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Abstract. This paper concisely reviews checkpointing techniques in distributed
systems, focusing on various aspects such as coordinated and uncoordinated
checkpointing, incremental checkpoints, fuzzy checkpoints, adaptive checkpoint
intervals, and kernel-based and user-space checkpoints. The review highlights
interesting points, outlines how each checkpoint approach works, and discusses
their advantages and drawbacks. It also provides a brief overview of the adop-
tion of checkpoints in different contexts in distributed computing, including
Database Management Systems (DBMS), State Machine Replication (SMR), and
High-Performance Computing (HPC) environments. Additionally, the paper
briefly explores the application of checkpointing strategies in modern cloud and
container environments, discussing their role in live migration and application
state management. The review offers valuable insights into their adoption and
application across various distributed computing contexts by summarizing the
historical development, advances, and challenges in checkpointing techniques.

1. Introduction
The development of distributed systems techniques has significantly influenced mod-
ern software. These techniques employ replication strategies, which ensure resilience
and scalability by executing replicated services in parallel [Lamport 2019]. This ap-
proach enables replicated machines to handle multiple requests concurrently and ad-
dresses failures by maintaining multiple instances of the same services [Schneider 1990,
Kotla and Dahlin 2004]. However, recovering machines and restoring their state after a
failure is crucial; otherwise, all machines may eventually fail. To overcome this chal-
lenge, checkpointing techniques are employed, allowing the system to restore a machine
from a more recent saved state instead of its initial state.

Checkpointing strategies are responsible for saving service snapshots, while re-
covery protocols restore a consistent state and restart processes or system components
from these snapshots. Research and development of log and checkpoint-based re-
covery protocols are not new, reports from the 1970s already discussed the practical
implementation of checkpoint/restart procedures in the third generation of computers
[Oppenheimer and Clancy 1968, Chandy and Ramamoorthy 1972]. Even the IMS/360,
recognized as one of history’s pioneers and influential DBMS (Database Management
Systems), implemented a checkpoint-based recovery functionality [McGee 1977]. De-
spite minor changes in the design of checkpoint and recovery protocols, all those precur-



sor approaches point out a substantial performance reduction and the high costs with the
addition of storage capacity for saving checkpoints.

With technological advances in the following decades, computing platforms en-
abled the increase in processing and storage capacity and reduced latency in communica-
tion in computer networks. Powerful infrastructures and monetary reduction on systems
development stimulated a broader adoption of checkpoint-based approaches to provide
recovery and even other uses in distributed computing. For instance, checkpoint/recovery
solutions support the development of Byzantine-fault tolerant services in the context
of replication [Castro and Liskov 1999] and intrusion tolerance [Sousa et al. 2009]; they
are at the core of migration strategies for virtualized platforms [Elmore et al. 2011]; are
present in HPC as they provide fast resuming of long-running tasks in shared infrastruc-
tures with a limited period of use [Egwutuoha et al. 2013].

Despite a broad body of work regarding checkpoint-based techniques, there are
just a few comprehensive reports about the advances in the field. In particular, the surveys
focus on specific areas in the distributed systems, such as global checkpoints in message-
passing systems [Elnozahy et al. 2002], or checkpoints in HPC [Egwutuoha et al. 2013].
This paper sheds some light on advances in checkpoint-based research over the last 50
years. We summarize the main advances in algorithms and design of checkpoint/recovery
protocols and present a fresh view of the adoption of checkpoints in different contexts in
distributed computing.

2. The Evolution of Checkpoint-Based Techniques

Checkpoint-based recovery augments system processes with the ability to persist exe-
cuted operations, enabling processes to replay their execution after a failure beyond the
most recent checkpoint. However, these techniques negatively impact the performance
of the target applications [Bessani et al. 2013, Zheng et al. 2014, Mendizabal et al. 2016,
Mendizabal et al. 2017]. For instance, synchronous writes for taking checkpoints can
drastically reduce processes’ throughput during regular operations. Although Solid State
Devices (SSDs) can alleviate the problem, they can only partially solve it. In addition,
checkpointing must interrupt the service during this operation, except when optimizations
such as copy-on-write or fuzzy checkpoints are implemented. Next, we present some op-
timizations we found in the literature concerning reducing checkpoint overheads.

2.1. Coordinated and Uncoordinated Checkpoints

Coordinated checkpointing involves synchronizing all processes and taking a
checkpoint of the entire system state to enable recovery in case of failures
[Janakiraman and Tamir 1994, Chandy and Lamport 1985, Tamir and Sequin 1984]. In
coordinated checkpointing, all processes must agree on a safe execution point in order to
establish consistent checkpointing for all participants. In replicated systems, for example,
synchronization can be guaranteed by consensus or total order broadcast protocols, which
deliver the messages to all replicas in the same order. In a straightforward coordinated
checkpointing approach, a designated process (the initiator) initiates the checkpoint by
notifying all other processes of its intention to take a checkpoint. The two-phase check-
point protocol is then used to ensure the consistency of the checkpoint. In the first phase
of the protocol, each process enqueues the notification about the checkpoint and executes



all its previously enqueued operations. It then blocks itself and notifies the initiator that
it is ready to take the checkpoint. The initiator waits until it receives notification from a
quorum of processes that they are prepared to take the checkpoint. In the second phase
of the protocol, the initiator sends another notification to each process to make the check-
point of the entire system. Each process then takes a checkpoint of its local state. When
processes finish taking their checkpoints, the initiator is notified and signals the processes
to release their blocked state and return to regular operation. Coordinated checkpointing
ensures that all processes take a consistent snapshot of the system state. On the other
hand, it may cause a spike in latency time due to the time required to synchronize all
processes and take the checkpoint globally.

In contrast to coordinated checkpointing, uncoordinated checkpointing al-
lows processes to take checkpoints independently [Mostefaoui and Raynal 1996,
Elnozahy et al. 2002, Mendizabal et al. 2014]. Each process captures its state without
the knowledge of others, enabling them to take the checkpoint when it is more convenient
and resume normal operation immediately after checkpoint completion. This method
eliminates the need for process synchronization, allowing faster processes to proceed as
soon as they complete the checkpoint. This approach reduces the chances of momentary
unavailability or latency increases as it results in checkpoints taken at different times.
However, uncoordinated checkpointing produces checkpoints with different states saved
by the processes. Consequently, the recovery process becomes more complex, requiring
awareness of these differences and the ability to manage them effectively.

An uncoordinated but deterministic checkpointing approach appears
in [Bessani et al. 2013]. The authors present a sequential checkpointing strategy
tailored for State Machine Replication (SMR). In this approach, replicas do not check-
point their states simultaneously to avoid hiccups during normal execution. While one
replica takes a checkpoint, other replicas process requests. Since SMR replicas make
progress as long as a quorum of n − 1 replicas is available, there are f spare replicas
in fault-free executions. The intuition is to make each replica store its state at different
times to ensure that n− f replicas can continue processing client requests.

2.2. Incremental Checkpoints

Incremental checkpoints provide a way to save only a portion of the system state instead
of capturing the entire state for creating a checkpoint. This technique explicitly targets
the system state components that have changed since the last checkpoint, reducing the
checkpointing overhead [Elnozahy et al. 1992] and time needed to take the checkpoint.
Despite the advantages of incremental checkpoints, they require the storage of multiple
checkpoints, which could potentially increase storage usage. A coalescing or merging
mechanism consolidates previous checkpoints and prevents indefinite growth. Addition-
ally, it is important to note that incremental checkpoints are not suitable for every type
of application, an application that frequently accesses and modify many different parts
of the system will make the checkpointing process as costly as traditional checkpointing,
capturing the entire system state, with the additional incremental checkpoint complexity.
A prominent example of incremental checkpointing is Libckp [Plank et al. 1995], which
efficiently saves only the modified pages of the Linux system since the last checkpoint by
leveraging hardware capabilities to identify and isolate unchanged portions of the system
state accurately.



2.3. Partitioned and Parallel Checkpoints

This approach aims to benefit from the parallelism in modern hardware, both in process-
ing and I/O. The goal is to parallelize the checkpointing operation, potentially speeding
up saving and restoring the checkpoint state. Parallel threads or tasks can manage sep-
arate state partitions of the target application. However, this approach introduces extra
complexity to maintaining consistency, as the checkpoint states are divided into smaller
partitions and do not represent the complete system state. Typically the recovery process
becomes more complicated when dealing with partitioned checkpoints.

In [Junior 2020], authors proposed a checkpointing technique that allows the sys-
tem to continue its regular execution in partitions not involved in checkpointing while
a specific partition is undergoing the checkpointing process. A consequence is that a
checkpoint does not represent a complete picture of the system state at a given time. These
checkpoints with incomplete information are known in the literature as fuzzy checkpoints,
and they impose new challenges on the recovery procedure.

2.4. Fuzzy Checkpoints

A noticeable side-effect of checkpoint execution is the system hiccups, demonstrating
periods of unavailability or at least low throughput and latency increases. That happens
because checkpoints typically must save a complete and consistent snapshot of the service
state at a given point. One approach to reduce this overhead during normal operation is
to allow the execution of the checkpointing procedure while regular operations are updat-
ing part of the service state. This approach benefits from parallelism but produces fuzzy
checkpoints. This means that the resulting checkpoint image is not necessarily a consis-
tent snapshot of the service state as of a particular point in the serial order of execution.
Therefore, to recover a consistent snapshot, it is always necessary both to restore a check-
point and to replay at least a portion of the log to perform the update of information that
was not registered by the checkpoint.

In [Zheng et al. 2014], authors proposed a fast durability and recovery procedure
for in-memory databases based on fuzzy checkpoints. Checkpoints may run in parallel
with regular execution. Parts of the checkpoint are stored in multiple files, which simpli-
fies the process of log truncation and take advantage of parallel I/O over multiple storage
devices. A similar approach appears in [Junior 2020], where service replicas follow an
active replication scheme and, at deterministic intervals, every replica saves the state of
only a subset of the state partitions. When the workload is favorable, replicas can save
distinct partitions, enabling checkpoint parallelism inter-replicas.

2.5. Dynamic and Adaptive Checkpoint Intervals

Traditional checkpointing methods typically employ fixed intervals to determine when
a checkpoint should be taken. However, some studies have demonstrated that varying
the interval periods can reduce the overall application computation time without affecting
reliability. Considering probabilistic models and the specific knowledge about applica-
tions when deciding the instants to trigger a checkpoint procedure can further optimize
the checkpointing process and improve system efficiency.

For example, one observation is that a failure is more likely to occur shortly after
another failure [Tiwari et al. 2014]. Similarly, it is possible to consider the probability



of failure in certain contexts, as a process may only have a moderate likelihood of fail-
ure [Frank et al. 2021]. By adjusting checkpoint intervals based on the probability of
failure, it is possible to reduce the overall computation time by avoiding unnecessary
checkpointing and minimizing wasted computation, which refers to the computation lost
between the last checkpoint and the moment of failure.

2.6. Process and System Level Checkpoints

Checkpoints can be implemented at the operating system kernel level or user
space. Kernel-level checkpoints, like Linux Checkpoint/Restart as A Kernel mod-
ule (CRAK) [Zhong and Nieh 2001] and the Berkeley Lab’s Linux Checkpoint/Restart
(BLCR) [Duell 2005], provide low-level access, enabling direct interaction with a pro-
cess’s data without difficulties. This approach allows for easier tracking of process states
and the creation of consistent checkpoints. Furthermore, kernel-level checkpoints offer
higher performance due to their direct operation within the operating system. However,
since they are integrated into the kernel, they may require maintenance as the kernel
evolves, potentially limiting code portability.

In user-space checkpointing [Duell 2005, Plank et al. 1995], the checkpointing
process must monitor operating system signals to identify and track changes in memory
regions, ensuring correct handling to achieve consistent checkpoints. Unlike kernel-level
checkpointing, user-space checkpointing relies on listening to kernel interfaces and sys-
tem calls, which may make it more susceptible to bugs and errors and potentially slower
than the kernel-level approach. However, user-space checkpointing does not require ker-
nel modifications, which enhances its portability across different systems.

3. Checkpoint-Recovery in Action
In the last decades, we could observe different uses for checkpoint/recovery strategies.
Whether due to technological advances, which have increased storage and processing
capacities and reduced network latency or due to the diversity of applications, which
now demand reliable and highly available systems capable of recovering quickly. This
section presents some relevant contexts where checkpoint-based recovery protocols are
employed, although this is not an exhaustive exposition.

3.1. Rollback Recovery in Message-passing Systems

Many research works have investigated the side effects and challenges of developing con-
sistent checkpoint-based recovery approaches for general-purpose distributed systems, in-
cluding the comprehensive survey of checkpoint/recovery protocols in message-passing
systems presented by [Elnozahy et al. 2002]. The paper defines the system model of mes-
sage passing, in which different processes exchange messages with each other and the out-
side world (defined as something not controlled by the current system). Fault tolerance
is achieved by storing the system’s process state (checkpoints) in stable storage during
regular application operation, allowing recovery from the saved state in case of failure.

In a system that interacts with the outside world and uses the checkpoint-based
recovery-rollback protocol, a fault would require the system to inform the outside world
to send all operations again since the last checkpoint was saved, allowing the system to re-
execute those operations. This interaction with the outside world can be avoided using the



logging-based recovery-rollback protocol, which enables the system to replay the logged
operations instead of requesting a resend from the outside.

Although the record of local logs stored by individual processes can turn inter-
actions with the outside world aside, they raise some complexity and potential side ef-
fects when recovering from failures. As in uncoordinated checkpointing, processes make
checkpoints independently without informing other processes. Each process may have
multiple checkpoint files, one for each point in time. This approach can lead to issues like
the domino effect caused by rollback propagation. When a process fails, and recovery is
initiated, dependencies between processes may force non-failed processes to roll back to
earlier states to maintain consistency. The problem is that rolling back one process may
cause other processes to roll back, triggering a domino effect that can roll back the entire
system to the initial state.

The issues caused by the domino effect can be avoided when checkpoint-
ing/recovery protocols track process dependencies to force the existence of global
states throughout process execution. Such global states ensure consistency and
are safe for recovery [Leu and Bhargava 1988]. Since coordinated checkpointing
[Janakiraman and Tamir 1994] involves synchronizing all processes for taking a check-
point, such strategies ensure that all processes take a consistent snapshot of the system
state, which can be used for recovery in case of failures and avoids the domino effect.

Other researches also address scenarios where interacting processes in a
distributed environment must reach a stable and consistent state. For instance,
in [Chandy and Lamport 1985], authors propose a protocol where processes can deter-
mine a global state in the system during a distributed computation. Important problems
can be cast in terms of the problem of detecting global states, for example, computa-
tion termination, deadlock detection, and, of special interest for this paper, definition of a
global and consistent state among processes. As authors discussed, the famous Chandy-
Lamport distributed snapshot algorithm is useful for implementing checkpoints suitable
for rollback recovery in message-passing systems.

3.2. Database Management Systems

Database Management Systems (DBMS) commonly employ checkpointing strategies to
ensure data consistency and fault tolerance. For example, the PostgreSQL1,2 15 database
uses Write-Ahead Logging (WAL) to ensure that commands are first logged before being
written to data files. This approach avoids the need to flush every state change opera-
tion to disk, allowing the system to operate with dirty pages while still maintaining fault
tolerance. Since the log is written sequentially, it avoids random disk seeks, thereby im-
proving performance. At checkpoint times, triggered either by a timeout interval or by the
maximum allowed WAL size, all dirty pages must be flushed to the corresponding data
files, and the checkpoint process is started. The I/O increase caused by this operation may
degrade the system’s overall performance. To mitigate this issue, PostgreSQL sets a tar-
get completion time for the checkpoint operation, spreading the I/O operations over time
to avoid flooding the I/O system. After the checkpointing, the system may discard the
previously recorded WAL logs. The checkpointing ensures that the modified data (dirty

1https://www.postgresql.org
2https://www.postgresql.org/docs/current/wal-configuration.html



pages) are already flushed to the disk (tables and indexes), preventing WAL from growing
indefinitely. The checkpoint record stores PostgreSQL metadata about the current state of
the database. This checkpointing process can be considered a combination of traditional
checkpointing and log-based recovery.

Another database example is MySQL3,4 5.7 with the InnoDB Storage Engine.
InnoDB employs a fuzzy checkpointing approach to flush dirty pages from the buffer pool
to disk. Instead of flushing all dirty pages at once and degrading database performance,
it flushes small batches of dirty pages. The checkpoint also represents the point in time
when all cached data (dirty pages) have been flushed to disk.

3.3. Replication
Distributed systems rely on checkpoint/restore mechanisms to enhance fault tolerance
for replicated systems, aiming to achieve higher throughput and basic fault tolerance by
maintaining replicated states. As described in Section 3.2, logging, checkpointing, and
recovery procedures are commonly adopted to implement fault-tolerant database systems.
The most common approach is to augment passive replication, such as primary/backup,
with durability strategies. This section emphasizes checkpoint-based recovery in active
replication, which is typically implemented as State Machine Replicas.

Traditional State Machine Replication (SMR) models, as described
in [Lamport 2019, Schneider 1990], may use checkpoints to save the application
state in stable storage and recover a faulty replica by fetching the checkpoint state either
from its own stable storage or from a checkpoint stored in a non-faulty replica.

Parallel State Machine Replication (PSMR) models, such as those presented
in [Marandi et al. 2014], implement a multi-threaded replication model that takes advan-
tage of modern hardware architectures. Given its parallelism, PSMR faces challenges
in managing the system state to avoid the corruption that concurrent state changes could
cause. As it needs to handle concurrent state changes, PSMR must also manage how
checkpoints are saved, considering the concurrent modifications that may occur. For ex-
ample, the work of [Mendizabal et al. 2014] proposes strategies for handling checkpoint-
ing in PSMR using either coordinated or uncoordinated checkpoints.

Another example of PSMR with checkpointing is seen in [Kotla and Dahlin 2004].
The study introduces a parallelizer service, called CBASE, to the PSMR model. This
service routes commands to threads based on a partial order derived from the consen-
sus agreement’s batch of messages, allowing the system to execute commands in parallel.
Application-specific rules and context determine the partial order, wherein the application
understands the semantics of each command to decide if the command is independent and
can be executed in parallel. This method circumvents the need for a total order after con-
sensus is reached, enabling the parallel execution of independent commands. Total order
refers to processing every command in the same order it was received. Checkpoints in
CBASE are taken at fixed intervals, and every replica has the same checkpoint state gen-
erated. Checkpoint synchronization is achieved through the consensus algorithm among
all replicas. The disadvantage is the overhead of this operation, which causes threads to
wait until each of them finishes their work and completes the checkpoint.

3https://dev.mysql.com/
4https://dev.mysql.com/doc/refman/5.7/en/innodb-checkpoints.html



In [Kapritsos et al. 2012], a different approach to parallelize SMR is proposed,
called Eve (Execution-Verify). This model features a primary replica that batches com-
mands or requests and sends them to every replica. Each replica has a deterministic mixer
that defines a subset of parallel-executable commands from each batch, likely producing
the same results regardless of execution order. Although multiple batches may be in flight,
they are executed sequentially, while subsets are executed in parallel. The model intro-
duces a verification stage, where the output result of a batch is verified based on a hash
of the final state. The verification process involves an agreement protocol determining
whether the system needs to perform a rollback or can commit the commands and replay
them to the client. If a rollback occurs, the replica replays the batch sequentially. The
checkpoint process for Eve is similar to that of CBASE, but the periodic checkpoint is
based on the number of executed batches instead of individual commands.

3.4. High Performance Computing

High-Performance Computing (HPC) is recognized as a strategic area to enable process-
ing long-running tasks, such as those found in scientific computing. Among the problems
solved in these environments is the simulation of physical and meteorological models,
bioinformatics, recommendation systems, or artificial intelligence strategies that require
platforms capable of processing large data and long execution.

Computing platforms for HPC are expensive and are typically available on de-
mand, with access granted by reservation. Thus, once computing nodes’ resources are in
use, it is crucial to guarantee the success of the computation to avoid the need to restart
long-term models from the beginning. In addition, as these are reservation-by-use en-
vironments, an interruption in the execution of a scientific model may not be resumed
shortly. Returning to the allocation schedule is necessary to request the needed computa-
tional resources when they become available.

Checkpoint-based recovery can save the time of reprocessing a long-running com-
putation. However, the additional computation resources used for durability would be
used to increase the processing power. This dilemma between increasing performance or
availability has been addressed in the literature.

Using probabilities, the study by [Frank et al. 2021] investigates checkpointing in
the high-performance computing (HPC) context. It observes that most HPC jobs capable
of checkpointing have only a medium probability of failure (MPF). The research suggests
implementing checkpointing through an iterative algorithm that statistically calculates
the optimal checkpoint intervals based on the probability of node crashes, given a newly
proposed cost function. This approach identifies the number of checkpoints performed
in an MPF job and models the average number of checkpoints in cases of failures while
weighting the checkpointing cost based on the failure and success probabilities for a job.
The study emphasizes that previous approaches have not considered that these jobs may
not have a high probability of failure.

The study by [Tiwari et al. 2014] investigates the effects of traditional periodic
checkpointing in extreme-scale systems, suggesting that it is possible to exploit the tem-
poral locality of failures and to derive an approximation of the optimal checkpoint interval
(OCI) instead of using a fixed interval. The study also proposes two novel algorithms for
checkpointing: Lazy Checkpointing and Skip Checkpointing. The algorithms rely on



temporal locality to enhance the overall system computation performance by reducing
unnecessary checkpoints and being more precise about when to take the checkpoint.

3.5. Cloud and Virtualized Environments

Checkpoint/restore strategies have been used in modern cloud and container environments
allowing users and container management systems to migrate applications to another
place. User-level checkpointing can be used to migrate containers from one physical ma-
chine to another, but this may cause a delay in the response time of the source container.
In [Stoyanov and Kollingbaum 2018], authors address this issue and propose an efficient
approach for live migration of Linux containers as a Checkpoint/Restore In Userspace5

(CRIU) feature. The CRIU library is a notable and popular user-space checkpointing li-
brary that is still being updated today. It can checkpoint and restore any application in the
Linux operating system as long as the kernel provides the required interfaces.

Docker6, a widely used container engine, incorporates an experimental feature
that utilizes CRIU for checkpointing and restoring. This feature enables the freezing
of a running container by creating a checkpoint that can be later employed to restore
the container. It helps accelerate applications with lengthy startup times, rewinding a
process to an earlier point in time by restoring the application state from a checkpoint and
migrating the container between machines.

Container migration also has an application for Data Centers. The transferring of
stateless containers is a regular task. However, the transference for stateful containers may
result in momentary service unavailability [Xu et al. 2020]. Sledge is a tool whose goal
is to reduce the period of unavailability in migrating containers among cloud provider
nodes. A primary controller is responsible for storing migration logs and coordinating
migrations. For the migration, three elements should be transferred from one node to
another: i) The actual real-time status, which is formed mainly by memory in use; ii)
the writing/reading layers of the container; iii) the volume. An incremental checkpoint
strategy provided by the CRIU minimizes the unavailability time to save the real-time
status. Thus, only the portions of memory with updates after the last checkpoint need to be
saved. Writing/reading layers usually have few modifications during execution and can be
migrated using remote file synchronization tools such as the rsync. Finally, the volume is
unmounted from the source container, CRIU restores the checkpoint files, and the volume
is mounted in the new container. One problem is that the Docker Daemon reads the files
of the containers stored during startup, and then the reboot is time-consuming.

More recently, Müller at al. [Müller et al. 2022] propose a sidecar that enables
stateful containers to achieve fault tolerance. The work focuses on alleviating the chal-
lenges of checkpoint management by seamlessly integrating a Checkpoint/Restore (C/R)
service into container orchestration systems. The checkpointing service, acting as an
intermediary (sidecar), is tasked with creating snapshots of application containers and
coordinating the checkpoint process alongside the request handling. Should any faults
occur, a fresh application container is automatically generated from the most recent snap-
shot, allowing the intermediary to resume processing client requests from that specific
checkpoint.

5http://criu.org/
6https://docs.docker.com/



In [Munhoz et al. 2022], authors demonstrate that checkpoint-based recovery can
increase the availability when running unreliable spot machines. Spot machines are tran-
sient instances that cloud providers can revoke at any time without advance notice. In
such environments, users are responsible for preemptively saving data and recovering
applications. Their approach addresses the ephemeral spot instances as they are consider-
ably cheaper resources and implement checkpointing/restore deployment strategies. The
strategies comprise in-memory rollback restart at the MPI application level through User-
Level Failure Mitigation (ULFM) and process-level rollback restart with the Berkeley Lab
Checkpoint/Restart (BLCR) software package. Results indicate that the ULFM-based ap-
proach has the best performance and lowest cloud infrastructure cost, although it comes
with a complex migration process. On the other hand, the BLCR strategy is based on a
well-known software package and has a straightforward migration process, being a rea-
sonable option for the rapid migration of legacy HPC applications to public clouds.

Checkpointing is vital for ensuring VMs’ high availability, reliability, and fault
tolerance in contemporary computing. By periodically capturing a VM’s complete state,
including memory, CPU, and disk, checkpoints serve as recovery references during sys-
tem failures. This technique enables VM restoration, minimizing data loss and downtime.
The study of [Gerofi and Ishikawa 2011] investigates the effects of dynamically adjust-
ing checkpoint periods on performance degradation caused by checkpointing in VMs.
Likewise, [Cully et al. 2008] introduced a service called Remus, which asynchronously
transmits VM state changes to a backup host. In the event of a physical failure, Remus
enables seamless operation on the alternate host, ensuring minimal downtime and pre-
serving active network connections.

4. Final Remarks
This paper reviews more than 50 years of research and development of strategies for
checkpointing. Despite being a well-known and consolidated topic, important advances
in state-saving techniques and projects have emerged in recent years. Technological ad-
vances and cost reductions with hardware and management of computational infrastruc-
tures also allowed a wide adoption of these strategies in different applications in dis-
tributed computing.

The paper discusses approaches to speed up state saving, such as parallelism, par-
titioning, and copy-on-write, in addition to discussing the different strategies in coordi-
nation among processes to ensure safe and recoverable state saving. It is noted, in this
sense, that uncoordinated approaches and the use of fuzzy checkpoints reduce durability
costs during normal execution with the disadvantage of requiring a more complex recov-
ery procedure. The frequency with which checkpoints are saved also directly impacts the
cost. Whenever possible, avoiding state saving without compromising the reliability of
the service is desirable. In this sense, studies have observed that application profile usage
and workloads are useful to adjust the instants of activation of checkpoints.

Among the potential uses for checkpoints, in addition to their use in databases and
the generation of global states, checkpoint-based recovery emerges as a viable alternative
in HPC and cloud computing environments. In these models, guaranteeing tasks will be
finished within the allocated time and keeping the infrastructure allocation cost low are



priority requirements. In this sense, checkpoints allow long computations to be resumed
from more advanced points in case of failures.

Despite presenting an array of diverse checkpointing techniques, it is impor-
tant to note that each context presents its own unique set of challenges, encompass-
ing novel computational issues. In big data, managing vast datasets’ size and stor-
age is crucial. Costly computational power is required, but minimizing lost com-
putation and ensuring fast recovery can save expenses For example, in the study
by [Yan et al. 2016], the authors examine the application of checkpointing to big data
tools, with the goal of reducing the number of cascaded re-computations resulting from
evictions in unstable machines. Similarly, deep learning techniques also entail high
training costs for models, requiring computational power over extended periods. The
loss of a machine learning model’s training state is undesirable. Consequently, re-
cent research has proposed methods to implement enhanced checkpointing in this do-
main [Xing et al. 2015, Abadi et al. 2016, Nicolae et al. 2020]. Cloud computing repre-
sents another domain where recent studies have investigated the use of checkpointing to
boost reliability. Data centers house a vast number of machines, increasing the likelihood
of failures. Enhancing reliability in such environments is crucial, and recent research has
addressed this issue [Zhao et al. 2017, Zhou et al. 2017]. Moreover, the growing popu-
larity of containerized applications has given rise to the need for checkpointing to better
manage container states [Chen 2015, Oh and Kim 2018, Müller et al. 2022].

With this paper, we gave an overview of the main checkpointing/restore tech-
niques found in the literature and discussed their uses. We intend to contribute as a basis
for researchers and educators in the area and point out some trends for the advancement
of research and development in the area.
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