
Using Common Knowledge to ImproveFixed-Dependen
y-After-Send�Islene C. Gar
ia Luiz E. BuzatoUniversidade Estadual de CampinasCaixa Postal 617613083-970 Campinas, SP, BrasilTel: +55 19 788 5876Fax: +55 19 788 5847fislene,buzatog�d

.uni
amp.brAbstra
tChe
kpoint patterns that enfor
e the rollba
k-dependen
y tra
kability (RDT) propertyallow eÆ
ient solutions to the determination of
onsistent global
he
kpoints that in
ludea given set of
he
kpoints. Fixed-Dependen
y-After-Send (FDAS) is a well-known RDTproto
ol that for
es the dependen
y ve
tor of a pro
ess to remain un
hanged during a
he
k-point interval after the �rst message-send event. In this paper, we explore pro
esses'
ommonknowledge about their behavior to derive a more eÆ
ient
ondition to indu
e
he
kpoints un-der FDAS. We
onsider that our approa
h
an be used to improve other RDT
he
kpointingproto
ols.Keywords: Distributed systems; Fault-toleran
e; Distributed
he
kpointing; Rollba
k-dependen
y tra
kability1 Introdu
tionA
he
kpoint is a stable memory re
ord of a pro
ess' state. A
onsistent global
he
kpoint is aset of
he
kpoints, one per pro
ess, that
ould have been seen by an idealized observer externalto the
omputation [2℄. The set of all
he
kpoints taken by a distributed
omputation formsa
he
kpoint pattern. Che
kpoint patterns that enfor
e the rollba
k-dependen
y tra
kability(RDT) property allow eÆ
ient solutions to the determination of the maximum and minimum
onsistent global
he
kpoints that in
lude a set of
he
kpoints [8℄. Many appli
ations
an bene�tfrom these algorithms: rollba
k re
overy, software error re
overy, deadlo
k re
overy, mobile
omputing and distributed debugging [8℄.In order to enfor
e the RDT property, an RDT
he
kpointing proto
ol [1, 8℄ allows pro
essesto take
he
kpoints asyn
hronously (basi

he
kpoints), but they may be indu
ed by the proto
olto take additional
he
kpoints (for
ed
he
kpoints). Fixed-Dependen
y-After-Send (FDAS) is awell-known RDT proto
ol that for
es the dependen
y ve
tor of a pro
ess to remain un
hangedduring a
he
kpoint interval after the �rst message-send event [8℄. Upon the re
eption of a�This work has been supported by FAPESP under grant no. 99/01293-2 for Islene C. Gar
ia and grant no.96/1532-9 for the Laboratory of Distributed Systems. Islene C. Gar
ia re
eived �nan
ial support from CNPqunder grant no. 145563/98-7. We also re
eived �nan
ial support from PRONEX/FINEP, pro
ess no. 76.97.1022.00(Advan
ed Information Systems).

p0 -�̂�00 Um1 � �̂10 Um3 �̂�20p1 -�̂�01 Um2 � �̂11 Um4 �̂�21p2 -�̂�02 � �̂12 �̂�22�22Figure 1: A distributed
omputationmessage, a pro
ess must take a for
ed
he
kpoint if an entry of its dependen
y ve
tor is aboutto
hange [1, 3, 7, 8℄.The usual approa
h to implement FDAS does not take advantage of the pro
esses'
ommonknowledge about their behavior. Consider a s
enario where a pro
ess pi re
eives a messagefrom pj sent during an interval already known by pi. Sin
e pi knows that pj
annot in
reaseits dependen
y ve
tor after a send, it
an skip the veri�
ation of
he
kpoint dependen
ies. Thissimple observation redu
es the
omplexity of the de
ision to take a for
ed
he
kpoint from O(n)to O(1), where n is the number of pro
esses in the
omputation.The paper is stru
tured as follows. Se
tion 2 des
ribes the
omputational model adopted.Se
tion 3 introdu
es rollba
k-dependen
y tra
kability. Se
tion 4 des
ribes Fixed-Dependen
y-After-Send. Se
tion 5 presents and proves the
orre
tion of the proposed optimization. Se
tion 6summarizes the paper.2 Computational ModelA distributed
omputation is
omposed of n sequential pro
esses (p0; : : : ; pn�1) that
ommuni-
ate only by ex
hanging messages. Messages
annot be
orrupted, but
an be delivered out oforder or lost. The a
tivity of a pro
ess is modeled as a sequen
e of events that
an be dividedinto internal events and
ommuni
ation events realized through the sending and the re
eption ofmessages. Che
kpoints are internal events; ea
h pro
ess takes an initial
he
kpoint (immediatelyafter exe
ution begins) and a �nal
he
kpoint (immediately before exe
ution ends). Figure 1illustrates a spa
e-time diagram [6℄ augmented with
he
kpoints (bla
k squares).Let �̂
i denote the
th
he
kpoint taken by pi. Che
kpoint �̂
�1i ,
 > 0, and its immediatesu

essor �̂
i de�ne a
he
kpoint interval �
i . This interval represents the set of events produ
edby pi between �̂
�1i and �̂
i .3 Rollba
k-Dependen
y Tra
kabilityThis Se
tion introdu
es the
on
ept of rollba
k-dependen
y tra
kability as de�ned by Wang [8℄,beginning with the de�nition of an R-graph, a digraph used to
apture dependen
ies among
he
kpoints [8℄.De�nition 3.1 R-graph|In an R-graph, ea
h node represents a
he
kpoint and a dire
tededge is drawn from �̂�a to �̂�b if (i) a = b and � = �+ 1 or (ii) a 6= b, and a message m is sentin ��a and re
eived in ��b .

p0 �̂00 -̂�10 -? �̂20?p1 �̂01 - �̂11 -? �̂21?p2 �̂02 - �̂12 - �̂22Figure 2: R-graphp0 -�̂�00 (0; 0; 0) U(1; 0; 0)m1 �̂�10 (1; 0; 0) Um3(2; 2; 0) �̂�20 (2; 0; 0)p1 -�̂�01 (0; 0; 0) U(1; 1; 0)m2 �̂�11 (1; 1; 0) Um4(1; 2; 0) �̂�21 (1; 2; 0)p2 -�̂�02 (0; 0; 0) �̂�12 (1; 1; 1) �̂�22 (1; 2; 2)Figure 3: A distributed
omputation with dependen
y ve
torsFigure 2 shows the R-graph
orrespondent to the distributed
omputation depi
ted in Fig-ure 1. The name R-graph (rollba
k-dependen
y graph)
omes from the observation that if thereis a path in the R-graph from �̂�a to �̂�b and ��a is rolled ba
k, ��b must also be rolled ba
k [8℄.Dependen
y Ve
tor A dependen
y tra
king me
hanism
an be used to
apture
ausal de-penden
ies among
he
kpoints. Ea
h pro
ess pi maintains and propagates a size-n dependen
yve
tor dv i, that is initially (0; : : : ; 0). The entry dv i[i℄ represents the
urrent interval of pi andit is in
remented immediately after a new
he
kpoint is taken. Every other entry dv i[j℄, j 6= i,represents the highest interval index of pj upon whi
h pi is dependent; it is updated every timea message m with a greater value of dvm[j℄ arrives at pi.Figure 3 depi
ts the dependen
y ve
tors asso
iated to
he
kpoints of the distributed
om-putation presented in Figure 1. Note that the dependen
y ve
tor asso
iated to
he
kpoint �̂12is (1; 1; 1) and it
orre
tly represents the nodes that
an rea
h this
he
kpoint in the R-graph(Figure 2). Unfortunately, not all
he
kpoint dependen
ies
an be tra
ked on-line. For example,the dependen
y ve
tor asso
iated to
he
kpoint �̂22 does not
apture that �̂20
an rea
h �̂22 in theR-graph, sin
e the edge from �̂20 to �̂21 was established after m4 was sent.Rollba
k-Dependen
y Tra
kability Wang established a property in a
he
kpoint patternthat allows dependen
y ve
tors to
arry all information needed to perform rea
hability analysisin its
orrespondent R-graph [8℄.De�nition 3.2 Rollba
k-Dependen
y Tra
kability|A
he
kpoint pattern satis�es rollba
k-dependen
y tra
kability if the following property holds:For any two
he
kpoints �̂�a (� 6= 0) and �̂�b of the pattern, there is a pathfrom �̂�a to �̂�b in the R-graph if, and only if, dv(�̂�b)[a℄ � �.4 Fixed-Dependen
y-After-SendOne way to enfor
e RDT is to
onsider Fixed-Dependen
y-After-Send (FDAS): in any interval,after the �rst message has been sent, the dependen
y ve
tor remains un
hanged until the next

he
kpoint [8℄. Thus, upon the re
eption of a message, a for
ed
he
kpoint is indu
ed if any entryof the dependen
y ve
tor is about to be
hanged. The des
riptions of FDAS presented in theliterature always
ompare all entries of the dependen
y ve
tor to indu
e a for
ed
he
kpoint [1,3, 7, 8℄.An implementation of FDAS is des
ribed in
lass FDAS (Class 4.1), using Java1 [4℄. Ea
hpro
ess pi maintains and propagates a dependen
y ve
tor (Se
tion 3). Pro
ess pi also maintains a
ag afterSend that
aptures whether a message has been sent or not during the
urrent interval.The
ag is reset after a
he
kpoint is taken and it is set after a message is sent.The method re
eiveMessage
ontains the part of the FDAS that enfor
es RDT. Upon there
eption of a message m, the dependen
y ve
tor of the message is s
anned. If a new dependen
yis established, say at dv [k℄, and at least one message was sent in the
urrent interval a for
ed
he
kpoint is taken. The dependen
y ve
tor of the pro
ess is updated from dv [k℄ to dv [n℄, toregister the new dependen
ies. The
omplexity of this method is O(n).publi

lass FDAS fpubli
 stati
 �nal int N = 100; // Number of pro
esses in the
omputationpubli
 int pid; // A pro
ess unique identifier in the range 0..N-1prote
ted int [℄ DV = new int [N℄; // Automati
ally initialized to (0,...,0)prote
ted boolean afterSend;publi
 void takeChe
kpoint() f// Save state to stable memoryDV[pid℄++;afterSend = false;gpubli
 FDAS(int pid) f this.pid = pid; g // Constru
torpubli
 void run() f takeChe
kpoint(); g // Initiate exe
utionpubli
 void finalize() f takeChe
kpoint(); g // Finish exe
utionpubli
 void sendMessage(Message m) fm.DV = (int [℄) DV.
lone(); // Piggyba
k DV onto the messageafterSend = true;// Send messagegpubli
 void re
eiveMessage(Message m) fint k;for (k = 0; k < N && m.DV[k℄ � this.DV[k℄; k++); // Stop at the first new dependen
yif (k < N) f // New dependen
yif (afterSend)takeChe
kpoint();for (; k < N; k++) // Update DV starting at the first new dependen
yif (m.DV[k℄ > DV[k℄) DV[k℄ = m.DV[k℄;g// Message is pro
essed by the appli
ationgg Class 4.1: FDAS.java1We have
hosen Java be
ause it is easy to read and has a widely known spe
i�
ation. Java is a trademark ofSun Mi
rosystems, In
.

pj : : : -� �� �mpi : : : -� �
Figure 4: Pro
ess pi already knows the interval in whi
h m was sent

pj : : : -� ����jpi : : : -� � pj : : : -� �m��jpi : : : -� � pj : : : -� ��0 ��jpk : : : -� ��00 �m��kpi : : : -� �
(a) (b) (
)Figure 5: Contradi
tion hypothesis (a), base (b), and indu
tion step (
) of Theorem 5.15 An Optimization based on Common KnowledgeThe approa
h presented in the previous Se
tion does not take advantage of the pro
esses'
om-mon knowledge about their behavior. Consider a s
enario where a pro
ess pi re
eives a messagem from pj whi
h has been sent during an interval already known by pi due to the
ausal se-quen
e of messages � (Figure 4). Sin
e pj is not allowed to in
rease its dependen
y ve
tor aftera message-send event, pro
ess pi
an verify if a new dependen
y is established based solely ondvm[j℄. This observation takes us to an optimized version of the method re
eiveMessage.publi

lass FDAS f/� ... �/ // Same as in Class 4.1publi
 void re
eiveMessage(Message m) fif (m.DV[m.sender℄ > DV[m.sender℄) f // New dependen
yif (afterSend) takeChe
kpoint();for (int k=0; k < N; k++) // Update DVif (m.DV[k℄ > DV[k℄) DV[k℄ = m.DV[k℄;g// Message is pro
essed by the appli
ationgg Class 5.1: FDAS.java (Optimized version of re
eiveMessage)Theorem 5.1 The optimized version of re
eiveMessage
orre
tly implements FDAS.Proof: Consider the sequen
e of messages � = (m1; : : : ;m`) from ��j to pi, su
h that ea
hmessage mk, 1 � k < `, is prime (it is the �rst message that
arries information about ��jto the pro
ess that re
eives it). Consider that the last message of � is re
eived by pi after amessage-send event (Figure 5 (a)). We prove that pi
annot have
hanged dv i[j℄ regardless thenumber ` of messages in �.Base: ` = 1 In this
ase, � is formed by a single message m (Figure 5 (b)). If dvm[j℄ > dv i[j℄,pro
ess pi would have taken a for
ed
he
kpoint before pro
essing m.

Step: ` > 1 Consider that no pro
ess is allowed to in
rease an entry of its dependen
y ve
tordue to a sequen
e of `� 1 messages. We prove that this behavior also holds for a sequen
e of `messages. Let m be the last message of �, sent by pro
ess pk during ��k and let �0 be the �rst`� 1 messages of � from ��j to pk (Figure 5 (
)). Sin
e pi does not take a
he
kpoint upon there
eption of m, there must exist a sequen
e of messages �00 from ��k that arrives at pi beforem. Sin
e m is the �rst message that brings information about ��j to pi, the last message of �0must arrive at pk after it has sent the �rst message of �00. Thus, pk in
reases the jth entry ofits dependen
y ve
tor during ��k after a message-send event. 2The observation of the knowledge shared by the pro
esses has allowed us to get a redu
tionfrom O(n) to O(1) on the
omplexity of the de
ision to take a for
ed
he
kpoint. Besides that,the total
omplexity of the method re
eiveMessage is redu
ed to O(1) when no new dependen
yis established. However, the sender of the message must be identi�ed.6 Con
lusionFixed-Dependen
y-After-Send (FDAS) is an RDT proto
ol that for
es the dependen
y ve
tor ofa pro
ess to remain un
hanged during a
he
kpoint interval after the �rst message-send event [8℄.In this paper, we have explored pro
esses'
ommon knowledge about their behavior to derive asimpler
ondition to indu
e
he
kpoints under FDAS. We have obtained a redu
tion from O(n)to O(1), where n is the number of pro
esses in the
omputation, on the
omplexity to
he
k ifa new dependen
y is about to be established.Our improvement
an be dire
ted applied to Fixed-Dependen
y-Interval, a previous versionof FDAS that for
es the dependen
y ve
tor of a pro
ess to remain un
hanged during a
he
kpointinterval [5, 8℄. At the moment, we are investigating whether a similar improvement
an be appliedto the RDT proto
ol proposed by Baldoni, Helary, Mostefaoui, and Raynal [1℄. A more generalresult would indi
ate that this approa
h to dete
t new dependen
ies
an be used in all RDT
he
kpointing proto
ols.Referen
es[1℄ R. Baldoni, J. M. Helary, A. Mostefaoui, and M. Raynal. A
ommuni
ation-indu
ed
he
kpoint proto-
ol that ensures rollba
k dependen
y tra
kability. In IEEE Symposium on Fault Tolerant Computing(FTCS'97), pages 68{77, 1997.[2℄ M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed systems.ACM Trans. on Computing Systems, 3(1):63{75, Feb. 1985.[3℄ E. N. Elnozahy, D. Johnson, and Y.M.Yang. A survey of rollba
k-re
overy proto
ols in message-passing systems. Te
hni
al Report CMU-CS-96-181, Carnegie Mellon University, 1996.[4℄ J. Gosling, B. Joy, and G. L. Steele. The Java Language Spe
i�
ation. Java Series. Addison{Wesley,Sept. 1996.[5℄ T. R. K. Venkatesh and H. F. Li. Optimal
he
kpointing and lo
al re
ording for domino-free rollba
kre
overy. Information Pro
essing Letters, 25(5):295{303, 1987.[6℄ L. Lamport. Time,
lo
ks, and the ordering of events in a distributed system. Commun. ACM,21(7):558{565, July 1978.[7℄ D. Manivannan and M. Singhal. Quasi-syn
hronous
he
kpointing: Models,
hara
terization, and
lassi�
ation. IEEE Trans. on Parallel and Distributed Systems, 10(7), July 1999.[8℄ Y. M. Wang. Consistent global
he
kpoints that
ontain a given set of lo
al
he
kpoints. IEEE Trans.on Computers, 46(4):456{468, Apr. 1997.

