyτ units of time. Letd = (τ + δ)(1 + ρ) andt0 be a time after
which all processes have already started the execution of the protocol. Thus, the failure of any GSDP
module that happens at some timet, t ≥ t0, is detected by every correct module at latest byt + d. If
a GSDP modulegsdpi detects the failure of some processpj, then it updates itslocali GSD, such that
locali.detection vector[j] = 1. This guarantees thestrong completeness of detectionproperty, provided
that locali eventually gets valid and is, therefore, copied intoready for deliveryi. Further, the upper
bound on end-to-end communication delays of the synchronous subsystem (δ), together with the bound
on the maximum drift rate (ρ), guarantee that detection is perfect, hence thestrong accuracy of detection
property also holds.

Thestrong completeness of receptionand thestrong accuracy of receptionproperties are also trivially
met. Whenever a processpi receives a protocol message from a processpj, its associated GSDP module
gsdpi is notified. Then,gsdpi setslocali.reception matrix[i, j] = 1 and broadcasts adlog2ne-bit long
message containing the indexj of the element that has been set on itslocali.reception matrix to all
other GSDP modules. When a GSDP modulegsdpk receives such a message it sets the corresponding
element of itslocalk.reception matrix. This guaranteesstrong accuracy of reception, provided that
the local GSDs eventually get valid and are, therefore, copied into the respectiveready for delivery
GSDs. Further, since the messages broadcast by a correct GSDP module are always received by all
correct GSDP modules,strong completeness of receptionis also guaranteed.

The most challenging aspect of the implementation of the GSDP is to guarantee that thevalidity and
write-onceproperties are simultaneously met. Thevalidity property is easy to be met, since it depends
only on the local information gathered by a GSDP module. The difficulty arises when, after updating
either thedetection vector or thereception matrix of its local GSD, a GSDP modulegsdpi realizes
that it must updatelocali.consensual identity (otherwise, no more valid GSDs may be made available).
To preservevalidity, from this point onwards,locali can only be copied intoready for deliveryi if
locali.consensual identity 6=⊥. However, since it is possible that a GSDP modulegsdpj fails while
sending its heartbeat messages or while sending information about itsreception matrix, some GSDP
modules may receive such messages, while others do not. Thus, different GSDP modules might have
different views on the value that should be used to set theconsensual identity field. Therefore, to
guarantee thewrite-onceproperty, they must elect a common process. There are several possibilities to
achieve this, the simplest one being for a GSDP to atomically broadcast a message with its local view of
which process should be elected. The first message that is atomically delivered defines the identity of the
process to be used by all GSDP modules. The atomic broadcast protocol guarantees that the messages
that are delivered by some GSDP module are delivered by every correct GSDP module; further, any two
messages that are delivered by some GSDP module are delivered in the same order by all GSDP modules
that deliver them [7]. This guarantees that all modules update their local GSD with the same value. Once
the value of theconsensual identity of every correct GSDP module is set to the same valuex, x 6=⊥,
this value will never change, thus guaranteeing that thewrite-onceproperty of the GSDP is met.

Algorithm 1 The pseudo-code ofgsdpi associated with processpi that executes GSDP-consensus(q, p)
% shared variables and function
locali.detection vector = ready for deliveryi.detection vector = 0 % set all bits to 0
locali.reception matrix = ready for deliveryi.reception matrix = 0 % set all bits to 0
locali.consensual identification = ready for deliveryi.consensual identification =⊥

while true do
sleep forτ units of time
sendgsdpi’s heartbeat to all GSDP modules

end while
||
while true do

whenpj ’s failure has been detected
locali.detection vector[j] = 1
if locali satisfies thevalidity propertythen ready for deliveryi = locali end if

end when
end while
||
while true do

whenpi notifies thatpj ’s consensus protocol message has been received
locali.reception matrix[i, j] = 1
send indexj to all GSDP modules
if locali satisfies thevalidity propertythen ready for deliveryi = locali end if

end when
end while
||
while true do

when indexk has been received fromgsdpj

locali.reception matrix[j, k] = 1
if locali satisfies thevalidity propertythen ready for deliveryi = locali end if

end when
end while
||
decision reached = false
while not decision reached do

when locali does not satisfy thevalidity property
atomically broadcast the identityx of a processpx whose message has been received by all correct processes
waituntil atomically deliver some identityy
locali.consensual identity = y; ready for deliveryi = locali; decision reached = true

end when
end while

Remark. It has been shown in [5] that a solution to atomic broadcast is also a solution to consensus.
Thus, a natural question is: why not use this atomic broadcast service to solve consensus for the appli-
cation? We recall that the bandwidth of the synchronous subsystem must be judiciously used, and since
the upper bound on the size of the messages that the applications will ever generate is unknown, they
cannot directly use the synchronous subsystem.

Algorithm 1 gives the pseudo-code of the concurrent tasks that implement the GSDP module associ-
ated with a processpi that executes GSDP-consensus(q, p).

3.2 The Asynchronous Part of the Protocol GSDP-consensus(q, p)

The asynchronous part of the protocol is structured as three concurrent tasks. In the first task (the
propositiontask)p processes send messages to the other processes containing their proposition values.
The second task (thelisteningtask) is responsible for receiving and storing the proposition messages that
have been sent by the other processes. It also notifies its associated GSDP module of the proposition

messages that have been received. The final task (thedecisiontask) is responsible for detecting that a
decision can be made and that the execution of the protocol can be terminated. The decision task is also
very simple. It enters a loop constantly querying its local GSDP module. Whenever a GSD is delivered
such that theconsensualidentityfield is equal to somex, x 6=⊥, it verifies if it has already receivedpx’s
message. If not, it waits untilpx’s message is received. In either case, after successfully retrievingpx’s
message, it decides for the value contained in the message and terminates its execution of the protocol
by forwardingpx’s message to every correct process that have not yet received it. Algorithm 2 is the
pseudo-code of the concurrent tasks that implement the asynchronous part of the protocol.

Algorithm 2 The pseudo-code of GSDP-consensus(q, p) protocol executed by processpi

% shared variables
bagOfMessagesi = ∅
decidedi = false

% Proposition task
whenpropose(vi) is invoked

if i ≤ p then sendmi(vi) to all processesend if
end when
||
% Listening task
while not decidedi do

when receivemj(vj) from pj

if mj(vj) not in bagOfMessagesi then
addmj(vj) to bagOfMessagesi

notify gsdpi of the reception of a proposition message frompj

end if
end when

end while
||
% Decision task
while not decidedi do

g = getGSD()
x = g.consensusal identity
if x 6=⊥ then

waituntil mx(vx) in bagOfMessagesi

mx(vx) = getConsensualMessage(x, bagOfMessagesi) % retrievespx’s message
sendmx(vx) to all pk such thatg.detection vector[k] = 0 ∧ g.reception matrix[k, x] = 0
decidedi = true
return(vx) % decides for the value proposed bypx

end if
end while

4 Performance Evaluation

In this section we analyze the performance of the protocols presented in this paper and compare
their performance with that of other protocols previously published. Performance prediction of most
consensus protocols for asynchronous systems augmented with unreliable failure detectors use a round-
based model. Two metrics are normally used: i) the time complexity of the protocol, given by the number
of communication rounds that the protocol needs to execute in a particular run; and ii) the message
complexity, given by the number of messages that are sent by the processes executing a particular run
of the protocol. In the following we compare the performance of several consensus protocols, including
the GSDP-consensus(q, p) protocols, using these metrics.

In the GSDP-consensus(q, p) protocols, processes may send messages in two parts of the protocol:

when proposing their values, and, possibly, when diffusing the consensual message, just before decid-
ing. Thus, considering the number of rounds, the protocols GSDP-consensus(q, p) require either1 or 2
communication rounds, in the worst case. In particular, the protocols GSDP-consensus(n, p) require just
a single communication round, and are, therefore, optimal with respect to this metric. It is worth noting
that, like other protocols based upon strong failure detectors, the number of rounds is independent of the
number of failures that actually occur during a particular run of the protocol.

The message complexity of the protocols also vary from protocol to protocol. In failure-free runs,
the protocols GSDP-consensus(q, p), sendn.p messages in the proposition phase, while in the decision
phase up ton− q messages are sent by each process that decides. Thus, in failure-free runs, the message
complexity of these protocols is:n.p + n(n − q) = n(n + p − q). In summary, considering message
complexity, the most expensive protocol is GSDP-consensus(f + 1, n) with a cost ofn(2n − f − 1),
while the cheapest protocol is GSDP-consensus(n, f + 1) with a cost ofn(f + 1). Finally, the message
complexity of all protocols is reduced as failures occur (this is obvious, since faulty processes do not
send messages).

Dutta and Guerraoui compare several indulgent consensus protocols considering a failure-free sce-
nario and several scenarios where failures occur [9]. The consensus protocols that they propose in [9]
achieve consensus in2 rounds in all scenarios and are the most efficient among the protocols surveyed. It
is important to point out that these results consider only runs in which the failure detector makes no mis-
take. For those runs in which the failure detector may make mistakes, the maximum number of rounds
cannot be easily computed a priori. Considering message complexity, all indulgent consensus protocols
require the execution of at least one reliable broadcast. Thus, the message complexity is always greater
than(n− 1)2.

Brasileiroet al. present a consensus protocol that is able to decide in a single round in “good” runs
(those in which enough processes propose the same value), however, in the other runs the protocol relies
on an underlying consensus protocol, therefore requiring more rounds to decide [2]. The first part of the
protocol (that tries to achieve fast decision) requiresn2 messages, which is the message complexity of
the protocol in “good” runs.

Protocols based on stronger failure detectors may require as much asn rounds to reach a decision.
For instance, the consensus protocol that uses a failure detector of the classS presented in [5], always
requiresn rounds, each round requiringn2 messages. Thus, in failure-free runs, the protocol requiresn3

messages to be sent.

5 Conclusion

In this paper we have detailed the global state digest provider (GSDP), an abstraction to support the
implementation of distributed protocols. Informally, aglobal state digestis a bounded and consistent
summarized representation of the local states of all processes that run the protocol (including their opera-
tional status: correct or crashed). It is a stronger abstraction than a perfect failure detector and, therefore,
provides a more powerful framework for the design of fault-tolerant distributed protocols. Regarding the
consensus problem, the main contribution of the GSDP is that it provides information that allows a con-
sensus protocol to adapt itself to the fluctuations on the contention levels experienced by the system
during a particular execution of the protocol - a feature that is present in no other consensus protocol

based upon perfect failure detectors. Nevertheless, the implementation of a GSDP requires no other
assumptions than those already required to implement perfect failure detection, namely the existence of
an (ideally fast) synchronous subsystem that is able to guarantee a known upper bound to the end-to-end
communication delays between any two correct nodes.

Whether suitable GSDPs may be designed to support the design and implementation of other dis-
tributed protocols is an open issue that we are currently investigating. Nevertheless, we believe that a
GSDP is a useful abstraction to any distributed problem that can take advantage of receiving GSDs with
the following monotonicityproperty: letGSDr be the set of all GSDs that happen in any runr of a
protocolP that solves a given distributed problem, and assume that all elements in everyGSDr are
totally ordered, such that for any two elementsg andg′ of GSDr, eitherg → g′ or g′ → g; letP be the
set of predicates thatP applies on the GSDs it is delivered on its runr, andg1 andg2 two elements of
GSDr, such thatg1 → g2; GSDr is monotonic in relation toP iff ∀p ∈ P, if p holds ing1 then it also
holds ing2. In a recent paper, we have shown how a cheap and safe GSDP service could be built using
off-the-shelf components such as Linux boxes connected via a switched Fast-Ethernet links [4].

References

[1] AGUILERA, M. K., LANN , G. L., AND TOUEG, S. On the impact of fast failure detectors on real-
time fault-tolerant systems. In16th International Symposium on Distributed Computing (DISC
2002)(Tolouse, France, October 2002), pp. 354–369.

[2] BRASILEIRO, F. V., GREVE, F., MOSTEFAOUI, A., AND RAYNAL , M. Consensus in one com-
munication step is possible. Research Report 1321, INRIA, 2001.

[3] BRITO, A., AND BRASILEIRO, F. Programando um subsistema sı́ncrono para suporte a mecanis-
mos eficientes de tolerância a falhas. InWorkshop de Tolerância a Falhas(2004).

[4] BRITO, A., AND BRASILEIRO, F. A cheap and safe cots wormhole for local area network. In
Proceedings of the 10th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric
Systems (DPDNS’05)(2005).

[5] CHANDRA , T., AND TOUEG, S. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM 43, 2 (Mar 1996), 225–267.

[6] CHANDRA , T. D., HADZILACOS, V., AND TOUEG, S. The weakest failure detector for solving
consensus.Journal of the ACM 43, 4 (Jul 1996), 685–722.

[7] CRISTIAN, F., AGHILI , H., STRONG, R., AND DOLEV, D. Atomic broadcast: from simple mes-
sage diffusion to Byzantine agreement. InProceedings of the15th IEEE International Symposium
on Fault-Tolerant Computing (FTCS’85)(Ann Arbor, Jun 1985), pp. 200–206.

[8] DOLEV, D., DWORK, C., AND STOCKMEYER, L. On the minimal synchronism needed for dis-
tributed consensus.Journal of the ACM 34, 1 (Jan 1987), 77–97.

[9] DUTTA , P.,AND GUERRAOUI, R. Fast indulgent consensus with zero degradation. InProceedings
of the4th European Dependable Computing Conference (EDCC4)(Toulouse, France, Oct 2002).

[10] DWORK, C., LYNCH, N. A., AND STOCKMEYER, L. Consensus in the presence of partial syn-
chrony.Journal of the ACM 35, 2 (Apr 1988), 288–323.

[11] FISCHER, M. J. The consensus problem in unreliable distributed systems. Research Report 273,
Yale University, Jun 1983.

[12] FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. D. Impossibility of distributed consensus
with one faulty process.Journal of ACM 32, 2 (Apr 1985), 374–382.

[13] HURFIN, M., AND RAYNAL , M. A simple and fast asynchronous consensus protocol based on a
weak failure detector.Distributed Computing 12, 4 (1999), 209–223.

[14] MOSTEFAOUI, A., AND RAYNAL , M. Solving consensus using chandra toueg’s unreliable failure
detectors: a general quorum based approach. InProceedings of the13th International Symposium
on Distributed Computing (DISC’99)(Bratislava, Slovaquia, Sep 1999), pp. 49–63.

[15] SAMPAIO , L. M. R., BRASILEIRO, F. V., DA C. CIRNE, W., AND DE FIGUEIREDO, J. C. A.How
bad are wrong suspicions? towards adaptive distributed protocols. InProceedings of the Interna-
tional Conference on Dependable Systems and Networks (DSN’2003)(San Franciso, California,
USA, June 2003), pp. 551–560.

[16] SCHIPER, A. Early consensus in an asynchronous system with a weak failure detector.Distributed
Computing 10, 3 (Apr. 1997), 149–157.

[17] VERÍSSIMO, P. Uncertainty and predictability: Can they be reconciled?Future Directions in
Distributed Computing, Springer Verlag LNCS 2584(May 2003), 108–113.

[18] VERÍSSIMO, P.,AND CASIMIRO, A. The Timely Computing Base model and architecture.Trans-
actions on Computers - Special Issue on Asynchronous Real-Time Systems 51, 8 (Aug. 2002).

Appendix A. Proof of Correctness of the GSDP-consensus(q, p) Protocols

Lemma 1 Every correct process that executes the protocol presented in Algorithm 2 eventually decides
some value (termination).

Proof If a correct process ever decides it does so while executing the decision task of Algorithm 2. In this
task a decision is made only if the process is delivered a GSDg, such thatg.consensual identity 6=⊥.
Therefore, to prove the lemma, we must first show that eventually every correct process is delivered
such a GSD. From thevalidity property, a GSDg with g.consensual identity 6=⊥ can only be de-
livered if there is apx for which there are at leastq − factual occurrences ofi, 1 ≤ i ≤ n, such that
g.detection vector[i] = 0 andg.reception matrix[i, x] = 1.2 Since channels are reliable and at least
p, p ≥ f + 1, processes broadcasts their values to all processes, the proposition message of at least1
process will be received by all processes that have not crashed,i.e. n−factual processes. Without loss of
generality, letpx be such a process. Thestrong completeness of receptionproperty guarantees that even-
tually, all GSDs delivered by every correct GSDP module havereception matrix[i, x] = 1, for every
correctpi. On the other hand, thestrong completeness of detectionproperty guarantees that eventually,
all GSDs delivered by every correct GSDP module havedetection vector[j] = 1 for everypj that fails.
Thus, eventually all GSDs are delivered such that there aren − factual occurrences ofi, 1 ≤ i ≤ n, for
which detection vector[i] = 0 andreception matrix[i, x] = 1. Sincen − factual ≥ q − factual, then
one must havedecision identity 6=⊥. Since the decision task keeps constantly querying the GSDP,
eventually a GSDg with g.consensual identity 6=⊥ is delivered to every correct process.

To complete the proof we must show that the proposition message sent by the process whose identifi-
cation is
g.consensual identity has indeed been received by every correct processpi, and therefore, can be re-
trieved frombagOfMessagesi. The strong accuracy of detectionproperty guarantees that, for any
correct processpi, no GSDP module will ever deliver a GSD withg.detection vector[i] = 1, thus

2Notice that this condition does not guarantee thatg.consensual identity = x, but only thatg.consensual iden-
tity 6=⊥.

the correct processes are a subset of the processes thatg indicates not to have failed (i.e. every pi

such thatg.detection vector[i] = 0). The strong accuracy of receptionproperty guarantees that if
g.reception matrix[i, x] = 1 thenpi has indeed receivedpx’s message. Sinceq ≥ f+1 andf ≥ factual,
then, there is at least1 correct process among theq − factual processes that have receivedpx’s message.
This process will completepx’s broadcast, thus even ifpx fails while broadcasting its message, it is
guaranteed that every correct process will receivepx’s message. Hence the lemma. 2

Lemma 2 Every process that executes the protocol presented in Algorithm 2 decides at most once
(uniform integrity).

Proof This is trivially met by the protocol presented in Algorithm 2. As can be seen in the pseudo-code
of the protocol, there is only one decision point for any processpi that decides. Further, after deciding,
a process terminates its execution of the protocol. 2

Lemma 3 If a process that executes the protocol presented in Algorithm 2 decides for the valuev, then
v was proposed by some process (uniform validity).

Proof In Algorithm 2, the decision value of a processpi is one that has been encapsulated in a message
contained inbagOfMessagesi. The only messages that enterbagOfMessagesi of a processpi are the
proposition messages sent by the processes executing the protocol. Hence the lemma. 2

Lemma 4 No two processes that execute the protocol presented in Algorithm 2 decide differently
(uniform agreement).

Proof Lemma 1 shows that every correct process decides. Letpx be the process whose proposi-
tion is the decision value of some correctpi. Thus,pi must have been delivered a GSDg such that
g.consensual identity = x. From thewrite-onceproperty if any other process is delivered a GSDg′

with g′.consensual identity 6=⊥ then it must haveg′.consensual identity = x. Thus, any process
that decides must also decide for the value proposed bypx. Hence the lemma. 2

Theorem 1 The protocol presented in Algorithm 2 solves consensus.

Proof The proof follows directly from lemmas 1, 2, 3 and 4. 2

