
STAGE: an Integrated Environment for Statistical Test
Scr ipt Generation1

Bernardo Copstein, Flávio Oliveira, Lucas R. C. Reginato

CPTS/FACIN – Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
90.616-900 – Porto Alegre – RS – Brazil

{copstein,flavio}@inf.pucrs.br, reginato@cpts.pucrs.br

Abstract. This work describes STAGE, an integrated environment for
statistical test case generation and scripting, developed at the CPTS (Software
Testing Research Center). The key contributions of the system are the use of
stochastic automata networks (SANs) for representing the usage model and an
intermediate model (called the Interface Event-State Model) to map the
abstract usage model into the implemented interface components. SANs allow
modular representation of systems with complex non-deterministic behavior,
minimizing the state-space explosion found in Markov chains. The use of a
separate model for the implementation has the advantage of making changes
in the interface and generating the script automatically without affecting the
abstract usage model. We implemented the technique into the STAGE
environment; the experiments indicate that the performance of test case and
script generation with SANs is at least compatible with Markov-based
generation.

1. Introduction

The interest on statistical testing has increased in recent years, because of two main
reasons: the growing complexity and non-determinism of the environments on which
modern software is expected to operate (the Internet is just the paradigmatic and most
popular example) and the higher levels of reliability required for complex mission-
critical applications. Indeed, reliability assessment is crucial for systems with safety and
fault-tolerance requirements. Such demands are difficult to address with traditional
testing techniques. Even when one considers a more deterministic environment, the
complexity of the software itself and its interface may require that the test engineer
develop the test cases from a complex model describing the application. In both cases,
the use of automated tools is inevitable. Such applications are simply too complex to
test using only manual tests. Which poses another problem: how to create test scripts
with hundreds or thousands of tests in an effective way? Moreover, how to update such
scripts efficiently when there is a change in the product? Clearly, there is much to be
gained from the possibility of generating the test cases automatically from a high-level
model of the application, and then creating the test scripts automatically from the test
cases.

Technology for statistical testing with usage models is mostly based in Markov chains.
However, a Markov chain for a complex application can easily reach hundreds or
thousands of states, which makes the modeling and maintenance a difficult task.

1 This work is supported by the HP-PUCRS Cooperation Agreement 01/99 - TA 17 (CPTS project).

Moreover, in order to generate the test script, it is necessary to add implementation-
related information to the usage model.

We present here STAGE (STAte-based test GEnerator), a test script generation toolkit
for statistical testing, developed at CPTS (Software Testing Research Center), a
cooperation project involving PUCRS and HP. The key features of the system are the
use of stochastic automata networks (SANs) for representing the usage model and an
intermediate model (called the Interface Event-State Model - ISEM) to map the abstract
usage model into the implemented interface components. SANs allow modular
representation of systems with complex non-deterministic behavior, minimizing the
state-space explosion found in Markov chains. The use of a separate model for the
implementation has the advantage of making changes in the interface and generating the
script automatically without affecting the abstract usage model. STAGE also includes
features for deterministic testing, based on finite state machines. In this way, one can
combine deterministic and statistical testing, using finite-state models as an unifying
concept. The choice of state-based testing is motivated by two main characteristics: (a)
state diagrams are widely used in software modeling and design; (b) there are state-
based formalisms that support both deterministic functional testing and statistical
testing. The result is a robust and flexible tool with a unified set of modeling primitives,
simplifying the task of the test engineers.

In this paper, we focus on the features introduced in STAGE for statistical testing. In
section 2, we describe the issues involved in usage modeling in general and present the
SAN and ISEM models. Section 3 describes the STAGE environment. Section 4
comments on related work, while in section 5 we give our conclusions so far and
comment on future directions of our research.

2. State-Based Statistical Testing

Statistical Testing is a wide concept. If some aspect of a system, in any level of
abstraction, could be represented using events whose occurrence rules could be
represented by a statistical model, so we can do statistical testing. The major advantage
of using a statistical approach for testing is that in doing so is possible to estimate
parameters as, for example, reliability, what are not possible in traditional testing. One
of the possible approaches for statistical testing is those based on usage models.

2.1 Usage Models

A usage model characterizes the operational use of a software system. Software is used
by a user on a specific environment [8, 10], where the user may be a person, a hardware
device, other software, or a group of users. A software use may be a working session,
transaction or any service unit limited by a start/finish event.

The model structure is composed of a state set and the transitions between these states,
constituting a graph. The graph nodes represent the model states, and the graph arcs
represent the transitions between states. This structure describes the possible uses of the
software. A probability distribution, associated with the model, describes the expected
use of the software.

Usage models are represented with some system modeling formalism [8] – discrete
Markov chains are the usual choice. In this formalism, the usage states of the software
are mapped as chain states, and the user actions are mapped as transitions between these

chain states. There are two other special states: invoke – that represents the beginning of
the program execution – and terminate – that represents the end of the program
execution. These are the only start and finish states of the chain, respectively. The
transition probabilities or rates represent the user action’s probabilities, configuring the
typical uses of the software.

The usage model may be applied at many stages of the software life-cycle, in order to
refine system specification, evaluate complexity, drive the verification efforts, identify
some event’s frequency, project the testing chronogram, estimate software reliability,
and so on. We focus here on its application to the testing phase.

When represented with Markov chains, usage models allow the test engineer – a person
who has the responsibility of test’s creation and management – to predict the critical
paths, more susceptible to failure, concentrating the efforts in this context. This analysis
is performed over the occurrence probabilities associated to each use of the software.

From the usage model analysis it is possible to extract several interesting properties,
such as [11]:

•Number of software statistically typical usage paths;

•Long-run occupancy, e.g. utilization time percentage for each state;

•Mean number of events per test case;

•Mean number of events between two states, etc.

2.2. Markov Chains

A stochastic process is specified as a family of random variables defined in a
probabilities space and indexed by a parameter. Usually this parameter refers to an
index set of the process time or time range. If we use discrete time (ex: T = { 1,2,3,...})
we will have a discrete stochastic process, but if we use continuous time (ex: T = 0 < t <
+∞) so the stochastic process will be continuous. A markovian process is a stochastic
process where the distribution probability function assumes the main property of a
markovian process, that is, the process evolution depends only upon its current state,
being completely independent of the system previous states.

When the space of states of a markovian process is discrete, the process is called a
Markov Chain. This kind of chain is classified according to a time scale as Discrete
Time Markov Chains (DTMC) and Continuous Time Markov Chains (CTMC).

Using a discrete chain (DTMC) the triggering of transitions from a state to another is
ruled by conditional probabilities. These probabilities are denoted by a real number in
the [0;1] range and the sum of all transition probabilities from a state to another must be
equal to 1.

2.3. Stochastic Automata Networks

We describe here a formal conceptualization of Stochastic Automata Networks (SANs).
The treatment given here is somewhat different from the original presentation, given in
the works of Fernandes [2]. The goal here is to provide a basis for understanding the
approach and data model of STAGE-Test.

Given a set S of states (the local states), let A = { A1, A2, … An } be a set of automata,
where each automaton A i is a subset of S. A Stochastic Automata Network (SAN) is a
structure

(G,E,Pe,Pt,I)

where:

•G = { G1, G2, … Gm } is a set of global states, such that each Gi is an element of
A1 X A2 X … X An. In other words, each global state is a combination of local
states of the automata.

•E = { E1, E2, … Ek } is a set of events. Each event is a function Ei: G →�P(G). In
other words, each event maps global states into sets of global states. When the
event is fired, the SAN can go to any element of the set specified by the
function, depending on the probabilities assigned to the event (see below). Since
a global state is a list of local states, the function describes, for each automaton
Ai in the network, what happens in that automaton when the event is fired.
Events can be classified as local and synchronizing. A local event changes the
state of only one automaton; a synchronizing event changes the state of two or
more automata.

•Pe = { P1, P2, … Pk } is a set of event probability functions, one for each event.

Each function Pi: G → � describes the probability of occurrence of the event at
each global state.

•Pt = { Pt1, Pt2, … Ptkm } is a (possibly empty) set of transition probability
functions, one for each pair (event, global state). As defined above, for an
arbitrary event i, when the SAN is in a global state S and the event is fired, the
SAN goes to a state S’ which must be an element of Ei(S). The transition
probability functions describe the probabilities of the different elements of Ei(S)
being selected. Usually, Ei(S) has only one state, so the definition of these
probabilities is optional.

•I ⊆ G is a (possibly empty) set of initial states. In the original definition, SANs do
not have initial states; they are useful for the specification of usage models.
Since they are optional, this definition includes the original as a special case.

Any SAN can be converted into an equivalent Markov chain [2]. The states of the
Markov chain are the global states of the SAN.

Stochastic automata networks have been shown to have a number of advantages for
modeling complex systems, in comparison with Markov chains [4,8]. We believe that
this is the case also for statistical testing based on usage models, without loss of
generality or information; indeed, any Markov chain can be mapped into a SAN [3,9].
Usage models described with SAN have some interesting characteristics [1]:

• environment requirements (a critical issue for testing) can be made explicit in the
model;

• the representation is modular, improving maintainability and readability;

• an individual use is a sequence of global states in the SAN – thus, its description is
more detailed, which allows for easier mapping of uses into test cases;

• as we shall see in the section 4, for complex applications the computational cost of
SAN-based test case generation is smaller than Markov-based.

Figure 1: Login System

For example, let us consider an (quite simple) application consisting of just two
dialogues: the first is a login dialog (fig. 1a), where the user is prompted for a username
and password; if the username or password is incorrect, the application issues an error
message (fig. 1b). The second is a menu (fig. 1c), where the user can only terminate the
application. This application can be described by the SAN illustrated in figure 2. The
network has the following structure:

A1 = { Start, Password, Menu }

A2 = { Waiting, POK, PnotOk }

E = { ST, QT, S, g, f }

ST = { (Start, Waiting) → (Password, Waiting) }

QT = { (Password, Waiting) → (Start, Waiting),

 (Menu, Waiting) → (Start, Waiting),

 (Menu, POK) → (Start, Waiting) }

S = { (Password, Waiting) → (Menu, POK) }

g = { (Password, Waiting) → (Password, PNotOk) }

f = { (Password, PNotOk) → (Password, Waiting) }

I = { (Start, Waiting) }

Figure 2: SAN Model

ST, QT and S are synchronizing events, while g and f are local. Note that, for
simplicity, we describe the events as partial functions; if a global state does not have an
image defined for some event, it means the event is not enabled at that state (for
example, ST is enabled only at global state (Start,Waiting), which is the initial state). In
figure 2, each event is represented by a triple <event identifier, event probability,
transition probability>. For example, the probability of ST is 1.0, because it is the only
possible event at the state (Start, Waiting), and its transition probability is also 1.0, since
there is only one transition assigned to ST at that state.

2.4 Inter face State-Event Model

STAGE-Test creates the test cases from the SAN usage model. These test cases form
the input for STAGE-Script, which creates the scripts for automatic execution of those
tests. Since the SAN is an abstract model describing usage of the application to be
tested, it does not represent design and/or implementation information, which is needed
for script generation. Therefore, we have an Inter face State-Event Model (ISEM)
associated with the SAN model. The ISEM contains the information necessary for test
script generation.

Let S be a set of local states and A the set of automata. Let (G,E,Pe,Pt) be a SAN as
described in section 3. An ISEM consists of a structure

(Ic,SI, EI, Fs, Fe)

Ic is a set of inter face components (frames, buttons etc.).

SI is a set of inter face states. Such states represent possible combinations of properties
values (values of input fields, window visibility etc.) of the interface components when
the system is in that state. Each combination is an interface state.

EI is a set of inter face events, such that for each possible event in E there is a subset of
interface events in EI. The interface events represent which user actions (button clicks,
choices etc.) trigger the corresponding event in the model.

Fs: S → P(SI) is a mapping from states to sets of interface states, such that for each
local state in S there is an associated (possibly empty) subset of states in SI. It is
possible having local states with no interface state, representing internal logic of the
application. There is an important requirement, though: in order to generate the test
script, each reachable global state must have at least one associated interface state.

Fe: E → P(EI) is a mapping from events to sets of interface events. For each event in
the model there must be at least one related interface event; otherwise, it is not possible
to create a script for test cases with that event.

For example, in the SAN model of figure 2, the Password state in the Login automata
corresponds to the pop-up window (a) in figure 1. We have two situations of interest:
the fields “user” and “password” are filled with valid values and with invalid values.
Therefore, we can define two interface states in the ISEM model of the application, both
associated with the Login.Password state in the SAN model.

3. STAGE

STAGE (STAte-based test GEnerator) is an integrated environment for computer-
supported generation of test cases and test scripts using state-based techniques. Our goal

in building this environment was to provide a framework where we can easily apply
different testing techniques unified by the approach of state-based modeling. The
process of designing tests for an application using STAGE consists of three steps: (a)
building a model of the application to be tested; (b) generating test cases from the
model; (c) generating test scripts from the test cases. The architecture of STAGE is
organized in three packages, corresponding to the steps above. We call these packages
STAGE-Model, STAGE-Test and STAGE-Script, respectively (figure 3). STAGE was
developed in the Java language.

STAGE-Model is a toolkit for creating and editing state-based models of the application
under test, using one of four types of state-based models - finite state machines, finite
state machines with variables, Markov chains or SANs. We focus here on the SAN
models. The core tool in the toolkit is SCE (State Chart Editor), a graphic editor where
the user (normally the test engineer) defines the model structure – states, transitions,
events and rates, depending on the model type. SCE can also import the states and
transitions from a spreadsheet file. This is a useful feature when you want to test a new
version of an application previously documented outside SCE. For example, when
developing a Web site, many teams describe the pages and links in a spreadsheet. In that
case, SCE reads the sheet and creates a first drawing of the model.

Figure 3: Architecture of STAGE

When the model is a SAN, one can perform some preliminary static analysis of the
model before generating the tests, using the PEPS tool [4]. SCE exports the model into a
file with the .san extension, containing the model description in the PEPS input format.
One of the features of PEPS is to compute the equivalent Markov chain for a given
SAN, and output it into a .hbf file. STAGE-Model may import this equivalent chain
into the system using the HBF-Import tool.

The U.I. Modeler (dotted box on figure 3) is a user interface modeling tool that
generates an XML description of the user interface and its relationships with the states
and events in the model. This information is necessary for the script generation process
in STAGE-Script. The format of the description is an implementation of the ISEM
model described in the section 3. The UI Modeler is currently under implementation. At
this moment the XML format is already specified but must be created using a text
editor.

STAGE-Test is a toolkit for generating test cases from stated-based models built using
SCE. The core tool in this case is TCG (Test Case Generator), an interactive tool where
the user can create test suites. To create a test suite, the user must select a model and
one of the test case generation techniques. The generated tests can be stored with the
test suite on the database or exported into a text file.

For each type of model there are test case generation techniques that can be applied. For
FSM or VFSM models (VFSM are properly converted to FSM before test case
generation) there are two techniques available: a simple state coverage technique and
the Wp algorithm [9]. For SAN and Markov models there are specific random test case
generation algorithms. Each technique has some user-defined parameters. For all of
them it is possible to define the maximum test case length; for Markov and SAN
models, it is necessary to inform the number of test cases to be generated (the sample
size).

In terms of test case generation for Markov chain models, the generation tool walks thru
the model states, starting on the initial state. At each state, transitions are selected
according to their probability distribution. The test case ends when the terminate state of
the chain is reached or in the case that the maximum test case size is reached.

The generation of test cases based on SAN usage models works quite different of the
Markov chain process. According to the models developed, each test case should start
on the ST event and end at the QT event. So, the generation tool analyzes the current
global state of the SAN, enumerating the candidate events to be fired, according to the
current local state of each automaton, and an event is selected according to their rate
distribution.

STAGE-Script is the script generation tool. It is integrated in the TCG interface and
allows the user to generate automatic test scripts from the generated test cases. The
current version generates scripts for the Rational playback testing tools (Robot and
RobotJ) [7]. Users can generate 3 types of scripts: navigation, duration and
performance. The first one is just the translation of the generated test cases to the script
language. In the duration script, the user defines a time interval of test execution. The
script will apply all the generated tests and, if there is time remaining, it will select tests
at random to be applied until time is over. The performance script is specific for testing
web servers and generates series of web page requests, simulating multiple users
requests over a predefined time span. It is important to note that the script generation
technology adopted applies only to systems with GUIs; that is a limitation of the current
version. We are studying other execution engines and languages, in order to generate
scripts for different types of applications.

3.1 Examples and exper iments

Let us see an example of test script generation using a SAN model. We will use the
login application presented in section 3. Figure 4 shows the main window of SCE, with
the SAN model of the login application. SCE opens one window for each of the
automata in the model. Note that using SCE we edit just the high-level automata. The
relationships between the interface states and the SAN states are declared on a XML file
as mentioned above. On figure 5 we can see a sample of the corresponding XML file.

With STAGE-Test, we create the test suite. Depending on the model type, a different set
of test case generation techniques is available. Each technique has its own parameters.

Regarding SAN models, the test case generation technique is the usage-model statistical
testing algorithm. In this case, for each test suite we must define the number of test
cases to be generated and the maximum test case size (number of steps). Figure 6 shows
the main interface of TCG with a sample of test cases. Note that each test case step is
composed by a SAN global state followed by the event that triggers the state change.

Figure 4: SCE inter face

<isem>
 <interface_structure>
 <structure>
 <component name="MenuDialog">
 <object id="1" objectClass="JButton" text="EXIT" />
 </component>
 </structure>
 .
 .
 </interface_structure>
 <interface_states>
 <state id = "v1" modelState="Login Automata.Passoword" property="PasswordDialog">
 <components>
 <object id="Text1" value="lucas"/>
 <object id="Text2" value="123456"/>
 </components>
 </state>
 .
 .
 </interface_states>
 <interface_events>
 <event map="S">
 <transition>
 <source> valid 1 </source>
 <eventAction id="OK" action="Click" />
 <target> MenuDialog </target>
 </transition>
 </event>
 </interface_events>
</isem>

Figure 5: XML file ISEM model

The test script is also generated using TCG. In the current version, the generated scripts
can be for Rational RobotJ or Rational Robot. Figure 7 shows a snippet of the script for
testing the login application, based from the test suite. Note that it is necessary to
combine the information in the test cases with the information declared on the XML file
in order to generate a test script.

Figure 6: TCG inter face

...
logInfo("Executing Test Number 3");
 try{
 startApp("Main");
 passwordtextText().setProperty("text", "123456");
 textText().setProperty("text", "lucas");
 OKButton().click();
 EXITButton().click();
 }catch(Exception e){
 logTestResult("Error generate = "+e.toString(), false);
 }
logInfo("Executing Test Number 4");
 try{
 ...
 }catch(Exception e){
 logTestResult("Error generate = "+e.toString(), false);
 }
...

Figure 7: Scr ipt for Login System

We developed a set of experiments with the environment, considering the following
applications:

• the login application described above (2 automata, 9 global states),
• a Web calendar tool (5 automata, 420 global states),
• a forms-based documents editor (6 automata, 648 global states), and
• a Web-based bug tracking tool (8 automata, 9000 global states).

For each application, we developed a SAN model and generated the equivalent Markov
chain, using the PEPS tool. For these models, we generated test suites from 100 to 5000
test cases, varying the maximum test case size from 10 to 40 steps. For eample, Figure 8
shows the execution times for the Calendar tool, considering 40 steps of maximum test
case size both for the Markov Chain and SAN models.

The first information observed from these results is the small time necessary to the test
case generation. Even the generation of 5000 test cases with 40 steps as limit stays
under 8 seconds. It is possible to observe an almost linear behavior of the generation
times for the Markov models. This phenomenon is probably due to the simplicity of the

Figure 8: execution times for Calendar tool

Markov models, which describe all possible states in one single automaton. The
algorithm for test case genration from the SAN models has a higher complexity,
because of the synchronizing events. We observed that the number of synchronizing
events in the model has an impact on the test case generation times - for example, the
Calendar SAN model has a large number of synchronizing events (13 events).

4. Related Work

UMMs (Unified Markov Models) [6] are an extension of traditional Markov based
models. UMM models capture the same kind of information that a SAN or a Markov
chain does, but this information is represented as a set of hierarchical Markov chains. A
top-level Markov chain represents the high-level states and transitions. At any level,
more detail can be associated with an individual state using sub-models, creating a
hierarchical model. Notice that in some of these Markov chains the sum of probabilities
for transitions out from a given state may be less than one because the external
destinations are omitted to keep the model simple. The implicit understanding is that the
missing probabilities go to external destination (a model in a different level).

SANs are not hierarchical; instead, they allow for many different types of relatioships
among system components, while keeping the description modular. From a
computational viewpoint, SANs also have higher scalability: for example, it is possible
to model environment aspects as, for example, number of servers and clients, with little
impact in the computational effort to compute model properties. Such flexibility is
useful for both statistical and load testing. Most current products in the testing industry
(such as Rational TeamTest or Mercury TestRunner) do not generate test suites based
on a usage model. Implemented systems use Markov chains, which impose severe
limitations on the complexity of the models.

5. Conclusions and Future Work

Statistical testing is a technique with its own history of success. Nevertheless, the size
of state-space and the need for automated execution have imposed restrictions on the
application of statistical testing to more complex systems. STAGE is a framework that
supports state-based modeling and script generation for complex systems in a modular

way. The productivity of the script development and script maintenance tasks also
increased significantly; when there is a change in the interface, one only needs to edit
the state-based model and re-generate the test cases and scripts. The key feature in the
script generation is the mapping from the abstract model to the interface model.

A limitation of the current version of STAGE is that the ISEM model must be generated
manually, using a text editor; we are already building the UI Modeler to help this task,
which can be very time-consuming for complex interfaces. More than that, some parts
of the ISEM model (components description) could be automatically extracted from the
interface code (Java or HTML), leaving to the test engineer the task of defining states
and assigning links to the high-level model (FSM, VFSM, Markov or SAN). We are
currently investigating this possibility. We are also planning to incorporate state-based
code analysis for object-oriented software components. This will allow, in the future, to
integrate structural statistical testing into STAGE framework.

References

[1] Farina, A.G.; Fernandes, P H L; Oliveira, F.M.. “Representing Usage Models With
Stochastic Automats Networks” . In: 14th International Conference On Software
Engineering And Knowledge Engineering - SEKE02, 2002, Ischia, Italy.

[2] Fernandes, P. Méthodes numériques pour la solution de systèmes Markoviens à
grand espace d’ états. INPG, Grenoble, 1998. (PhD Thesis)

[3] Fernandes, P., Plateau, B. and Stewart, W.J. Efficient descriptor-vector
multiplication in stochastic automata networks. Journal of the ACM, volume 45, no. 3,
1998, pp. 281-414.

[4] J.M.Fourneau, B.Plateau. PEPS: a package for solving complex Markov models of
parallel systems. In: Proceedings of the Fourth International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation. Palma, Spain, 1988.

[5] Fujiwara, S.; Bochmann G. V.; Khendek F.; Amalou M. and Ghedemsi A. Test
Selection Based on Finite State Model. IEEE Transactions On Software Engineering,
vol 17(6):591-603, 1991.

[6] Kallepalli, C.; Tian J. - Measuring and Modeling Usage and Reliability for
Statistical Web Testing. IEEE Transactions on Sotware Engineering, vol 27(11):1023-
1036, 2001.

[7] Rational products. Description available at URL http://www.rational.com/products/.
Accessed 9/19/2003.

[8] Sayre, K. Improved Techniques for Software Testing Based on Markov Chain
Usage Models. PhD thesis. University of Tennessee, Knoxville, December 1999.

[9] Shehady, R.K.; Siewiorek, D.P.; A method to automate user interface testing using
variable finite state machines Fault-Tolerant Computing, 1997. FTCS-27. Digest of
Papers., Twenty-Seventh Annual International Symposium on Fault-Tolerant
Computing, 24-27 June 1997. Page(s): 80 -88

[10] Trammel, C. Quantifying the Reliability of Software: Statistical Testing Based on a
Usage Model. Proceedings of the Second IEEE International Symposium on Software
Engineering Standards, Canada, August 1995

