Using Common Knowledge to Improve
Fixed-Dependency-After-Send*

Islene C. Garcia Luiz E. Buzato
Universidade Estadual de Campinas
Caixa Postal 6176
13083-970 Campinas, SP, Brasil
Tel: +55 19 788 5876
Fax: +55 19 788 5847
{islene,buzato}@dcc.unicamp.br

Abstract

Checkpoint patterns that enforce the rollback-dependency trackability (RDT) property
allow efficient solutions to the determination of consistent global checkpoints that include
a given set of checkpoints. Fixed-Dependency-After-Send (FDAS) is a well-known RDT
protocol that forces the dependency vector of a process to remain unchanged during a check-
point interval after the first message-send event. In this paper, we explore processes’ common
knowledge about their behavior to derive a more efficient condition to induce checkpoints un-
der FDAS. We consider that our approach can be used to improve other RDT checkpointing
protocols.

Keywords: Distributed systems; Fault-tolerance; Distributed checkpointing; Rollback-
dependency trackability

1 Introduction

A checkpoint is a stable memory record of a process’ state. A consistent global checkpoint is a
set of checkpoints, one per process, that could have been seen by an idealized observer external
to the computation [2]. The set of all checkpoints taken by a distributed computation forms
a checkpoint pattern. Checkpoint patterns that enforce the rollback-dependency trackability
(RDT) property allow efficient solutions to the determination of the maximum and minimum
consistent global checkpoints that include a set of checkpoints [8]. Many applications can benefit
from these algorithms: rollback recovery, software error recovery, deadlock recovery, mobile
computing and distributed debugging [8].

In order to enforce the RDT property, an RDT checkpointing protocol [1, 8] allows processes
to take checkpoints asynchronously (basic checkpoints), but they may be induced by the protocol
to take additional checkpoints (forced checkpoints). Fixed-Dependency-After-Send (FDAS) is a
well-known RDT protocol that forces the dependency vector of a process to remain unchanged
during a checkpoint interval after the first message-send event [8]. Upon the reception of a

*This work has been supported by FAPESP under grant no. 99/01293-2 for Islene C. Garcia and grant no.
96/1532-9 for the Laboratory of Distributed Systems. Islene C. Garcia received financial support from CNPq
under grant no. 145563/98-7. We also received financial support from PRONEX/FINEP, process no. 76.97.1022.00
(Advanced Information Systems).

0 ~
Do m [| [|
~0 mi ~1 m3 ~2
o1 \ 01 \ o1
J4 I | |
~0 mo ~1 my ~2
09 \ 09 \ 035
P2 =] |

A3

Figure 1: A distributed computation

message, a process must take a forced checkpoint if an entry of its dependency vector is about
to change [1, 3, 7, 8].

The usual approach to implement FDAS does not take advantage of the processes’ common
knowledge about their behavior. Consider a scenario where a process p; receives a message
from p; sent during an interval already known by p;. Since p; knows that p; cannot increase
its dependency vector after a send, it can skip the verification of checkpoint dependencies. This
simple observation reduces the complexity of the decision to take a forced checkpoint from O(n)
to O(1), where n is the number of processes in the computation.

The paper is structured as follows. Section 2 describes the computational model adopted.
Section 3 introduces rollback-dependency trackability. Section 4 describes Fixed-Dependency-
After-Send. Section 5 presents and proves the correction of the proposed optimization. Section 6
summarizes the paper.

2 Computational Model

A distributed computation is composed of n sequential processes (py,...,pn—1) that communi-
cate only by exchanging messages. Messages cannot be corrupted, but can be delivered out of
order or lost. The activity of a process is modeled as a sequence of events that can be divided
into internal events and communication events realized through the sending and the reception of
messages. Checkpoints are internal events; each process takes an initial checkpoint (immediately
after execution begins) and a final checkpoint (immediately before execution ends). Figure 1
illustrates a space-time diagram [6] augmented with checkpoints (black squares).

Let &2 denote the yth checkpoint taken by p;. Checkpoint &2_1, v > 0, and its immediate
successor 6; define a checkpoint interval A}, This interval represents the set of events produced

by p; between 62771 and 6.

3 Rollback-Dependency Trackability

This Section introduces the concept of rollback-dependency trackability as defined by Wang [8],
beginning with the definition of an R-graph, a digraph used to capture dependencies among
checkpoints [8].

Definition 3.1 R-graph—In an R-graph, each node represents a checkpoint and o directed
edge is drawn from 6 to 65 if (i) a="band B =a+1 or (i) a#b, and a message m is sent
in AY and received in Ab’B.

0 1 ~2

99 99 99
Po o

0 ~1 ~2

1 1‘71 g1
P11 o

~0 1 ~2

2 l% 72
P2 o

& &
Do m = u
o
P =

2 1 4 2
9 (0,0,0) (1,1,00 63(1,1,1) \(1,2,0) 62 (1,2,2)
D2 m u u

Figure 3: A distributed computation with dependency vectors

Figure 2 shows the R-graph correspondent to the distributed computation depicted in Fig-
ure 1. The name R-graph (rollback-dependency graph) comes from the observation that if there
is a path in the R-graph from 6 to &f and A? is rolled back, Af must also be rolled back [8].

Dependency Vector A dependency tracking mechanism can be used to capture causal de-
pendencies among checkpoints. Each process p; maintains and propagates a size-n dependency
vector dv;, that is initially (0, ..., 0). The entry dv;[i] represents the current interval of p; and
it is incremented immediately after a new checkpoint is taken. Every other entry dv;[j], 7 # 1,
represents the highest interval index of p; upon which p; is dependent; it is updated every time
a message m with a greater value of dv,,[j] arrives at p;.

Figure 3 depicts the dependency vectors associated to checkpoints of the distributed com-
putation presented in Figure 1. Note that the dependency vector associated to checkpoint &3
is (1, 1, 1) and it correctly represents the nodes that can reach this checkpoint in the R-graph
(Figure 2). Unfortunately, not all checkpoint dependencies can be tracked on-line. For example,
the dependency vector associated to checkpoint 63 does not capture that 62 can reach 3 in the
R-graph, since the edge from 63 to 62 was established after m, was sent.

Rollback-Dependency Trackability Wang established a property in a checkpoint pattern
that allows dependency vectors to carry all information needed to perform reachability analysis
in its correspondent R-graph [8].

Definition 3.2 Rollback-Dependency Trackability —A checkpoint pattern satisfies rollback-
dependency trackability if the following property holds:

For any two checkpoints 65 (a # 0) and 65 of the pattern, there is a path
from &5 to 65 in the R-graph if, and only if, dv(&f)[a] > a.

4 Fixed-Dependency-After-Send

One way to enforce RDT is to consider Fixed-Dependency-After-Send (FDAS): in any interval,
after the first message has been sent, the dependency vector remains unchanged until the next

checkpoint [8]. Thus, upon the reception of a message, a forced checkpoint is induced if any entry
of the dependency vector is about to be changed. The descriptions of FDAS presented in the
literature always compare all entries of the dependency vector to induce a forced checkpoint [1,
3,7, 8.

An implementation of FDAS is described in class FDAS (Class 4.1), using Java' [4]. Each
process p; maintains and propagates a dependency vector (Section 3). Process p; also maintains a
flag afterSend that captures whether a message has been sent or not during the current interval.
The flag is reset after a checkpoint is taken and it is set after a message is sent.

The method receiveMessage contains the part of the FDAS that enforces RDT. Upon the
reception of a message m, the dependency vector of the message is scanned. If a new dependency
is established, say at dv[k], and at least one message was sent in the current interval a forced
checkpoint is taken. The dependency vector of the process is updated from dv[k] to dv[n], to
register the new dependencies. The complexity of this method is O(n).

public class FDAS {
public static final int N = 100; // Number of processes in the computation
public int pid; // 4 process unique identifier in the range 0..N-1
protected int [] DV = new int [N]; // Automatically initialized to (0,...,0)
protected boolean afterSend;

public void takeCheckpoint() {
// Save state to stable memory
DV [pid]++;
afterSend = false;

}

public FDAS(int pid) { this.pid = pid; } // Constructor

public void run() { takeCheckpoint(); } // Initiate ezecution
public void finalize() { takeCheckpoint(); } // Finish ezecution

public void sendMessage(Message m) {
m.DV = (int [1) DV.clone(); // Piggyback DV onto the message
afterSend = true;
// Send message

}

public void receiveMessage (Message m) {
int k;
for (k = 0; k < N && m.DV[k] < this.DV[k]; k++)
; // Stop at the first new dependency
if (k < N) { // New dependency
if (afterSend)
takeCheckpoint () ;
for (; k < N; k++) // Update DV starting at the first new dependency
if (m.DV[k] > DV[k]) DV[k] = m.DV[k];

}

// Message is processed by the application

Class 4.1: FDAS. java

"We have chosen Java because it is easy to read and has a widely known specification. Java is a trademark of
Sun Microsystems, Inc.

P —m /
o a L

Figure 4: Process p; already knows the interval in which m was sent

2 — //
pi--. pi--. //421 //é;
R —
A

L m Pk
pj ... pj .-

J J Dj .-

[
—=

(a) (b) ()

Figure 5: Contradiction hypothesis (a), base (b), and induction step (c) of Theorem 5.1

5 An Optimization based on Common Knowledge

The approach presented in the previous Section does not take advantage of the processes’ com-
mon knowledge about their behavior. Consider a scenario where a process p; receives a message
m from p; which has been sent during an interval already known by p; due to the causal se-
quence of messages p (Figure 4). Since p; is not allowed to increase its dependency vector after
a message-send event, process p; can verify if a new dependency is established based solely on
dvp[7]. This observation takes us to an optimized version of the method receiveMessage.

public class FDAS {
/% ... %/ // Same as in Class 4.1
public void receiveMessage(Message m) {
if (m.DV[m.sender] > DV[m.senderl) { // New dependency
if (afterSend) takeCheckpoint();
for (int k=0; k < N; k++) // Update DV
if (m.DV[k] > DV[k]) DV[k] = m.DV[k];

}

// Message is processed by the application

Class 5.1: FDAS.java (Optimized version of receiveMessage)

Theorem 5.1 The optimized version of receiveMessage correctly implements FDAS.

Proof: Consider the sequence of messages p = (my,...,my) from A;- to p;, such that each
message my, 1 < k < £, is prime (it is the first message that carries information about A;
to the process that receives it). Consider that the last message of y is received by p; after a
message-send event (Figure 5 (a)). We prove that p; cannot have changed dv,[j] regardless the
number £ of messages in p.

Base: ¢ =1 In this case, p is formed by a single message m (Figure 5 (b)). If dv,,[j] > dv;[j],
process p; would have taken a forced checkpoint before processing m.

Step: £ > 1 Consider that no process is allowed to increase an entry of its dependency vector
due to a sequence of £ — 1 messages. We prove that this behavior also holds for a sequence of ¢
messages. Let m be the last message of i, sent by process pj during A and let u' be the first
¢ — 1 messages of p from A’ to pj, (Figure 5 (c)). Since p; does not take a checkpoint upon the
reception of m, there must exist a sequence of messages p” from AF that arrives at p; before
m. Since m is the first message that brings information about Aj to p;, the last message of !
must arrive at p, after it has sent the first message of p”. Thus, py increases the jth entry of
its dependency vector during A} after a message-send event. O

The observation of the knowledge shared by the processes has allowed us to get a reduction
from O(n) to O(1) on the complexity of the decision to take a forced checkpoint. Besides that,
the total complexity of the method receiveMessage is reduced to O(1) when no new dependency
is established. However, the sender of the message must be identified.

6 Conclusion

Fixed-Dependency-After-Send (FDAS) is an RDT protocol that forces the dependency vector of
a process to remain unchanged during a checkpoint interval after the first message-send event [8].
In this paper, we have explored processes’ common knowledge about their behavior to derive a
simpler condition to induce checkpoints under FDAS. We have obtained a reduction from O(n)
to O(1), where n is the number of processes in the computation, on the complexity to check if
a new dependency is about to be established.

Our improvement can be directed applied to Fixed-Dependency-Interval, a previous version
of FDAS that forces the dependency vector of a process to remain unchanged during a checkpoint
interval [5, 8]. At the moment, we are investigating whether a similar improvement can be applied
to the RDT protocol proposed by Baldoni, Helary, Mostefaoui, and Raynal [1]. A more general
result would indicate that this approach to detect new dependencies can be used in all RDT
checkpointing protocols.

References

[1] R. Baldoni, J. M. Helary, A. Mostefaoui, and M. Raynal. A communication-induced checkpoint proto-
col that ensures rollback dependency trackability. In IEEE Symposium on Fault Tolerant Computing
(FTCS’97), pages 68-77, 1997.

[2] M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed systems.
ACM Trans. on Computing Systems, 3(1):63-75, Feb. 1985.

[3] E. N. Elnozahy, D. Johnson, and Y.M.Yang. A survey of rollback-recovery protocols in message-
passing systems. Technical Report CMU-CS-96-181, Carnegie Mellon University, 1996.

[4] J. Gosling, B. Joy, and G. L. Steele. The Java Language Specification. Java Series. Addison—Wesley,
Sept. 1996.

[5] T.R. K. Venkatesh and H. F. Li. Optimal checkpointing and local recording for domino-free rollback
recovery. Information Processing Letters, 25(5):295-303, 1987.

[6] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,
21(7):558-565, July 1978.

[7] D. Manivannan and M. Singhal. Quasi-synchronous checkpointing: Models, characterization, and
classification. IEEE Trans. on Parallel and Distributed Systems, 10(7), July 1999.

[8] Y. M. Wang. Consistent global checkpoints that contain a given set of local checkpoints. IEEE Trans.
on Computers, 46(4):456-468, Apr. 1997.

