
Using Common Knowledge to ImproveFixed-Dependeny-After-Send�Islene C. Garia Luiz E. BuzatoUniversidade Estadual de CampinasCaixa Postal 617613083-970 Campinas, SP, BrasilTel: +55 19 788 5876Fax: +55 19 788 5847fislene,buzatog�d.uniamp.brAbstratChekpoint patterns that enfore the rollbak-dependeny trakability (RDT) propertyallow eÆient solutions to the determination of onsistent global hekpoints that inludea given set of hekpoints. Fixed-Dependeny-After-Send (FDAS) is a well-known RDTprotool that fores the dependeny vetor of a proess to remain unhanged during a hek-point interval after the �rst message-send event. In this paper, we explore proesses' ommonknowledge about their behavior to derive a more eÆient ondition to indue hekpoints un-der FDAS. We onsider that our approah an be used to improve other RDT hekpointingprotools.Keywords: Distributed systems; Fault-tolerane; Distributed hekpointing; Rollbak-dependeny trakability1 IntrodutionA hekpoint is a stable memory reord of a proess' state. A onsistent global hekpoint is aset of hekpoints, one per proess, that ould have been seen by an idealized observer externalto the omputation [2℄. The set of all hekpoints taken by a distributed omputation formsa hekpoint pattern. Chekpoint patterns that enfore the rollbak-dependeny trakability(RDT) property allow eÆient solutions to the determination of the maximum and minimumonsistent global hekpoints that inlude a set of hekpoints [8℄. Many appliations an bene�tfrom these algorithms: rollbak reovery, software error reovery, deadlok reovery, mobileomputing and distributed debugging [8℄.In order to enfore the RDT property, an RDT hekpointing protool [1, 8℄ allows proessesto take hekpoints asynhronously (basi hekpoints), but they may be indued by the protoolto take additional hekpoints (fored hekpoints). Fixed-Dependeny-After-Send (FDAS) is awell-known RDT protool that fores the dependeny vetor of a proess to remain unhangedduring a hekpoint interval after the �rst message-send event [8℄. Upon the reeption of a�This work has been supported by FAPESP under grant no. 99/01293-2 for Islene C. Garia and grant no.96/1532-9 for the Laboratory of Distributed Systems. Islene C. Garia reeived �nanial support from CNPqunder grant no. 145563/98-7. We also reeived �nanial support from PRONEX/FINEP, proess no. 76.97.1022.00(Advaned Information Systems).

p0 -�̂�00 Um1 � �̂10 Um3 �̂�20p1 -�̂�01 Um2 � �̂11 Um4 �̂�21p2 -�̂�02 � �̂12 �̂�22�22Figure 1: A distributed omputationmessage, a proess must take a fored hekpoint if an entry of its dependeny vetor is aboutto hange [1, 3, 7, 8℄.The usual approah to implement FDAS does not take advantage of the proesses' ommonknowledge about their behavior. Consider a senario where a proess pi reeives a messagefrom pj sent during an interval already known by pi. Sine pi knows that pj annot inreaseits dependeny vetor after a send, it an skip the veri�ation of hekpoint dependenies. Thissimple observation redues the omplexity of the deision to take a fored hekpoint from O(n)to O(1), where n is the number of proesses in the omputation.The paper is strutured as follows. Setion 2 desribes the omputational model adopted.Setion 3 introdues rollbak-dependeny trakability. Setion 4 desribes Fixed-Dependeny-After-Send. Setion 5 presents and proves the orretion of the proposed optimization. Setion 6summarizes the paper.2 Computational ModelA distributed omputation is omposed of n sequential proesses (p0; : : : ; pn�1) that ommuni-ate only by exhanging messages. Messages annot be orrupted, but an be delivered out oforder or lost. The ativity of a proess is modeled as a sequene of events that an be dividedinto internal events and ommuniation events realized through the sending and the reeption ofmessages. Chekpoints are internal events; eah proess takes an initial hekpoint (immediatelyafter exeution begins) and a �nal hekpoint (immediately before exeution ends). Figure 1illustrates a spae-time diagram [6℄ augmented with hekpoints (blak squares).Let �̂i denote the th hekpoint taken by pi. Chekpoint �̂�1i , > 0, and its immediatesuessor �̂i de�ne a hekpoint interval �i . This interval represents the set of events produedby pi between �̂�1i and �̂i .3 Rollbak-Dependeny TrakabilityThis Setion introdues the onept of rollbak-dependeny trakability as de�ned by Wang [8℄,beginning with the de�nition of an R-graph, a digraph used to apture dependenies amonghekpoints [8℄.De�nition 3.1 R-graph|In an R-graph, eah node represents a hekpoint and a diretededge is drawn from �̂�a to �̂�b if (i) a = b and � = �+ 1 or (ii) a 6= b, and a message m is sentin ��a and reeived in ��b .

p0 �̂00 -̂�10 -? �̂20?p1 �̂01 - �̂11 -? �̂21?p2 �̂02 - �̂12 - �̂22Figure 2: R-graphp0 -�̂�00 (0; 0; 0) U(1; 0; 0)m1 �̂�10 (1; 0; 0) Um3(2; 2; 0) �̂�20 (2; 0; 0)p1 -�̂�01 (0; 0; 0) U(1; 1; 0)m2 �̂�11 (1; 1; 0) Um4(1; 2; 0) �̂�21 (1; 2; 0)p2 -�̂�02 (0; 0; 0) �̂�12 (1; 1; 1) �̂�22 (1; 2; 2)Figure 3: A distributed omputation with dependeny vetorsFigure 2 shows the R-graph orrespondent to the distributed omputation depited in Fig-ure 1. The name R-graph (rollbak-dependeny graph) omes from the observation that if thereis a path in the R-graph from �̂�a to �̂�b and ��a is rolled bak, ��b must also be rolled bak [8℄.Dependeny Vetor A dependeny traking mehanism an be used to apture ausal de-pendenies among hekpoints. Eah proess pi maintains and propagates a size-n dependenyvetor dv i, that is initially (0; : : : ; 0). The entry dv i[i℄ represents the urrent interval of pi andit is inremented immediately after a new hekpoint is taken. Every other entry dv i[j℄, j 6= i,represents the highest interval index of pj upon whih pi is dependent; it is updated every timea message m with a greater value of dvm[j℄ arrives at pi.Figure 3 depits the dependeny vetors assoiated to hekpoints of the distributed om-putation presented in Figure 1. Note that the dependeny vetor assoiated to hekpoint �̂12is (1; 1; 1) and it orretly represents the nodes that an reah this hekpoint in the R-graph(Figure 2). Unfortunately, not all hekpoint dependenies an be traked on-line. For example,the dependeny vetor assoiated to hekpoint �̂22 does not apture that �̂20 an reah �̂22 in theR-graph, sine the edge from �̂20 to �̂21 was established after m4 was sent.Rollbak-Dependeny Trakability Wang established a property in a hekpoint patternthat allows dependeny vetors to arry all information needed to perform reahability analysisin its orrespondent R-graph [8℄.De�nition 3.2 Rollbak-Dependeny Trakability|A hekpoint pattern satis�es rollbak-dependeny trakability if the following property holds:For any two hekpoints �̂�a (� 6= 0) and �̂�b of the pattern, there is a pathfrom �̂�a to �̂�b in the R-graph if, and only if, dv(�̂�b)[a℄ � �.4 Fixed-Dependeny-After-SendOne way to enfore RDT is to onsider Fixed-Dependeny-After-Send (FDAS): in any interval,after the �rst message has been sent, the dependeny vetor remains unhanged until the next

hekpoint [8℄. Thus, upon the reeption of a message, a fored hekpoint is indued if any entryof the dependeny vetor is about to be hanged. The desriptions of FDAS presented in theliterature always ompare all entries of the dependeny vetor to indue a fored hekpoint [1,3, 7, 8℄.An implementation of FDAS is desribed in lass FDAS (Class 4.1), using Java1 [4℄. Eahproess pi maintains and propagates a dependeny vetor (Setion 3). Proess pi also maintains aag afterSend that aptures whether a message has been sent or not during the urrent interval.The ag is reset after a hekpoint is taken and it is set after a message is sent.The method reeiveMessage ontains the part of the FDAS that enfores RDT. Upon thereeption of a message m, the dependeny vetor of the message is sanned. If a new dependenyis established, say at dv [k℄, and at least one message was sent in the urrent interval a foredhekpoint is taken. The dependeny vetor of the proess is updated from dv [k℄ to dv [n℄, toregister the new dependenies. The omplexity of this method is O(n).publi lass FDAS fpubli stati �nal int N = 100; // Number of proesses in the omputationpubli int pid; // A proess unique identifier in the range 0..N-1proteted int [℄ DV = new int [N℄; // Automatially initialized to (0,...,0)proteted boolean afterSend;publi void takeChekpoint() f// Save state to stable memoryDV[pid℄++;afterSend = false;gpubli FDAS(int pid) f this.pid = pid; g // Construtorpubli void run() f takeChekpoint(); g // Initiate exeutionpubli void finalize() f takeChekpoint(); g // Finish exeutionpubli void sendMessage(Message m) fm.DV = (int [℄) DV.lone(); // Piggybak DV onto the messageafterSend = true;// Send messagegpubli void reeiveMessage(Message m) fint k;for (k = 0; k < N && m.DV[k℄ � this.DV[k℄; k++); // Stop at the first new dependenyif (k < N) f // New dependenyif (afterSend)takeChekpoint();for (; k < N; k++) // Update DV starting at the first new dependenyif (m.DV[k℄ > DV[k℄) DV[k℄ = m.DV[k℄;g// Message is proessed by the appliationgg Class 4.1: FDAS.java1We have hosen Java beause it is easy to read and has a widely known spei�ation. Java is a trademark ofSun Mirosystems, In.

pj : : : -� �� �mpi : : : -� �
Figure 4: Proess pi already knows the interval in whih m was sent

pj : : : -� ����jpi : : : -� � pj : : : -� �m��jpi : : : -� � pj : : : -� ��0 ��jpk : : : -� ��00 �m��kpi : : : -� �
(a) (b) ()Figure 5: Contradition hypothesis (a), base (b), and indution step () of Theorem 5.15 An Optimization based on Common KnowledgeThe approah presented in the previous Setion does not take advantage of the proesses' om-mon knowledge about their behavior. Consider a senario where a proess pi reeives a messagem from pj whih has been sent during an interval already known by pi due to the ausal se-quene of messages � (Figure 4). Sine pj is not allowed to inrease its dependeny vetor aftera message-send event, proess pi an verify if a new dependeny is established based solely ondvm[j℄. This observation takes us to an optimized version of the method reeiveMessage.publi lass FDAS f/� ... �/ // Same as in Class 4.1publi void reeiveMessage(Message m) fif (m.DV[m.sender℄ > DV[m.sender℄) f // New dependenyif (afterSend) takeChekpoint();for (int k=0; k < N; k++) // Update DVif (m.DV[k℄ > DV[k℄) DV[k℄ = m.DV[k℄;g// Message is proessed by the appliationgg Class 5.1: FDAS.java (Optimized version of reeiveMessage)Theorem 5.1 The optimized version of reeiveMessage orretly implements FDAS.Proof: Consider the sequene of messages � = (m1; : : : ;m`) from ��j to pi, suh that eahmessage mk, 1 � k < `, is prime (it is the �rst message that arries information about ��jto the proess that reeives it). Consider that the last message of � is reeived by pi after amessage-send event (Figure 5 (a)). We prove that pi annot have hanged dv i[j℄ regardless thenumber ` of messages in �.Base: ` = 1 In this ase, � is formed by a single message m (Figure 5 (b)). If dvm[j℄ > dv i[j℄,proess pi would have taken a fored hekpoint before proessing m.

Step: ` > 1 Consider that no proess is allowed to inrease an entry of its dependeny vetordue to a sequene of `� 1 messages. We prove that this behavior also holds for a sequene of `messages. Let m be the last message of �, sent by proess pk during ��k and let �0 be the �rst`� 1 messages of � from ��j to pk (Figure 5 ()). Sine pi does not take a hekpoint upon thereeption of m, there must exist a sequene of messages �00 from ��k that arrives at pi beforem. Sine m is the �rst message that brings information about ��j to pi, the last message of �0must arrive at pk after it has sent the �rst message of �00. Thus, pk inreases the jth entry ofits dependeny vetor during ��k after a message-send event. 2The observation of the knowledge shared by the proesses has allowed us to get a redutionfrom O(n) to O(1) on the omplexity of the deision to take a fored hekpoint. Besides that,the total omplexity of the method reeiveMessage is redued to O(1) when no new dependenyis established. However, the sender of the message must be identi�ed.6 ConlusionFixed-Dependeny-After-Send (FDAS) is an RDT protool that fores the dependeny vetor ofa proess to remain unhanged during a hekpoint interval after the �rst message-send event [8℄.In this paper, we have explored proesses' ommon knowledge about their behavior to derive asimpler ondition to indue hekpoints under FDAS. We have obtained a redution from O(n)to O(1), where n is the number of proesses in the omputation, on the omplexity to hek ifa new dependeny is about to be established.Our improvement an be direted applied to Fixed-Dependeny-Interval, a previous versionof FDAS that fores the dependeny vetor of a proess to remain unhanged during a hekpointinterval [5, 8℄. At the moment, we are investigating whether a similar improvement an be appliedto the RDT protool proposed by Baldoni, Helary, Mostefaoui, and Raynal [1℄. A more generalresult would indiate that this approah to detet new dependenies an be used in all RDThekpointing protools.Referenes[1℄ R. Baldoni, J. M. Helary, A. Mostefaoui, and M. Raynal. A ommuniation-indued hekpoint proto-ol that ensures rollbak dependeny trakability. In IEEE Symposium on Fault Tolerant Computing(FTCS'97), pages 68{77, 1997.[2℄ M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed systems.ACM Trans. on Computing Systems, 3(1):63{75, Feb. 1985.[3℄ E. N. Elnozahy, D. Johnson, and Y.M.Yang. A survey of rollbak-reovery protools in message-passing systems. Tehnial Report CMU-CS-96-181, Carnegie Mellon University, 1996.[4℄ J. Gosling, B. Joy, and G. L. Steele. The Java Language Spei�ation. Java Series. Addison{Wesley,Sept. 1996.[5℄ T. R. K. Venkatesh and H. F. Li. Optimal hekpointing and loal reording for domino-free rollbakreovery. Information Proessing Letters, 25(5):295{303, 1987.[6℄ L. Lamport. Time, loks, and the ordering of events in a distributed system. Commun. ACM,21(7):558{565, July 1978.[7℄ D. Manivannan and M. Singhal. Quasi-synhronous hekpointing: Models, haraterization, andlassi�ation. IEEE Trans. on Parallel and Distributed Systems, 10(7), July 1999.[8℄ Y. M. Wang. Consistent global hekpoints that ontain a given set of loal hekpoints. IEEE Trans.on Computers, 46(4):456{468, Apr. 1997.

