
Designing a Configurable Group Service with Agreement
Components

�

Fabı́ola Gonçalves Pereira Greve
�

, Jean-Pierre Le Narzul
�

�

Departamento de Ciência da Computação (DCC)
Universidade Federal da Bahia (UFBA)

Campus de Ondina, 40170-110 Bahia, Brasil

�

GET/ENST Bretagne and IRISA - Adept
Rue de la Chataı̂gneraie - CS 17607

35576 Cesson-Sévigné Cedex, France

fabiola@ufba.br, JP.LeNarzul@enst-bretagne.fr

Abstract. In the recent past years, many group toolkits, providing a support for the
construction of reliable applications, have been designed. Even if the goals of their de-
signers was similar, these toolkits differ in (i) the way the problems are tackled and (ii)
the way the protocols are structured and set up in real systems. This paper presents the
underlying design principles of a group system. It follows two innovative approaches
which contribute to its flexible and configurable character. From an algorithmic point of
view, the group primitives are implemented as instances of a generic consensus service.
This choice leads to a great number of advantages: (a) the computation in the group is
guaranteed as soon as a quorum of entities can communicate, (b) decoupling the group
membership service from the communication service, (c) a better control of the dysfunc-
tions in periods of strong network instability. From an architectural point of view, the
elementary group protocols are regarded as autonomous agreement components, which
can be combined freely for the implementation of other richer reliable services. This
strategy differs from the classical ones in which the protocols are structured according
to a fixed hierarchy of classes following a stack-based pattern of interaction.

1. Introduction

For many years, the group paradigm has been recognized as a very useful abstraction for building
distributed applications in various domains: cooperative work, teleconference, distributed games,
etc. The group paradigm has proven also to be a natural candidate for designing fault-tolerant ap-
plications, above unreliable settings, by replicating a service in several objects located at different
hosts. When used for replication, the group, represented by a collection of objects, is seen by the
clients as a single logical entity; it is addressed transparently by the clients that are not aware of
its composition.

Of course, the group composition can evolve along the time (members can join it, others
can either leave it or crash) just as its state. The essential requirement for the survival of the
group (as being a reliable object) is the common share of the same vision of events (changes on

�
This work is partially supported by CNPQ/Brazil grant number 40.80.86/03-2.

composition, delivery of messages, crashes) by all its members; that requires the coordination of
its actions by the means of agreement algorithms.

Given the importance of the group model, many efforts were carried out during this last
decade to understand the problems related to the implementation of such a paradigm. These efforts
led to various theoretical results and the development of many platforms. The set of works realized
at the Cornell university – ISIS [1], HORUS[2], ENSEMBLE[3] and SPINGLASS[4] – are one of the
most significant examples. It is important to notice that the statement of meaningful specifications,
as well as the design and implementation of a group service are far from being commonplace [5, 6].
These difficulties are due mainly to the impossibility results regarding the agreement problems
to which one is confronted during the implementation of the functionalities of the paradigm in
asynchronous environments [7, 8].

One notices that various practical systems have the disadvantage of not specifying under
which conditions the properties which they are supposed to implement are assured [5]. This is
essential, considering the negative results regarding the resolution of agreement problems. It is
thus necessary to clarify which is the behavior of the system when the assumptions established
to guarantee its termination are not satisfied. The use of the consensus as building block for the
construction of group services provides a concrete response to this need [9]. The precise char-
acterization of the liveness and safety properties ensured by these solutions allows an exhaustive
control of the behavior of the applications in the occurrence of network dysfunctions. Besides,
theoretical solutions founded on the consensus support the construction of well structured proto-
cols [10]. Our interest in this work is to benefit from the modular nature of the consensus based
solutions to build extensible and adaptable systems.

The great majority of the group toolkits adopt a layer-based way of interaction between
the elementary group protocols [2, 11]. If, on one hand, the structure imposed by a stack-based
organization defines a way of developing an abstraction which is clear and easy to understand, on
the other hand, the need to accomodate the functionality of the abstractions in layers that can only
communicate with their adjacent layers imposes a very restrictive design model. Moreover, the
flexibility of a stack-based architecture is rather limited and it does not allow for a real adaptation
to the application needs or to the various qualities of the communication medium. Driven by these
considerations, we address in this article a solution based on the use of the component technology.
We believe that the properties of reusability, configurability and composability exhibited by this
technology is of great interest for building a library of flexible reliable abstractions.

This paper is dedicated to a presentation of the underlying design principles of a component-
based group system called EDEN [12]. The design is driven by the recent theoretical results re-
garding the realization of an agreement in an asynchronous environment. Moreover, it advocates
the use of the component technology to struture the protocol classes. In such an approach, a
reliable application will be designed as the composition of several independent components, con-
nected via a communication platform and cooperating by well-defined interfaces. In EDEN, these
components are part of the ADAM [13, 14] library and are structured using EVA [15], an event
based architecture.

The paper is composed of five sections. Section 2 characterizes a group service. Section
3 presents briefly some of the group toolkits. Then, Section 4, the core of this work, discusses the
many design alternatives proposed previously and compares them with the EDEN issues. Section
5 presents EDEN. Finally, Section 6 concludes the paper.

2. Group Service

A group is a collection of related processes, considered as a single logical entity. This paradigm
covers two basic services, namely, the group membership service and the group communication
service.

Group Membership. The group membership is in charge of providing, to the processes mem-
bers, the current composition of the group. This is a major attribute of the state of the group (the
other attributes of the state of the group are related to the application service or computation which
the group is supposed to provide). The composition of the group evolves according to the will of
the processes to join it or to leave it, and to the occurrence of processe crashes or communication
channel failures. The current group composition is usually named a view.

The group membership problem has been introduced and solved for the first time by Cris-
tian [16] in the context of synchronous distributed systems. The work on the membership problem
in asynchronous systems has been pioneered by the Isis system [17]. Unfortunately, its specifi-
cation was incomplete [5]. The asynchronous group membership problem was later proved to be
impossible to solve without additional assumptions (on the detection of crashed processes) [8].
The existing difficulties to specify and solve this problem are directly related to the impossibil-
ity result regarding reliable detection of the failures in the asynchronous model [18, 7]. Since
real failures combined with eventual wrong suspicions can carry out to a division of the group in
sub-groups, two approaches for the management of the composition appeared: primary partition
systems and partitionable systems.

Primary Partition x Partitionable Systems. A primary component membership service en-
sures that at any time the group is implemented by a single view. From a user perspective, it
means that the membership service ensures the total ordering on the set of the views. A partition-
able membership service allows different views of the same group to coexist (concurrent views).
This means that the set of views perceived by the user is partially ordered. In that case, the pro-
cesses of each view behave as if they were the only ones that are currently implementing the group.
In each one of these components, the service (or at least a part of this one) must continue to be
assured. Possibly, when the communication is restored, the group membership service carries out
a mechanism of fusion of views in order to restore the group in a consistent state (taking into
account the various states of the broken components).

Group Communication. The aim of a group communication service is to provide application
processes with communication primitives that are well-suited to the group computing paradigm.
The main primitive offered by this service is a reliable multicast facility allowing a process to
send messages to all group members in an atomic manner. Usually, ordering guarantees (e.g., total
order, causal order, fifo order) are associated with this multicast primitive [17]. This originates a
number of other primitives. The fundamental ones for the implementation of a replicated service
are (i) total order broadcast (also known as atomic broadcast), which ensures that all messages are
delivered in the same order by all the group members and (ii) view synchronous multicast which
aims at coordinating message delivery and installation of new views.

2.1. Group Protocols as Agreement Problems

Most of the reliable distributed abstractions of interest in group computing (atomic broadcast,
membership management, view synchrony, leader election, ...) are agreement problems. With
regard to all these problems, processes belonging to a same group have, from time to time, to

reach an unanimous decision. For example, in the atomic broadcast problem, due to the fact that
messages are not received in the same order by all the processes, determining the delivery order
can be viewed as an agreement problem. To construct this common global knowledge, all (non-
crashed) members of the group have to repeatedly reach new agreements to unanimously order the
new arrived messages.

The Consensus Problem. The agreement problems family can be characterized by a single
abstraction, namely the consensus problem. Informally, this one can be defined in the following
way. Each process proposes a value and all correct processes have to decide the same value, which
has to be one of the proposed values. Consensus is the “greatest common denominator” among
agreement problems and this is practically and theoretically very important. From a practical point
of view, this means that any solution to consensus can be used as a building block on top of which
solutions to particular agreement problems can be designed. From a theoretical point of view, this
means that an agreement problem cannot be solved in systems where consensus cannot be solved.

Unfortunately, the consensus problem is actually impossible to solve in a deterministic
way in asynchronous distributed systems when even a single process may crash [7]. Fortunately,
to circumvent this negative result, several approaches have been investigated. One of them is
based on the concept of unreliable failure detectors proposed by Chandra and Toueg [9]. The role
of a failure detector service is to maintain a list of correct processes and suspected processes. Of
course, due to the asynchronism of the system, it is impossible to write perfect failure detectors.
But, if we consider that (i) any process that crashes is eventually suspected (called “completness
property”), (ii) there is a time after which there is a correct process that is no longer suspected
(called “accuracy property”), and (iii) a majority of processes within the group never fails, then it
is possible to solve the consensus and some other agreement problems.

3. Group Toolkits

In a recent past (ten years), many group toolkits have been implemented. All of them allow to build
reliable applications based on the group paradigm. We have classified these toolkits in families,
which correspond more or less to the research laboratories where the projects were carried out.

� Isis [1], Horus [2], Ensemble [3] and Spinglass [4] from Cornell university. These systems
have been used in the following toolkits, Orbix, Electra [19], AQuA [20] for a fault-tolerant
Corba implementation.

� Totem [21] from the California university of Santa Barbara and Transis [22] from Hebrew
university, Jerusalem.

� Phoenix [23] , Bast [11], OGS [24] from EPFL, Lausanne.
� Consul [25], Coyotte [26], Cactus [27] from Illinois university, Urbana.
� EDEN [12] and ADAM [28] developed conjointly by INRIA-IRISA, ENST Bretagne at

Rennes and UFBA, Salvador.

The first group system generations (Isis, Totem, Transis, Consul) especially brought ini-
tial answers to the problems arising when reliability must be ensured in an asynchronous environ-
ment. Thereafter, the majority of them evolved to more modular and flexible versions (HORUS,
Ensemble, Coyotte, GARF, BAST) providing full dependable issues (fault-torerance, security and
real-time constraints). Further versions fulfill better the requirements of the modern applications:
distributed objects support, deployment in large scale, adaptability, mobility (Spinglass, AQuA,
ETERNAL, OGS, Cactus).

4. Design Choices

Even if the designers of the group systems originally had the same goal, their toolkits differ in a
considerable manner (i) in the way problems are tackled and (ii) in the structuration of the proto-
cols. In the rest of this section, we will describe some of the main characteristics of these systems
in order to justify the design choices used in the development of EDEN. We are in particular inter-
ested by (i) their behavior in face of false suspicions and (ii) the way their protocols are structured.

4.1. How to React to False Suspicions

Previously, we discussed the impossibility of detecting with precision process crashes. In case
of a scenario in which erroneous suspicions remain, two main approaches for the progression of
computation in the group are distinguished. In a first strategy, named progression by safe group,
the computation within the group requires the participation of all correct processes. In a second
strategy, named progression by long-lived group, the evolution of computation requires only the
participation of a subset of the correct processes (a quorum). Let us explain the characteristics and
implications of each one of them.

Evolution by Safe Group The approach by safe group consists in keeping only correct pro-
cesses inside the group. If some process is suspected to be faulty, it should be removed from
the group view in order for the computation to take place. It means that the management of the
communication depends on the management of the group membership and that it must trust the
failure detector. To avoid execution blocking, the information generated by the latter is used to
remove from the group view the processes suspected to be faulty, and this even if such a suspicion
proves to be abusive. In order to avoid too frequent errors, the suspicion timeouts associated with
the failure detectors must be well tuned.

To our knowledge, all the partitionable systems follow this strategy: Totem, Transis, Ho-
rus and their derivatives. In this context, the consequences of erroneous suspicions could be the
bursting of the group, its partitioning in several minority components or in the worst case, the loss
of the primary component. In the case of the Isis primary partition system, since the activity of the
processes expelled from the group is stopped, this can carry out to a collective suicide.

Evolution by Long-Lived Group The approach by long-lived group is less conventional and
more innovative. It consists in decoupling, as much as possible, the services provided by the
group and authorizing, as soon as possible, the progression of computation even in the presence
of failures.

The use of failure detectors in the design of agreement protocols enables such an approach.
The adoption of the theoretical solutions founded on unreliable failure detectors authorizes the
evolution of computation as soon as a majority of correct processes are able to communicate.
Thus, as soon as the communication between the partitions is established (real or virtual partitions
are they) and the contact between a quorum of processes is re-established, computation progresses.

One can thus benefit from the advantages related to the use of the consensus and the un-
reliable failure detectors as building blocks to authorize decisions even if the group is not in a safe
state. Message ordering takes place even in the occurence of suspicions. View changes are carried
out only with a majority of participants. This model allows the independent implementation of
group protocols. The failure detectors timeouts can be adjusted in order (i) to speed the decisions
up, which is appropriate for ordering messages or (ii) to delay them, which is appropriate for view
changes so that a safe state is reached. This choice is application dependent. For example, in the
passive replication style, view changes are imperative only when the coordinator crashes. By using

this approach, one avoids frequent or unsuitable changes. The communication within the group
is finally completely uncoupled from the dynamic management of its group membership. The
benefits are: effectiveness, flexibility and adaptability. The EDEN system follows this approach
of long-lived group. To our knowledge, besides EDEN , only the family of systems developed in
Lausanne (Phoenix, Bast, OGS) presents such a characteristic.

SAFE GROUP

PRIM
ARY PARTITION

PHOENIX EDEN

TOTEMTRANSIS

CONSULHORUS

A
Q

u
A

COYOTTE

BAST

O
G

S

O
p

en E
D

E
N

ADAM
EVA

HORUS

E
T

E
R

N
A

L
C

A
C

T
U

S

E
L

E
C

T
R

A

PA
RT

IT
IO

NA
BL

E
SY

ST
EM

S

LONG−LIVED GROUP

ISISENSEMBLE

O
R

B
IX

Group

ENSEMBLE

OO

O
R

B

Figure 1: The group systems by type of evolutionary approach and group membership
partition

Figure 1 classifies the families of group services according to the type of evolutionary
approach (safe group or long-lived) and the type of group partition (primary or partitionable). In
the figures which follow (this one included), the families are represented by cubes. Each face of
the cube shows one of the elements of the family. The face group indicates the element which
represents the core protocols, face OO indicates the element representing the object design criteria
and face ORB represents the platform resulting from the integration of the group service in a
distributed object architecture.

4.2. How to Structure the Protocols

We showed along this paper in what the theoretical solutions founded on the consensus support
the construction of well structured and independent protocols. This approach also allows us to
identify important abstractions (consensus, failure detectors, reliable broadcast, atomic broadcast,
etc.) from which other reliable abstractions can be created (e.g. a replication service). Our interest
now is to benefit from the modular nature of these solutions to build systems which are reusable,
flexible, extensible and adaptable.

Protocol Classes. The object-oriented design and its advantages were appropriately used in the
construction of Horus, Coyotte and Bast. Table 1 shows a summary of important principles in-
troduced by these systems in the design of flexible reliable abstractions. In all these systems,
the flexibility is reached by considering the “elementary reliable abstractions” as protocol classes
from which other abstractions can be built.

Protocol Patterns. Horus and Coyotte primarily use the mechanism of inheritance to carry out
protocol compositions. Bast goes further by introducing the concept of protocol patterns which are

domain-specific design patterns that describe how to compose protocol objects. Bast synthesizes
much knowledge already established in the field of distributed systems and it identifies some
important protocol patterns which are recurring in the modeling of fault tolerant applications.
The active replication pattern and the distributed agreement pattern are good
examples.

Abstractions
Group Protocol Protocol Protocol
System Classes Patterns Components

Horus �

Coyotte �

Bast � �

Eden/Adam � � �

Table 1: Strategies to structure protocols

Composable Protocol Stack. Horus introduces the concept of composable protocol stack, where
each specific functionality (atomic broadcast, reliable broadcast, group membership, etc.) is im-
plemented by a micro-protocol which can be placed above another to form a stack. This estab-
lishes a layer-based architecture in which each layer uses the services of the adjacent lower layer
to provide an extended service to the adjacent upper layer, up to the last layer which provides the
functionality required. The composition of the stack can be done at run time in a variety of ways to
meet the exact application requirements. This way of “composition” has further been adopted by
the great majority of group toolkits (Bast, Coyotte, OGS, etc.). Figure 2 shows the representation
of such a strategy to implement a consensus-based replicated service.

APPLICATION

GROUP MEMBERSHIP

AGREEMENT SERVICE

FAILURE DETECTOR

RELIABLE BROADCAST

GROUP COMMUNICATION

NETWORK

Figure 2: Composable protocol stack

Layer Based Interaction. The Horus platform adopts a communication pattern in which an
outgoing message goes through all the layers in a top-down manner, whereas an incoming message
enters through the bottom layer and has to be pushed through the layers in a bottom-up way.
Information is passed to lower layers using procedure calls, whereas information from lower layers
is delivered to higher layers using call-backs which are installed dynamically by the higher layers
when they start their execution. The same approach can be found in Bast, OGS and many other
toolkits.

Event Based Interaction. Instead of using a linear pattern of communication, Coyotte repre-
sents the interactions between the protocol classes into a graph. In Coyotte the communication

between each micro-protocol is done in a dynamic way by the emission and the reception of
events.

4.3. Component Oriented Design

As a layer-based architecture is frequently employed to specify communication protocols (OSI/ISO,
TCP/IP, etc.), it could seem natural to keep on designing reliable protocols in the same way. How-
ever, if on one hand the layer-based design defines a simple discipline of development, on the other
hand the need to accommodate the protocols functionality into layers that can only communicate
with their adjacent layers imposes a restrictive model. Rather than being specified as a collection
of well defined functionality layers, micro-protocols are normally presented as a description of
the cooperating entities that together implement the protocol’s functionality, and the interactions
among them [29].

From a performance viewpoint, the layer-based style of communication yields penalties
due (arbitrary delays can be introduced, the growth of the message size). This happens because
information must cross all the stack to arrive at the destination. Of course, ad hoc optimizations (as
for example, short cuts between non-consecutive layers) can allow alternative interaction paths and
also enable a reduction on the protocol’s latency [30]. Nevertheless, even with such improvements,
a static stack of protocols is still not flexible enough.

To avoid the drawbacks of a layer-based architecture while keeping the advantages as-
sociated to the decomposition of the problem into well defined and independent basic services,
we advocate the use of a component oriented design. In such an approach, the reliable service
is designed as several independent components, connected via a communication platform and co-
operating by well-defined interfaces. Thus, we propose to transform the “protocol classes” into
protocol components. Instead of using a fixed hierarchy of classes to design a particular reliable
abstraction, we propose to break this hierarchy into several independent entities, each one repre-
senting a reliable abstraction materialized by a component. Communication between them is not
restricted to a stack, they undertake the shape of a graph. Such a flexibility allows components to
be freely combined in order to create reliable services even more complex.

With such a strategy, the relationship between micro-protocols is no more made by im-
plicit specializations. They are explicit and can be done in an asynchronous way. The func-
tionalities of the reliable semantics can thus be implemented by a certain number of autonomous
distributed objects interacting via the production and the consumption of events. In this way,
events that are produced by suppliers must be routed by an event channel middleware to their
corresponding consumers. Distributed algorithms are normally designed as reactive entities to the
occurrence of events (messages, exception notifications, etc.). So, an event-based pattern of inter-
action is a simple and elegant way to fill in the gap between the specification of the protocol and
its implementation.

ADAM is a library of agreement protocols, which is built according this component ori-
ented design. In the implementation, the hierarchy of “protocol classes” (figure 2) – common in
Horus, Bast and OGS – is completely broken in order to derivate the “protocol components”. The
EDEN group system is thus the result of the composition of some of the ADAM components.

Figure 3 represents the group systems according to their design strategy. We classify them
in composable protocols (those designed by following OO concepts) and non composable proto-
cols. Among composable protocols, we distinguish those which interact by layers and those which
interact by events. Let us notice that, as in Coyotte, we propose to structure the protocols as a graph
of entities. However, differently from it, we provide a library of components (ADAM) ready to be
used by protocol developers in the implementation of reliable services. To our knowledge, Coy-

otte does not provide such a mechanism. As in BAST, we base ourselves on the distributed
agreement pattern to capture the recurring structure of various classical agreement protocols.

HORUS

PHOENIX

EDENCONSUL

INTERACTION BY EVENTS

INTERACTION BY LAYERS

COM
POSABLE PROTOCOLSA

Q
u

A

E
T

E
R

N
A

L

O
R

B
IX

O
p

en E
D

E
N

O
G

S

ADAM
EVACOYOTTE

C
A

C
T

U
S

E
L

E
C

T
R

A

HORUS

BAST

NO
N

CO
M

PO
SA

BL
E

PR
OT

OC
OL

S

ENSEMBLE

Group

ENSEMBLE

TRANSIS

TOTEM

ISIS

OO

O
R

B

Figure 3: Group services and their design strategies

5. The EDEN Group Service

EDEN is a configurable group service based on a library of agreement components, called ADAM.
ADAM [13, 14] is implemented above EVA [15], an event-based framework for developing dis-
tributed abstractions and high-level communication protocols.

ADAM is a component-based library of agreement abstractions, used to build reliable pro-
gramming toolkits. The central element of the ADAM library is the GENERIC AGREEMENT COM-
PONENT (GAC) [29]. It implements a generic and adaptative fault-tolerant consensus algorithm
that can be customized to cope with the characteristics of the environment. Moreover, thanks to
a set of versatile methods, its behavior can be tuned to fit the exact needs of a specific agreement
problem. A range of fundamental ADAM components are implemented as specializations of this
GAC component. By composing some of the ADAM agreement components, we have built a
group communication logic. An ACTIVE REPLICATION service has been designed and forms the
heart of the EDEN system. It is mainly based on the ATOMIC BROADCAST, GROUP MEMBER-
SHIP and GENERIC AGREEMENT components. Figure 4 shows the EDEN components and their
relationships.

The framework EVA implements a publish-subscriber communication environment to
structure entities composing high-level protocols. In this architecture, protocols are regarded as
a number of cooperating objects (entities) that communicate via an event-channel. Applications
built on top of EVA are composed of a set of cooperating components that communicate with
each other via the production and consumption of special types of objects called events. Further,
a particular component is itself formed by cooperating entities (e.g. passive and active objects,
sub-components, etc.) which also communicate via a similar event channel mechanism. Each
component has an event channel manager that is responsible for routing the events produced by

its supplier entities to all of its consumer entities that have register to receive a notification for the
particular event.

Agreement Service

GroupMembership

ReliableBroadcast FailureDetector

Component

AtomicBroadcast

Suspicion

Consensus

Client

Interface
Supplier

Broadcast

UML Notation

EDEN

NETWORK

APPLICATION

Figure 4: The EDEN Components

The ADAM library currently includes the most important components for a reliable dis-
tributed programming. Some of them are:

� GENERIC AGREEMENT COMPONENT (GAC). It lies at the core of the ADAM library. It
implements a generic fault tolerant consensus algorithm [29]. To be operational, it has
to be instantiated through the definition of a concrete agreement component (e.g. group
membership, atomic broadcast). Indeed, it was designed to solve multiple agreement
problems at the same time.

� GROUP MEMBERSHIP MANAGEMENT (GM) It is in charge of managing the changes on
the group composition [31]. It will be composed with GAC in order to get the agreement
on three sets of objects: (i) those which are authorized to join the group (ii) those which
are authorized to leave the group (iii) those which are suspected to be faulty. The GM
component interacts with a FAILURE DETECTOR component to take into consideration
crashed members.

� ATOMIC BROADCAST (AC) It is implemented by a set of AC components that are in
charge of receiving the requests broadcasted by external clients and to deliver them in the
same order. For this it will interact and make use of the service provided by the GAC
component.

� VIEW SYNCHRONY To install a new view, all the non-crashed members of the previous
view must have delivered all the messages ordered during the previous view. The VIEW

SYNCHRONY is in charge of ensuring this property. To achieve this goal, no additional
agreement is necessary. Indeed, strong synchronizations have to be implemented to en-
sure that ATOMIC BROADCAST and GROUP MEMBERSHIP observe their decisions and
progress in a consistent way. In practice, the installation of the new view is postponed till
all the synchronization constraints are satisfied.

6. Conclusion

This paper was dedicated to present the design issues of the EDEN group system. It was conceived
by following two innovative approaches which contribute to its flexible and adaptable character.
From an algorithmic point of view, it is based in theoretical results that precisely characterizes
the liveness and safety properties ensured by the protocols. This allows better control of the

behavior of the applications in the occurrence of dysfunctions. Moreover, it advocates the use of a
component oriented design to implement each elementary reliable abstraction (atomic broadcast,
group membership, etc.). In such an approach, a reliable application will be designed as the
composition of several independent components, connected via a communication platform and
cooperating by well-defined interfaces.

References

[1] K. Birman, Reliable Distributed Computing with the ISIS Toolkit, ch. Virtual Synchrony. Los
Alamitos, CA: IEEE Computer Society Press, 1994.

[2] R. van Renesse, K. Birman, and S. Maffeis, “Horus: a flexible group communication system,”
Communications of the ACM, vol. 39, pp. 76–83, Apr. 1996.

[3] M. Hayden, The Ensemble System. PhD thesis, Cornell University, 1998.

[4] K. P. Birman, R. van Renesse, and W. Vogels, “Spinglass: Secure and scalable communications
tools for mission-critical computing,” in International Survivability Conference and Exposi-
tion. DARPA DISCEX-2001, (Anaheim, California), June 2001.

[5] E. Anceaume, B. Charron-Bost, P. Minet, and S. Toueg, “On the formal specification of group
membership services,” Tech. Rep. TR95-1534, Depto of Computer Science, Cornell Univer-
sity, Aug. 1995.

[6] G. V. Chockler, I. Keidar, and R. Vitenberg, “Group communication specifications: a comprehen-
sive study,” ACM Computing Surveys, vol. 33, pp. 427–469, Dec. 2001.

[7] M. Fischer, N. Lynch, and M. Paterson, “Impossibility of distributed consensus with one faulty
process,” Journal of ACM, vol. 32, pp. 374–382, Apr. 1985.

[8] T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost, “On the impossibility of group
membership,” in Proceedings of the 15th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC’96), (New York, USA), pp. 322–330, ACM, May 1996.

[9] T. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed systems,” Journal
of ACM, vol. 43, pp. 225–267, Mar. 1996.

[10] R. Guerraoui and A. Schiper, “The generic consensus service,” IEEE Transactions on Software
Engineering, vol. 27, pp. 29–41, Jan. 2001.

[11] B. Garbinato, Protocol Objects & Patterns for Structuring Reliable Distributed Systems. PhD
thesis, École Polytechnique Fédérale de Lausanne, Switzerland, 1998.

[12] F. G. P. Greve, Réponses efficaces au besoin d’accord dans un groupe. PhD thesis, IRISA -
Université de Rennes I, France, Nov. 2002.

[13] F. Greve, , M. Hurfin, J.-P. L. Narzul, M. Xiaojung, and F. Tronel, “A library of agreement com-
ponents for reliable distributed programming,” in Workshop on Communication Abstractions
for Distributed Systems, with ACM ECOOP - 17th European Conference on Object-Oriented
Programming, (Darmstadt, Germany), 2003.

[14] F. Greve, , M. Hurfin, and J.-P. L. Narzul, “Adam: une bibliothèque de composants d’accord pour
la programmation d’applications fiables,” in Actes des Journées Composants, (Lille, France),
Mar. 2004.

[15] F. Brasileiro, F. Greve, M. Hurfin, J.-P. L. Narzul, and F. Tronel, “Eva: an event based framework
for developing specialised communication protocols,” in NCA 2001: IEEE International
Symposium on Network Computing and Applications, pp. 108–119, Feb. 2002.

[16] F. Cristian, “Reaching agreement on processor group membership in synchronous distributed sys-
tems,” Distributed Computing, vol. 4, pp. 175–187, Apr. 1991.

[17] V. Hadzilacos and S. Toueg, Distributed Systems, ch. Fault Tolerant Broadcasts and Related Prob-
lems, pp. 97–145. Addison-Wesley, 1993.

[18] K. M. Chandy and J. Misra, “How processes learn,” Distributed Computing, vol. 1, pp. 40–52,
1986.

[19] S. Maffeis, “Electra—making distributed programs object-oriented,” in Proc. of the Usenix Symp.
on Experiences with Distributed and Multiprocessor Systems, (San Diego, CA (USA)),
pp. 143–156, 1993.

[20] Y. Ren, AQUA: A Framework for Providing Adaptive Fault Tolerance to Distributed Applications.
PhD thesis, University of Illinois, Urbana, 2001.

[21] L. Moser, P. Melliar-Smith, D. Agarwal, R. Budhia, and C. Lingley-Papadopoulos, “Totem: a
fault-tolerant multicast group communication system,” Communications of the ACM, vol. 39,
pp. 54–63, Apr. 1996.

[22] D. Dolev and D. Malki, “The transis approach to high availability cluster communication,” Com-
munications of the ACM, vol. 39, pp. 64–70, Apr. 1996.

[23] C. Malloth, Conception and Implementation of a Toolkit for Building Fault-Tolerant Distributed
Applications in Large Scale Networks. PhD thesis, Ecole Polytechnique Fédérale de Lau-
sanne, 1996.

[24] P. Felber, The CORBA Object Group Service: A Service Approach to Object Groups in CORBA.
PhD thesis, École Polytechnique Fédérale de Lausanne, Switzerland, 1998.

[25] S. Mishra, L. Peterson, and R. Schlichting, “Consul: a communication substrate for fault-tolerant
distributed programs,” Distributed Systems Engineering Journal, vol. 1, no. 2, pp. 87–103,
1993.

[26] N. T. Bhatti, M. A. Hiltunen, R. D. Schlichting, and W. Chiu, “Coyote a system for constructing
fine-grain configurable communication services,” ACM Transactions on Computer Systems,
vol. 16, Nov. 1998.

[27] M. A. Hiltunen and R. D. Schlichting, “The cactus approach to building configurable middleware
services,” in Proc. of the Workshop on Dependable System Middleware and Group Commu-
nication (DSMGC 2000), Oct. 2000.

[28] F. Greve, , M. Hurfin, J.-P. L. Narzul, M. Xiaojung, and F. Tronel, “A library of agreement com-
ponents for reliable distributed programming,” in Workshop on Communication Abstractions
for Distributed Systems, with ACM ECOOP - 17th European Conference on Object-Oriented
Programming, (Darmstadt, Germany), 2003.

[29] M. Hurfin, R. Macêdo, M. Raynal, and F. Tronel, “A generic framework to solve agreement prob-
lems,” in Proc. of the

�������
IEEE Symposium on Reliable Distributed Systems (SRDS’99),

(Lausanne, Switzerland), pp. 56–65, Oct. 1999.

[30] X. Liu, C. Kreitz, R. van Renesse, J. Hickey, M. Hayden, K. Birman, and R. Constable, “Building
reliable, high-performance communication systems from components,” in Proc. of the

��� ���

ACM Symposium on Operating Systems Principles (SOSP’99), (Charleston, USA), pp. 80–
92, Dec. 1999.

[31] F. Greve, M. Hurfin, M. Raynal, and F. Tronel, “Primary component asynchronous group mem-
bership as an instance of a generic agreement framework,” in ISADS’2001: 5th International
Symposium on Autonomous Decentralized Systems, pp. 93–100, Mar. 2001.

