118

A Language Construct for DMIs

AL F. Zorzo
Faculdade de Informatica
Pontificia Universidade Catdlica do RS
90619-900 Porto Alegre - RS - Brazil
zorzo@inf.pucrs. br

Abstract

Dependable Multiparty Interacion (DMI) has recently been introduced as a mechanism
that provides reliable interaction between participants. Specifically, a DMI is a multiparty
interaction mechanism that provides facilities for handling concurrent exceptions and assuring
consistency upon leaving the interaction. This paper describes how the DMI mechanism can
be added to a programming language.

Keywords: DMI, multiparty interaction, concurrent exception handling

1 Introduction

Parallel programs are usually composed of diverse concurrent activities. and communication and
synchronisation patterns between these activities are complex and not easily predictable. Thus,
parallel programming is widely regarded as difficult: [1], for example, says that parallel program-
ming is “more difficuly than sequential programming and perhaps more difficult than it needs
to be”. In addition to the normal programming concerns, the programmer has to deal with the
added complexity brought about by multiple threads of controls: managing their creation and
destruction and controlling their interactions via synchronisation and communication.

Furthermore, with the proliferation of distributed systems. computer communication activi-
ties are becoming more and more distributed. Such distribution can include processing, control,
data, network management, and security [2]. Although distribution can improve the reliability
of a system by replicating components, sometimes an increase in distribution can introduce some
undesirable faults. To reduce the risks of introducing faults when distributing applications, and of
coping with residual faults, it is important that this distribution is implemented in an organised
way.

As in sequential programming, complexity in distributed. in particular parallel, program devel-
opment can be managed by providing appropriate programming language constructs. Language
constructs can help both by supporting encapsulation so as to prevent unwanted interactions be-
tween program components and by providing higher-level abstractions that reduce programmer
effort by allowing compilers to handle mundane, error-prone aspects of parallel program imple-
mentation [1].

One of such language constructs is an extension to the multiparty interaction mechanism [3]
[4] [5] [6] called Dependable Multiparty Interaction (DMI) 7). This paper describes how a DMI
mechanism can be embedded in a programming language. Section 2 presents the DMI mechanism
and Section 3 presents a language called DIP (Dependable Interacting Processes) in which the
DMI mechanism is a basic language construct.

2 Dependable Multiparty Interactions

Existing multiparty interaction mechanisms do not provide features for dealing with possible faults
that may happen during the execution of the interaction. In some, the underlying system that



is executing those multiparty interactions will simply stop the system in response to a fault. In
DisCo, for instance, if an assertion inside an action is false, then the run-time system is assumed
to stop the whole application. This situation is unacceptable in many situations.

In this section, exception handling is added to multiparty interactions in order to provide some
form of dealing with faults that may happen during the execution of the interaction. This new
mechanism is called a dependable multiparty interaction (DMI). Specifically, a DMI is a multiparty
interaction mechanism that provides facilities for:

e HANDLING CONCURRENT EXCEPTIONS: when an exception occurs in one of the bodies of
a participant, and not dealt with by that participant, the exception must be propagated
to all participants of the interaction [8] [9]. A DMI must also provide a way of dealing
with exceptions that can be raised by one or more participants. Finally, if several different
exceptions are raised concurrently, the DMI mechanism has to decide which exception will
be raised in all participants.

e ASSURING CONSISTENCY UPON EXIT: a participant can only leave the interaction when all
of them have finished their roles and the external objects are in a consistent state. This
property guarantees that if something goes wrong in the activity executed by one of the
participants, then all participants have an opportunity to recover from possible errors.

'Y 1 A4

exveeption iat hanled

noal oitfcome
normal entcone

nonial onteome
exceprion not handled

nostial ourcante

exception nat fandled
exceprion not hadled

aorivation

multiparty
Row of control :) interaction

activity

Figure 1: Dependable Multiparty Interaction

The key idea for handling exceptions is to build DMIs out of not necessarily reliable multiparty
interactions by chaining them together, where each multiparty interaction in the chain is the
exception handler for the previous multiparty interaction in the chain. Figure 1 shows how a
basic multiparty interaction and exception handling multiparty interactions are chained together
to form a composite multiparty interaction, in fact what we term a DMI, by handling possible
exceptions that are raised during the execution of the DMI. As shown in the figure, the basic
multiparty interaction can terminate normally, raise exceptions that are handled by exception
handling multiparty interactions, or raise exceptions that are not handled in the DMI. If the basic
multiparty interaction terminates normally, the control fow is passed to the callers of the DMI.
If an exception is raised, then there are two possible execution paths to be followed: i) if there
is an exception handling multiparty interaction to handle this exception, then it is activated by
all roles in the DMI; i) if there is no exception handling multiparty interaction to handle the
raised exception, then this exception is signalled to the invokers of the DMI. The whole set of
basic multiparty interaction and the exception handling multiparty interactions are represented
as one entity, a composite multiparty interaction since they are isolated from the outside in order
that, for example, the raising of an exception is not seen by the enclosing context of a DML

119



120

The exceptions that are raised by the basic multiparty interaction or by a handler, should
be the same for all roles in the DMI. If several roles raise different concurrent exceptions, the
DMI mechanism activates a exception resolution algorithm based on [8] to decide which common
exception will be raised and handled.

Further information about DMIs can be found in [7].

3 Dependable Interacting Processes - DIP

Dependable Interacting Processes (DIP) is a language that allows a designer to specify exception
handling in multiparty interactions. DIP extends languages like DisCo [10] and IP [4] (Interacting
Processes), where exceptions are not considered in the specification of a system.

A program in DIP is composed of a set of objects O (instances of classes), a set of teams T
(instances of actions), and a set of players P (instances of processes).

» program = {0, T, P}

Each program in DIP has a global state that is represented by the set of objects 0. The objects
that represent the global state of a DIP program are called global objects; Ogiopar- Changes to the
global objects of a DIP program can only be made inside a team belonging to the set of teams
T. Players in DIP are responsible for specifying the order in which the teams in T are executed,
hence the order in which the state of a DIP program changes. Further information about DIP
objects and DIP players can be found in [7].

3.1 DIP Teams

Teams are used 1o describe dependable multiparty interactions in DIP. A team ¢ in DIP is com-
posed of a name, a main body b (called simply the body from now on) and a set of handler teams
H. The body of a tearn and the handler teams are associated via the exceptions that can be raised
inside the body of the team.

o t = {nameieam, b H}

o H={hi,...hn}, wheren >0

An example of the team structure is in Figure 2.

3.1.1 Team Body

Each body b is composed of: i) a set of roles R; i) a set of objects O,ges that are manipulated by
the roles, i.e. objects that are sent to the team as role parameters; iii) a set of local objects Oryear
that have the same semantics as global objects with respect to the roles in R, i.e. roles can modify
these objects only inside ancther team; iv) a set of local teams LT (nested teams) used to modify
the local objects in Ojyear; v) & boolean expression, called guard, that checks the preconditions of
the team and must be true in order for the roles of the team to start; vi) a boolean expression,
called assertion, that checks the post-conditions of the team and must be true in order for the
roles to finish normally: and a sev of outcomes OUT it can produce. i.e. a normal outcome or
one exception which is signalled to the callers of the team. The exceptions a team can signal are
expressed as a list after the word exceptions, see Figure 2. The list is structured as a tree, e.g.
(e ,e;) represents a tree in which e is the parent of €; and e3. Local objects and local (nested)
actions are created when all roles become active and destroyed when the roles become inactive
again.

o b={R,Orotes; Olocar; LT, guard, assertion, OUT}

® Oteam = Orocat J Orotes



action nameieam 1S
body is
body b
exceptions e(e;, e2)
end body
handler for e is
body
body of handler for exception e
end body
handler for e, is
body
body of handler for excepticn e
end body
handler for e; is
body
body of handler for exception ez
end body
end action

Figure 2: Team Structure in DIP

o Orores € Ogloba.f

The syntax of a team body is based on the syntax of IP teams, while the semantics of the use
of objects is similar to DisCao actions. Teams in DIP differ from the IP teams in the sense that
IP allows the static definition of processes that belong to that team, while in DIP the only static
computation code allowed is the one inside the roles of the DIP team. The semantics of objects
that are sent to a DIP team are very similar to the way objects are treated in DisCo actions, i.e.
they can only be used in one team at a time.

3.1.2 Team Guard and Assertion

Guard is a boolean expression, a precondition, over the objects that are carried to the team by the
roles (Orotes)- This boolean expression is tested only when all roles become active in an execution
of a team. The guard states a necessary condition, not sufficient, for the team to start. If the
guard does not hold, then an exceptional outcome is produced and it can be treated by a handler.
The guard can be empty, having the same effect as if it is always true.

o The body of a teamn starts when all roles are active and the guard of the body is true.
e If team t; and team t» are active, then Oy N Oy, = {}.

Assertion is a boolean expression, a post-condition, over the team’s objects (Osenm). This
expression must be true in order for the team to finish normally. Similarly to the guard, if the
assertion does not hold, then an exceptional outcome is produced and it can be treated by a
handler. The assertion can be empty. having the same effect as if it is always true.

e The body of o team terminaites normally when none of the roles of the body fail end the
assertion of the body is true.

In Figure 3, we show how a guard and an assertion can be inserted in the body of a team.
The guard-boolean-expression and assertion-boolean-expression are expressions over the objects of
the team, i.e. Oteam

Team guard and assertion have similar meaning to guard and assertions in DisCo. There are
some major differences though. First, an action in DisCo is only activated if the guard is true.

121



122

action nameéi.am is
body is
guard guard-boolean-expression

assertion assertion-boolean-expression
end body
end action

Figure 3: Guard and Assertion Declaration in DIP

while in DIP the body of the team is only activated if the guard is true. If the guard is not true
in DIP, then an exception can be raised and a handler for that exception will be tried. Second.
assertions in DisCo can be inserted anywhere inside an action, while in DIP, the assertion is used
only for testing post-conditions. hence it is tested at the end of DIP team’s execution. The third
difference is that a DIP assertion can raise an exception if it is false, and an exception handler
may be executed. In DisCo, if an assertion is false, then the system is assumed to stop.

3.1.3 Team Outcomes

A team can produce two different kinds of outcomes (results): i) normal, when all roles are
activated, guard and assertion are satisfied: 77 exceptional outcome, when guard or assertion are
false; when a role fails to perform its activity; or when an object being manipulated by a role has
at least one of its assertions signalling an exception.

3.1.4 Team Roles

Roles are the means for describing computation inside a team. Each role r; has a name, a set of
objects, Oryre.. and a set of commands C,.;., . The objects used by the role are a subset of the
objects of the team. Roles are passive entities but become active when players, or the roles in a
containing team, activate them.

e R={ry,...,™m}, wherem >1

o 7; = {namesore;- Orote,s Croie, }: forl <i<m

L Orolzs c Oroics

An example of roles in a team is shown in Figure 4.

action name. o is
body is
role r; with object, is
commands for rofe Ty
end role

role 7., with object., is
commands for rofe T+,
end role
end body
end action

Figure 4: Roles Declaration in DIP

Roles in DIP, have a similar syntax to roles in IP teams, but their semantics differ greatly.
For example, in IP, roles do not have to start at the same time, they are more like methods in
object-oriented languages. Synchronisation can be achieved, in IP, by means of its interaction
basic construct.



3.1.5 Team Handlers

Each team t can have an associated set of handlers h;. Each handler is composed of a set of
roles, a set of objects that are manipulated by the roles, a guard, an assertion, a set of exceptional
outcomes, and a set of exceptions handled by this handler. A handler is activated when one of the
exceptions it handles is raised in the body of a team or in another handler. Handlers can be used
for several purposes: to recover a team from an error situation; to relax the guard of a team?!;
to relax the assertion of a team; to execute a new diverse version of a team with different guard,
roles, and assertion; and so on. A handler has basically the same structure as the body of the
team, but is activated by an exception or set of exceptions H;. OUT; is the set of outcomes the
handler A; can produce.

L4 hi = {b: H’i: OUT&}

4 Conclusion

This paper has presented how a recently new concept for multiparty interactions that can handle
concurrent exceptions, i.e. the Dependable Multiparty Interaction mechanism, could be embedded
in a programming language. The language presented in this paper is called Dependable Interacting
Processes (DIP). This new language is based on two existing languages: DisCo [10] and IP [4].
Tools for the language presented in this paper are currently under development.

Formal specification of the language construct presented in this paper can be found in [11].

References

[1] I. Foster. Compositional parallel programming languages. ACM Transactions on Programming Lan-
guages and Systems, 18(4):454-476, 1996.

[2] P. G. Neumann. Distributed systems have distributed risks. Communications of the ACM, 39(11):130,
1998.

[3] Y.-J. Joung and S. A. Smolka. A comprehensive study of the complexity of multiparty interaction.
Journal of ACM, 43(1):75-115, 1996.

[4] I. Forman and F. Nissen. Interacting Processes - A multiperty approach to coordinated distributed
programming. ACM Publishers, 1996.

[3] P. C. Attie, N. Francez, and T. X. Austin. Fairness and hyperfairness in multiparty interactions.
Distributed Computing, 6(4):245-254, 1993.

[6] M. Evangelist, N. Francez, and S. Katz. Multiparty interactions for interprocess communication and
synchronization. IEEE Transactions on Software Engineering, 15(11):1417-1426, 1989.

[7] A. F. Zorzo. Multiparty Interactions in Dependable Distributed Systems. PhD thesis, University of
Newcastle upon Tyne, Newcastle upon Tyne, UK, 1999.

[8] R. H. Campbell and B. Randell. Error recovery in asynchronous systems. IEEFE Transactions on
Software Engineering, 12(8):811-826, 1986.

[9] A. Romanovsky, J. Xu, and B. Randell. Exception handling and resolution in distributed object-
oriented systems. In 16th IEEE International Conference on Distributed Computing Systerns, pages
545-552. IEEE Computer Society Press, 1996.

[10] H.-M. Jarvinen and R. Kurki-Suonio. Disco specification language: Marriage of actions and objects.
In 11th International Conference on Distributed Computing Systems, pages 142-151. IEEE CS Press,
1991.

[11] A. F. Zorzo and B. Randell. Towards a formal specification for dependable multiparty interactions.
Journal of Theoretical Computer Science, page submitted, 2000.

!E.g. imagine that a team needs two devices to execute an activity, but only one is available (the other may be
broken), the guard will not be true, but a handler more complex than the body of the team can execute the same
activity in a degraded mode.

123



