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amp.brAbstra
tChe
kpoint patterns that enfor
e the rollba
k-dependen
y tra
kability (RDT) propertyallow eÆ
ient solutions to the determination of 
onsistent global 
he
kpoints that in
ludea given set of 
he
kpoints. Fixed-Dependen
y-After-Send (FDAS) is a well-known RDTproto
ol that for
es the dependen
y ve
tor of a pro
ess to remain un
hanged during a 
he
k-point interval after the �rst message-send event. In this paper, we explore pro
esses' 
ommonknowledge about their behavior to derive a more eÆ
ient 
ondition to indu
e 
he
kpoints un-der FDAS. We 
onsider that our approa
h 
an be used to improve other RDT 
he
kpointingproto
ols.Keywords: Distributed systems; Fault-toleran
e; Distributed 
he
kpointing; Rollba
k-dependen
y tra
kability1 Introdu
tionA 
he
kpoint is a stable memory re
ord of a pro
ess' state. A 
onsistent global 
he
kpoint is aset of 
he
kpoints, one per pro
ess, that 
ould have been seen by an idealized observer externalto the 
omputation [2℄. The set of all 
he
kpoints taken by a distributed 
omputation formsa 
he
kpoint pattern. Che
kpoint patterns that enfor
e the rollba
k-dependen
y tra
kability(RDT) property allow eÆ
ient solutions to the determination of the maximum and minimum
onsistent global 
he
kpoints that in
lude a set of 
he
kpoints [8℄. Many appli
ations 
an bene�tfrom these algorithms: rollba
k re
overy, software error re
overy, deadlo
k re
overy, mobile
omputing and distributed debugging [8℄.In order to enfor
e the RDT property, an RDT 
he
kpointing proto
ol [1, 8℄ allows pro
essesto take 
he
kpoints asyn
hronously (basi
 
he
kpoints), but they may be indu
ed by the proto
olto take additional 
he
kpoints (for
ed 
he
kpoints). Fixed-Dependen
y-After-Send (FDAS) is awell-known RDT proto
ol that for
es the dependen
y ve
tor of a pro
ess to remain un
hangedduring a 
he
kpoint interval after the �rst message-send event [8℄. Upon the re
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p0 -�̂�00 Um1 � �̂10 Um3 �̂�20p1 -�̂�01 Um2 � �̂11 Um4 �̂�21p2 -�̂�02 � �̂12 �̂�22�22Figure 1: A distributed 
omputationmessage, a pro
ess must take a for
ed 
he
kpoint if an entry of its dependen
y ve
tor is aboutto 
hange [1, 3, 7, 8℄.The usual approa
h to implement FDAS does not take advantage of the pro
esses' 
ommonknowledge about their behavior. Consider a s
enario where a pro
ess pi re
eives a messagefrom pj sent during an interval already known by pi. Sin
e pi knows that pj 
annot in
reaseits dependen
y ve
tor after a send, it 
an skip the veri�
ation of 
he
kpoint dependen
ies. Thissimple observation redu
es the 
omplexity of the de
ision to take a for
ed 
he
kpoint from O(n)to O(1), where n is the number of pro
esses in the 
omputation.The paper is stru
tured as follows. Se
tion 2 des
ribes the 
omputational model adopted.Se
tion 3 introdu
es rollba
k-dependen
y tra
kability. Se
tion 4 des
ribes Fixed-Dependen
y-After-Send. Se
tion 5 presents and proves the 
orre
tion of the proposed optimization. Se
tion 6summarizes the paper.2 Computational ModelA distributed 
omputation is 
omposed of n sequential pro
esses (p0; : : : ; pn�1) that 
ommuni-
ate only by ex
hanging messages. Messages 
annot be 
orrupted, but 
an be delivered out oforder or lost. The a
tivity of a pro
ess is modeled as a sequen
e of events that 
an be dividedinto internal events and 
ommuni
ation events realized through the sending and the re
eption ofmessages. Che
kpoints are internal events; ea
h pro
ess takes an initial 
he
kpoint (immediatelyafter exe
ution begins) and a �nal 
he
kpoint (immediately before exe
ution ends). Figure 1illustrates a spa
e-time diagram [6℄ augmented with 
he
kpoints (bla
k squares).Let �̂
i denote the 
th 
he
kpoint taken by pi. Che
kpoint �̂
�1i , 
 > 0, and its immediatesu

essor �̂
i de�ne a 
he
kpoint interval �
i . This interval represents the set of events produ
edby pi between �̂
�1i and �̂
i .3 Rollba
k-Dependen
y Tra
kabilityThis Se
tion introdu
es the 
on
ept of rollba
k-dependen
y tra
kability as de�ned by Wang [8℄,beginning with the de�nition of an R-graph, a digraph used to 
apture dependen
ies among
he
kpoints [8℄.De�nition 3.1 R-graph|In an R-graph, ea
h node represents a 
he
kpoint and a dire
tededge is drawn from �̂�a to �̂�b if (i) a = b and � = �+ 1 or (ii) a 6= b, and a message m is sentin ��a and re
eived in ��b .



p0 �̂00 -̂�10 -? �̂20?p1 �̂01 - �̂11 -? �̂21?p2 �̂02 - �̂12 - �̂22Figure 2: R-graphp0 -�̂�00 (0; 0; 0) U(1; 0; 0)m1 �̂�10 (1; 0; 0) Um3(2; 2; 0) �̂�20 (2; 0; 0)p1 -�̂�01 (0; 0; 0) U(1; 1; 0)m2 �̂�11 (1; 1; 0) Um4(1; 2; 0) �̂�21 (1; 2; 0)p2 -�̂�02 (0; 0; 0) �̂�12 (1; 1; 1) �̂�22 (1; 2; 2)Figure 3: A distributed 
omputation with dependen
y ve
torsFigure 2 shows the R-graph 
orrespondent to the distributed 
omputation depi
ted in Fig-ure 1. The name R-graph (rollba
k-dependen
y graph) 
omes from the observation that if thereis a path in the R-graph from �̂�a to �̂�b and ��a is rolled ba
k, ��b must also be rolled ba
k [8℄.Dependen
y Ve
tor A dependen
y tra
king me
hanism 
an be used to 
apture 
ausal de-penden
ies among 
he
kpoints. Ea
h pro
ess pi maintains and propagates a size-n dependen
yve
tor dv i, that is initially (0; : : : ; 0). The entry dv i[i℄ represents the 
urrent interval of pi andit is in
remented immediately after a new 
he
kpoint is taken. Every other entry dv i[j℄, j 6= i,represents the highest interval index of pj upon whi
h pi is dependent; it is updated every timea message m with a greater value of dvm[j℄ arrives at pi.Figure 3 depi
ts the dependen
y ve
tors asso
iated to 
he
kpoints of the distributed 
om-putation presented in Figure 1. Note that the dependen
y ve
tor asso
iated to 
he
kpoint �̂12is (1; 1; 1) and it 
orre
tly represents the nodes that 
an rea
h this 
he
kpoint in the R-graph(Figure 2). Unfortunately, not all 
he
kpoint dependen
ies 
an be tra
ked on-line. For example,the dependen
y ve
tor asso
iated to 
he
kpoint �̂22 does not 
apture that �̂20 
an rea
h �̂22 in theR-graph, sin
e the edge from �̂20 to �̂21 was established after m4 was sent.Rollba
k-Dependen
y Tra
kability Wang established a property in a 
he
kpoint patternthat allows dependen
y ve
tors to 
arry all information needed to perform rea
hability analysisin its 
orrespondent R-graph [8℄.De�nition 3.2 Rollba
k-Dependen
y Tra
kability|A 
he
kpoint pattern satis�es rollba
k-dependen
y tra
kability if the following property holds:For any two 
he
kpoints �̂�a (� 6= 0) and �̂�b of the pattern, there is a pathfrom �̂�a to �̂�b in the R-graph if, and only if, dv(�̂�b )[a℄ � �.4 Fixed-Dependen
y-After-SendOne way to enfor
e RDT is to 
onsider Fixed-Dependen
y-After-Send (FDAS): in any interval,after the �rst message has been sent, the dependen
y ve
tor remains un
hanged until the next




he
kpoint [8℄. Thus, upon the re
eption of a message, a for
ed 
he
kpoint is indu
ed if any entryof the dependen
y ve
tor is about to be 
hanged. The des
riptions of FDAS presented in theliterature always 
ompare all entries of the dependen
y ve
tor to indu
e a for
ed 
he
kpoint [1,3, 7, 8℄.An implementation of FDAS is des
ribed in 
lass FDAS (Class 4.1), using Java1 [4℄. Ea
hpro
ess pi maintains and propagates a dependen
y ve
tor (Se
tion 3). Pro
ess pi also maintains a
ag afterSend that 
aptures whether a message has been sent or not during the 
urrent interval.The 
ag is reset after a 
he
kpoint is taken and it is set after a message is sent.The method re
eiveMessage 
ontains the part of the FDAS that enfor
es RDT. Upon there
eption of a message m, the dependen
y ve
tor of the message is s
anned. If a new dependen
yis established, say at dv [k℄, and at least one message was sent in the 
urrent interval a for
ed
he
kpoint is taken. The dependen
y ve
tor of the pro
ess is updated from dv [k℄ to dv [n℄, toregister the new dependen
ies. The 
omplexity of this method is O(n).publi
 
lass FDAS fpubli
 stati
 �nal int N = 100; // Number of pro
esses in the 
omputationpubli
 int pid; // A pro
ess unique identifier in the range 0..N-1prote
ted int [ ℄ DV = new int [N℄; // Automati
ally initialized to (0,...,0)prote
ted boolean afterSend;publi
 void takeChe
kpoint() f// Save state to stable memoryDV[pid℄++;afterSend = false;gpubli
 FDAS(int pid) f this.pid = pid; g // Constru
torpubli
 void run() f takeChe
kpoint(); g // Initiate exe
utionpubli
 void finalize() f takeChe
kpoint(); g // Finish exe
utionpubli
 void sendMessage(Message m) fm.DV = (int [ ℄) DV.
lone(); // Piggyba
k DV onto the messageafterSend = true;// Send messagegpubli
 void re
eiveMessage(Message m) fint k;for (k = 0; k < N && m.DV[k℄ � this.DV[k℄; k++); // Stop at the first new dependen
yif (k < N) f // New dependen
yif (afterSend)takeChe
kpoint();for (; k < N; k++) // Update DV starting at the first new dependen
yif (m.DV[k℄ > DV[k℄) DV[k℄ = m.DV[k℄;g// Message is pro
essed by the appli
ationgg Class 4.1: FDAS.java1We have 
hosen Java be
ause it is easy to read and has a widely known spe
i�
ation. Java is a trademark ofSun Mi
rosystems, In
.



pj : : : -� �� �mpi : : : -� �
Figure 4: Pro
ess pi already knows the interval in whi
h m was sent

pj : : : -� ����jpi : : : -� � pj : : : -� �m��jpi : : : -� � pj : : : -� ��0 ��jpk : : : -� ��00 �m��kpi : : : -� �
(a) (b) (
)Figure 5: Contradi
tion hypothesis (a), base (b), and indu
tion step (
) of Theorem 5.15 An Optimization based on Common KnowledgeThe approa
h presented in the previous Se
tion does not take advantage of the pro
esses' 
om-mon knowledge about their behavior. Consider a s
enario where a pro
ess pi re
eives a messagem from pj whi
h has been sent during an interval already known by pi due to the 
ausal se-quen
e of messages � (Figure 4). Sin
e pj is not allowed to in
rease its dependen
y ve
tor aftera message-send event, pro
ess pi 
an verify if a new dependen
y is established based solely ondvm[j℄. This observation takes us to an optimized version of the method re
eiveMessage.publi
 
lass FDAS f/� ... �/ // Same as in Class 4.1publi
 void re
eiveMessage(Message m) fif (m.DV[m.sender℄ > DV[m.sender℄) f // New dependen
yif (afterSend) takeChe
kpoint();for (int k=0; k < N; k++) // Update DVif (m.DV[k℄ > DV[k℄) DV[k℄ = m.DV[k℄;g// Message is pro
essed by the appli
ationgg Class 5.1: FDAS.java (Optimized version of re
eiveMessage)Theorem 5.1 The optimized version of re
eiveMessage 
orre
tly implements FDAS.Proof: Consider the sequen
e of messages � = (m1; : : : ;m`) from ��j to pi, su
h that ea
hmessage mk, 1 � k < `, is prime (it is the �rst message that 
arries information about ��jto the pro
ess that re
eives it). Consider that the last message of � is re
eived by pi after amessage-send event (Figure 5 (a)). We prove that pi 
annot have 
hanged dv i[j℄ regardless thenumber ` of messages in �.Base: ` = 1 In this 
ase, � is formed by a single message m (Figure 5 (b)). If dvm[j℄ > dv i[j℄,pro
ess pi would have taken a for
ed 
he
kpoint before pro
essing m.



Step: ` > 1 Consider that no pro
ess is allowed to in
rease an entry of its dependen
y ve
tordue to a sequen
e of `� 1 messages. We prove that this behavior also holds for a sequen
e of `messages. Let m be the last message of �, sent by pro
ess pk during ��k and let �0 be the �rst`� 1 messages of � from ��j to pk (Figure 5 (
)). Sin
e pi does not take a 
he
kpoint upon there
eption of m, there must exist a sequen
e of messages �00 from ��k that arrives at pi beforem. Sin
e m is the �rst message that brings information about ��j to pi, the last message of �0must arrive at pk after it has sent the �rst message of �00. Thus, pk in
reases the jth entry ofits dependen
y ve
tor during ��k after a message-send event. 2The observation of the knowledge shared by the pro
esses has allowed us to get a redu
tionfrom O(n) to O(1) on the 
omplexity of the de
ision to take a for
ed 
he
kpoint. Besides that,the total 
omplexity of the method re
eiveMessage is redu
ed to O(1) when no new dependen
yis established. However, the sender of the message must be identi�ed.6 Con
lusionFixed-Dependen
y-After-Send (FDAS) is an RDT proto
ol that for
es the dependen
y ve
tor ofa pro
ess to remain un
hanged during a 
he
kpoint interval after the �rst message-send event [8℄.In this paper, we have explored pro
esses' 
ommon knowledge about their behavior to derive asimpler 
ondition to indu
e 
he
kpoints under FDAS. We have obtained a redu
tion from O(n)to O(1), where n is the number of pro
esses in the 
omputation, on the 
omplexity to 
he
k ifa new dependen
y is about to be established.Our improvement 
an be dire
ted applied to Fixed-Dependen
y-Interval, a previous versionof FDAS that for
es the dependen
y ve
tor of a pro
ess to remain un
hanged during a 
he
kpointinterval [5, 8℄. At the moment, we are investigating whether a similar improvement 
an be appliedto the RDT proto
ol proposed by Baldoni, Helary, Mostefaoui, and Raynal [1℄. A more generalresult would indi
ate that this approa
h to dete
t new dependen
ies 
an be used in all RDT
he
kpointing proto
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