Performance Efficiency Evaluation based on
ISO/IEC 25010:2011 applied to a Case Study on Load Balance
and Resilient

Diego S. Pereira'?, Lucas F. V. Bezerra', Jacyana S. Nunes',
Itamir M. Barroca Filho!, Frederico A. S. Lopes'

'Metrépole Digital Institute (IMD)
Federal University of Rio Grande do Norte (UFRN)
Natal, Brazil.

2Federal Institute of Rio Grande do Norte (IFRN)
Parnamirim, Brazil.

diego.pereira@ifrn.edu.br, lucas.vital.70lQ@ufrn.edu.br,

{jacyana, itamir.filho, fred}@imd.ufrn.br

Abstract. The client-server architecture makes it necessary to implement
techniques to overcome the single point of failure problem (only one server
node). One of the most commonly used techniques is load balancing. Load
balancing consists in distributing requests between nodes that provide a service
(clusters). In this paper, we performed an evaluation based on the concept
of efficiency included in 1SO25010:2011. The balancers evaluated were
HAProxy (High Availability Proxy) and ARR (Application Request Routing) with
and without caching. The project requirements are limited using the I1S (Internet
Information Services) web server. Load Balances based on caching presented
the best performance in most scenarios, while HAProxy obtained better values
related to CPU utilization.

1. Introduction

Currently, web applications are considered one of the most widely used means of
communication and data exchange. More than 2.5 quintillion bytes are uploaded
to the Internet daily through different applications, which offer a wide diversity of
services to more than 4.5 billion users [Sadqi and Maleh 2022]. According to a survey
by W3Techs! conducted in 2022, Nginx [Reese 2008], Apache [Hu et al. 1999],
Cloudflare [Dewi Estri et al. 2019], LiteSpeed [Setiawan et al. 2019], and
Microsoft IIS [Chitra and Satapathy 2017] are the five most widely used web servers
today to provide online services.

A server is an element that receives requests from clients (users) and responds
to them appropriately. Therefore, designing a server is a challenging task as it must
be able to handle multiple connections and provide correct responses as quickly as
possible. Thus, it is realized that a high access rate by clients directly impacts the
server’s performance and, consequently, the applications it supports. Such a situation

Thttps://w3techs.com/technologies/overview/web_server

can trigger an overload and generate a scenario where the server cannot respond to clients
as expected [Data et al. 2019].

This architectural model is called a Client-Server. The server underlies web
applications and is a crucial component. Any improper functioning of this component
when a client requests it can result in an error. This issue is known in the literature as the
Single Point of Failure (SPF) [Noveck 2011].

One of the most commonly used strategies for addressing this issue involves
increasing the number of servers and utilizing load balancing and failover techniques.
By creating a cluster, for instance, the workload generated by a large number of user
accesses can be distributed across multiple servers, thereby increasing the system’s
availability. In addition, if one server fails, the application will not be interrupted
[Domanal and Reddy 2014]. Load balancing techniques are responsible for distributing
the workload among the nodes in the cluster, while failover techniques detect which server
is not functioning and redirect traffic to active servers [Kostadinov et al. 2017].

In this context, this study presents a performance evaluation based on a case study
that forms a part of the development of a high-availability solution for a web application
of the Brazilian Ministry of Regional Development. The primary differences from other
works, in addition to the application-specific requirements, were the standardization
of tests using ISO/IEC 25010:2011, the creation and assessment of a failure recovery
strategy in a multi-platform cluster, and traffic analysis.

The paper is organized as follows: Section 2 presents an overview of related works
on the proposed topic. Section 3 provides a theoretical background about the solutions for
load balancing in web scenarios and a comprehensive explanation of ISO/IEC 2510:2011.
Section 4 presents the proposed solution design and justifies the decisions. Section 5
outlines the methodology adopted for the evaluation. Section 6 presented the results.
Section 7 provides final remarks and suggests future directions for research.

2. Related Works

Several investigations have been conducted about load balancers for web applications. For
example, Chitra et al. [Chitra and Satapathy 2017] conducted a study to compare Node.js
and IIS servers to determine the impact of their architectures on applications. The study
involved performing tests using performance metrics such as throughput and response
time, which were measured using the Apache Jmeter® tool. The results indicated that
Node.js outperformed IIS in most cases, except for tasks that involved intensive CPU
usage, where IIS had an advantage.

In another study [Zeebaree et al. 2020], the performance of web servers with and
without load balancing was analyzed, as well as the impact and availability of the servers
under DDoS attacks. To conduct a more precise evaluation, the researchers built and
configured a 1 Gbps network, using a D-Link 24-port switch and CAT 6 UTP cables. In
the Windows environment, two nodes were grouped as a cluster, and the NLB feature
provided by Windows Server was activated. In the Linux environment, HAProxy was
installed on a separate server offering load balancing. The performance was evaluated
using Apache Jmeter, which generated loads of HTTP requests, while HPing3 was used

Zhttps://jmeter.apache.org/

to create and measure DDoS attacks. The results demonstrated that using load balancing
helped to overcome the massive traffic of HTTP requests.

The study presented in [Zebari et al. 2018] analyzed the impact of DDoS attacks
(SYN flood and HTTP flood) on IIS and Apache2 web servers. A real network was used
consisting of 17 workstations divided into four types: four workstations used to generate
the attacks, two hosts configured as web servers, ten computers generating legitimate
HTTP requests via Apache Jmeter, and the last one acted as a test controller, and result
collector. Hping3 was used to create and measure DDoS attacks. The results show that
IIS 10.0 is more efficient and responsive than Apache2. However, the Apache?2 is more
stable when exposed to flooding attacks.

The paper of [Johansson 2022] examined the performance of open-source
load-balancing software such as HAProxy, NGINX, Traefik, and Envoy. The researchers
used a virtual environment based on VMware ESXi version (7.0U3) as the hypervisor on
an HP EliteDesk 800 G2 with an Intel 15-6600 4-core processor and 32 GB RAM. They
deployed five virtual machines running Debian 11, three of which served as backend web
servers, one as a load-balancing server, and one as a client. Each server VM had 4 CPUs,
4 GB of RAM and the client had 4 CPUs, 8 GB of RAM. The key performance metrics
were throughput and response time, and Apache JMeter was used to forge traffic and
measure the results. The experiment demonstrated consistent performance differences
between the software in both scenarios.

The research conducted by [Hosseini et al. 2021] proposed a persistent session
load balancer that does not require a reverse proxy, resulting in a lighter and more efficient
system. The experiment was conducted using seven Linux virtual machines, one of
which acted as a load balancer, another hosted a database, and the remaining servers
acted as web servers. To compare the proposed approach with other methods, Cheetah
was implemented as a layer four load balancer, while Nginx and HAProxy were used
as layer seven load balancers. The preliminary evaluation of the study showed that the
performance of the proposed method is significantly better than previous approaches in
terms of transaction rate and response time. Table 1 summarizes the related works and
their main features.

Our article is the first to address the Application Request Routing (ARR) of an
IIS 10 cluster running the Windows Server 2022 operating system. In addition, we
evaluated the metrics throughput (transactions/seconds), errors (%), response time (ms),
and CPU utilization (%) with the goal of aligning with ISO/IEC 25010:2011.

3. Performance Evaluation for Web Servers

This section is intended to provide a theoretical background on the topics of performance
evaluation for servers and high-availability solutions. These topics are essential to the
context in which this work is conducted.

3.1. Web Servers

A web server is the software that processes HTTP protocol requests and provides services
to clients [Liu et al. 2018]. With the significant growth of web services, the flow of
information between websites and users has increased exponentially. Therefore, there
is a need for more efficient technologies that can provide fast responses to requests and

Table 1. Comparison of Related Works

Paper | Load Balancer | Web Servers | Tools Metrics
IIS Throughput (bytes/minute)
a - Node.js Apache-JMeter 2.13 Response Time (ms)
Throughput (kB/s)
2] HAProxy IIS Apache-Jmeter Response Time (ms)
NLB (IIS) Apache2 Hping3 Error (%)
CPU Usage (%)
Average Response Time (ms)
3] 1IN Apache-Jmeter CPU Usage (%)
- Apache? Hping3 Standard Deviation as Responsiveness
Efficiency and Stability
HAProxy
NGINX Throughput (Transactions/seconds)
[4] Traefik Apache2 Apache-Jmeter Respoisg Time (ms)
Envoy
Cheetah .
[5] HAProxy _ Own Application ﬁzzggrgl}slgl’llfigeriﬁs; tions/seconds)
NGINX
Apache-TMeter Throughput (Transactions/seconds)
Proposed ARR IIS Netdata Error Rate (.%)
HAProxy Wireshark Response Time (ms)
CPU Usage (%)

[1] [Chitra and Satapathy 2017], [2] [Zeebaree et al. 2020], [3] [Zebari et al. 2018], [4] [Johansson 2022],
[5] [Hosseini et al. 2021]

ensure high availability of applications. The web application used in this work is hosted
on an Internet Information Service (IIS) server that operates in this context.

IIS, short for Internet Information Service, is a versatile and secure web server
that can host various applications and technologies, including media streaming and
service portals. It has an open and scalable architecture that provides flexibility and
high availability. The latest version of IIS is 10.0, and since version 7.0, it works with
a fully modular architecture. This architecture has three main features: Extensibility,
componentization, and ASP.NET integration [Chitra and Satapathy 2017].

3.2. Load Balancers

In most Web services infrastructures, the load balancer is the first component to interact
with requests from users or other systems. Its main function is to distribute requests
among available servers so that they can process them and generate the appropriate
responses. In such scenarios, a load balancer has two main goals: The first is to maximize
the overall utilization of resources, while the second is to minimize the time required to
process each request and provide its response [Rawls and Salehi 2022].

There are several approaches to providing load-balancing solutions that can be
implemented through hardware or software. Hardware solutions are typically expensive
and difficult to scale. Software solutions, on the other hand, involve installing additional
programs or nodes and using a load-balancing algorithm. In general, this approach is
more flexible and cost-effective than hardware-based solutions [Ibrahim et al. 2021].

Software-based load balancing mechanisms are divided into static and dynamic.
In static load balancing mechanisms, the distribution of requests is based on a

predetermined configuration, disregarding the amount of load and the current number
of connections of each node in the server pool. So, the predetermined information of
the system is necessary for this strategy and is not updated according to the state of
each node, such as the predetermined weight of each node [Mbarek and Mosorov 2018].
Round Robin is one of the most popular algorithms for this type of implementation.

Dynamic load balancing mechanisms, on the other hand, use performance
information collected at runtime, such as accepted connections and load volume, to
distribute requests among nodes that have more resources available. This approach
requires more server resource consumption, such as CPU and RAM, and is recommended
for heterogeneous server environments with machines of different capacities.

In the context of this study, particular attention has been paid to static balancing
mechanisms, since this is a homogeneous server pool. Therefore, this section provides
a brief overview of two such mechanisms, namely Application Request Routing (ARR)
and High Availability Proxy (HAProxy).

3.2.1. Application Request Routing (ARR)

ARR? is a reverse proxy-based routing module from Microsoft that provides load
balancing and reverse proxy services for web applications. Besides distributing incoming
traffic between servers, it also provides additional features such as content caching, HTTP
traffic management and rule-based routing. Its flexibility through various configuration
strategies allows integration with many other IIS resources, such as SSL for data
encryption and Web Application Firewall (WAF) for protection against attacks.

3.2.2. High Availability Proxy (HAProxy)

HAProxy (High Availability Proxy) is a widely used free and open source load balancer
that provides availability and performance enhancement for web applications. In general,
HAProxy acts as an intermediary between clients and web servers, distributing traffic to
backend or frontend web servers. The goal is to ensure that each request is handled by the
server with the most available resources. Its main features include low latency, advanced
error management (failover), and a monitoring interface [Tarreau et al. 2012].

3.3. ISO/IEC 25010:2011

The International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC) work in partnership to develop and define standards
for various areas. ISO /IEC 25010:2011 Systems and Software Engineering - Systems and
Software Quality Requirements and Evaluation (SQuaRE) - System and Software Quality
Models is a standard for describing product quality and usage models for software.

The quality model for software products includes both the static attributes of
the program and the dynamic attributes of the computing environment in which the
software is executed. The quality of use model consists of five key attributes, while the
product quality model includes eight: Functionality, Reliability, Ease of Use, Efficiency,

3https://www.microsoft.com/en-us/download/details.aspx ?id=47333

Maintainability, Portability, Security, and Compatibility. The current study focuses on
parameters associated with efficiency.

According to the standard, software efficiency is defined as performance in terms
of the number of resources used under specified conditions. It is divided into three
subcharacteristics:

* Temporal Behavior: Degree to which the response times, processing times,
and throughput rates of a product or system in performing its functions meet
requirements

» Resource Utilization: Degree to which the quantities and types of resources used
by a product or system in performing its functions meet requirements;

* Capacity: Degree to which the maximum limits of a parameter of a product or
system meet the requirements;

Against this background, the next section evaluates the case study in terms of its
efficiency. Some information was withheld due to the confidentiality agreement with the
Ministry of Regional Development in Brazil.

4. Case Study

The objective of the case study presented in this paper was to evaluate the efficiency of
a computer system in an operating environment configured to provide high availability,
even in failure scenarios, for a strategic application of the Brazilian Ministry of
Regional Development. The results were obtained in a test environment to validate the
methodology and perform a proof of concept of the solution based on the application
requirements. The Non-functional requirements (NFR) are detailed in Table 2. The
functional requirements and some NFRs have been omitted due to a confidentiality
agreement.

Table 2. List of non-functional requirements.

ID | Description

N1 The cluster of web servers have function and provide services to users even
if one server in the cluster fails.

N2 The cluster of web servers have store user data reliably and consistently,
even if one server in the cluster fails.
The web server cluster includes a failover service to solve the single point

N3 .
of failure (SPF) problem.

N4 The web server cluster has service load balancers to distribute traffic among
the individual servers in the cluster.

N5 The web server cluster provides the IIS web server service to HTTP requests
from users.

N6 The cluster of web servers can provide a caching service to improve the
performance of the web application.

A topology has been proposed based on the requirements for building an IIS web
cluster that uses load balancers to distribute the load among the nodes. Figure 1 illustrates
this topology along with its main components, which include IIS web servers, HAProxy,
and ARR load balancers. The JMeter was used to generate virtual clients.

| 1IS Cluster - Windows Server 2022 | Load Balancers ‘ Jmeter

Server 1

-y

HAFroxy - Debian 11 ; %
.

Controller Node

ARR - Windows
Server 2022

Server 3

Figure 1. Representation of the experimental scenario of the case study.

Implementation of the scenarios required 12 physical computers arranged in a
research lab, with traffic restricted to the local network via a HP -A5120 switch connected
via Category 6 UTP network cables. The web server cluster consisted of three machines
running the IIS 10.0 service, using two load balancers, one HAProxy 2.8.4 LTS, the other
ARR 3.0. Client traffic was generated by seven machines configured with Apache JMeter
5.5, one acting as a controller and the others as remote nodes. For a detailed specification
of the hosts, see Table 3.

Table 3. Configuration of the machines used in the case study.

Type Operational System Application CPU RAM
Web Server Windows Server 2022 IIS 10.0 Intel Core I5 @ 3.20GHz 16 GB
Load Balancers | Debian 11/Windows Server 2022 | HAProxy 2.8.4 LTS/ARR 3.0 | Intel Core IS @ 3.20GHz 16 GB
Clients Ubuntu 22.04 JMeter 5.5 AMD Phenom II @ 3.20GHz | 8 GB

The load balancers were configured using the round-robin algorithm with equal
weight distribution between each node, since all machines have the same amount of
available resources. To solve the problem of node failures in the cluster, node state
checking was enabled with an interval of 1.0 seconds.

S. Methodology

The methodology of this paper was guided by the recommendations in
ISO/IEC 25010:2011. Thus, the evaluation of load balancers considered metrics
related to system efficiency, in particular response time, throughput (requests per
second), error rate, and usage of CPU.

Response time refers to the time it takes an application to respond to a service
request, such as loading a requested web page. Throughput indicates the number of
transactions or requests that can be processed within a given time interval. It is usually
used to check server utilization. Error rate is the percentage of legitimate requests that
were not processed correctly. Finally, CPU usage refers to processor consumption when
processing a given workload [Jader et al. 2019].

In general, the infrastructure described in the previous section was load tested. To
generate HTTP requests, a JMeter cluster with seven nodes, one controller node, and six

nodes configured as remote nodes (slaves), was used. The JMeter script consisted of four
HTTP GET requests interrupted by constant timers of 300 ms. The virtual users were
25,000, 50,000, 75,000, 125,000, and 250,000, so the tests generated 600,000, 1,200,000,
1,800,000, 3,000,000, and 6,000,000 requests, respectively.

In addition to JMeter reports, Netdata® and Wireshark® software were used.
Netdata was used as a collector of resource usage parameters and requires the agent to
be installed on each node. It is important to note that at the time of writing, there is
no version for the Windows platform. Therefore, we used an Ubuntu image over WSL
(Windows Subsystem for Linux). To further investigate the scenarios, we recorded all
traffic on the load balancers and cluster nodes using Wireshark.

As for the load balancers, ARR 3.0 and HAproxy 2.8.4 were selected. Since the
Microsoft platform is a requirement for this work, the focus was on the IIS 10.0 web
server configured with and without the use of the caching feature as a cluster. Table 4
details the scenarios evaluated.

Table 4. Organization of evaluated scenarios.

Scenario | Load Balancer Users

1 HAProxy

2 ARR

3 HAProxy (Caching) 25000, 50000, 75000, 125000 e 250000
4 ARR (Caching)

6. Results and Discussion

The results are summarized in Tables 5, 6, and 7. Table 5 gives the throughput in
requests per second. ARR (with and without caching) showed higher throughput than
HAProxy in almost all scenarios. In the configuration without caching, ARR showed
better performance. In caching mode, the results were very similar, but ARR was better.
In the most critical scenario with 250,000 users per node, the throughput was very similar,
showing that the use of load balancing techniques is important to achieve robustness.
Figure 2 illustrates this behavior as a function of the number of virtual users.

Table 5. Throughput results in transactions per second for the scenarios

evaluated.
Users (10°) | HAProxy | ARR HAProxy (Caching) | ARR (Caching)
25 | 2,093.70 | 3,804.35 3,476.00 1,982.77
50 | 4,069.56 | 4,719.65 5,297.10 5,616.40
75| 4,514.94 | 5,687.04 4,541.30 6,755.55
125 | 7,148.15 | 8,323.88 7,731.80 7,397.89
250 | 9,606.64 | 9,795.52 9,360.95 9,535.34

Table 6 shows the values obtained for the error rate. ARR in “disable caching”
mode was the only load balancer that showed errors in the scenario with 25,000 users.

“https://www.netdata.cloud/
Shttps://www.wireshark.org/

Throughput

B HAProxy [ARR HAProxy (Caching) [ARR (Caching)

10000 -+

2 7500 +
S
B
@
12}
c

[5000
L
5
Q.
<

g 2500 +
<
'_

0 -

25 50 75 125 250
Users (10°%)

Figure 2. Throughput by the load balancer and the number of virtual users.

The load balancer failed to serve about 60,000 out of 600,000 HTTP requests, a high
value compared to HAProxy and ARR (caching), which showed high values only in the
last scene. ARR (caching) had a lower failure rate than HAProxy. This shows that the
server makes good use of caching to respond correctly to users. HAProxy (caching) had
a failure rate of 5.13%, and ARR (caching) had 5.35% in the most critical scenario.
Figure 3 shows the results graphically. ARR (without cache) had the worst performance
in this regard, and ARR (caching) had the best performance.

Error
B HAProxy M ARR HAProxy (Caching) [ARR (Caching)

12 +

10 +

8 —
S
T 6T
o
I

4 —

2 L

0

25 50 75 125 250
Users (10%)

Figure 3. Error Rate by load balancer and number of virtual users.

Table 7 describes the results for the response time metric. The load balancers
that performed best in this regard were ARR (caching) and HAProxy (caching), as
the use of caching allows for faster delivery of responses. In this configuration mode,
load balancing does not forward all requests to the web cluster, this strategy improves
performance. HAProxy (caching) had lower performance in scenarios 1, 2, and 3, but the

Table 6. Results in percentage of error rate for the evaluated scenarios.

Users (10°) | HAProxy | ARR | HAProxy (Caching) | ARR (Caching)
25 0,00 | 10,35 0.00 0,00

50 3,41 | 10,92 3.50 0,33

75 443 | 11,36 3.52 0,82

125 2,23 | 8,12 498 2,21

250 5,03 | 8,14 5.13 5,35

performance was almost constant in scenarios 4 and 5, which introduces scalability. A
comparison between HAProxy and ARR with the feature disabled shows the superiority
of HAProxy’s performance, with values up to 56% lower than ARR. Figure 4 illustrates
these results.

Response Time

@ HAProxy [ARR HAProxy (Caching) [ARR (Caching)

100

75 +
m
£
g

[50
Q
12}
c
S
Q

&

0 -

Users (10°)

Figure 4. Response Time by load balancer and number of virtual users.

Table 7. Results from Response Times (ms) for the evaluated scenarios.

Users (10°) | HAProxy | ARR | HAProxy (Caching) | ARR (Caching)
25 47.3 | 75.26 15.06 5.23

50 35.64 | 81.56 25.45 10.96

75 39.75 | 91.60 34.97 18.50

125 54.25 | 96.08 32.15 51.99

250 44.52 | 89.14 34.85 39.60

6.1. Crash Failure

To evaluate the load balancers in case of a crash failure, we interrupt a network interface
of a cluster node. The interface is paused 10 seconds after the start of the test. The goal
was to measure how HAProxy and ARR handle this situation. We use scenario 1 (25,000
virtual users per JMeter slave node) for this proposal. Table 8 shows the results.

Table 8. Results from crash failure experiment.

Metric HAProxy | HAProxy (caching) | ARR(Caching)
Throughput (Transactions/s) 3,280.16 1,713.15 1,759.61
Error (%) 2.85 0.00 0.00
Response Time (ms) 1,149,87 | 7.21 7.54
Minimum | 3,35 4,32 5,29
CPU Utilization (%) | Maximum | 16,65 33,32 37,59
Average 9,52 12,77 17,75

HAProxy without cache activation reaches 3,280.16 transactions per second. Load
balancers with caching enabled achieve lower throughput, but do not exhibit errors.
HAProxy (caching) and ARR (caching) show better performance than HAProxy without
caching. The results prove that the caching strategy is a good alternative to overcome
single point of failure on cluster nodes.

Regarding the usage of CPU, solutions with caching had higher usage of CPU.
For ARR, the average was 17.75%, while for HAProxy it was 12.77%. HAProxy without
caching showed 9.52%. It is important to emphasize that solutions based on Windows
Server consume more resources than most Linux distributions.

7. Conclusions

This paper presented the evaluation of a solution for high availability using load balancers
for web applications. The load balancers used in the case study were HAProxy and ARR,
while the web servers were implemented by IIS. The efficiency metrics proposed by the
Quality-in-Use model, described in ISO 25010:2011, were used as a reference to perform
the experiments.

Results have shown that the use of caching increases the ability to respond to
requests and reduces the error rate. In scenarios without this technique, where all requests

were forwarded to the servers, HAProxy performed better, especially when compared to
ARR.

Thus, functional requirements F1 and F2 are about the evaluated solution
providing services to users even if a server in the cluster fails, and storing user data
reliably and consistently. Non-functional requirements N1, N2, N3, and N4 were met.
The solution uses a failover service to solve the SPF problem, distribute the load among
the servers, provide HTTP responses, and a caching service.

For a more advanced assessment, future work targets the use of data center
infrastructure and dynamic balancing strategies, especially considering pools of
heterogeneous servers. Another future study is related to the inclusion of redundancy
for load balancing servers and the creation of new scenarios with database operations.

References

Chitra, L. P. and Satapathy, R. (2017). Performance comparison and evaluation of node.
js and traditional web server (iis). In 2017 International Conference on Algorithms,
Methodology, Models and Applications in Emerging Technologies (ICAMMAET),
pages 1-4. IEEE.

Data, M., Kartikasari, D. P., and Bhawiyuga, A. (2019). The design of high availability
dynamic web server cluster. In 2019 International Conference on Sustainable
Information Engineering and Technology (SIET), pages 181-186. IEEE.

Dewi Estri, J., Umar, R., and Riadi, I. (2019). Implementation of cloudflare hosting for
speeds and protection on the website. Universitas Ahmad Dahlan.

Domanal, S. G. and Reddy, G. R. M. (2014). Optimal load balancing in cloud computing
by efficient utilization of virtual machines. In 2014 sixth international conference on
communication systems and networks (COMSNETS), pages 1-4. IEEE.

Hosseini, S. M., Jahangir, A. H., and Daraby, S. (2021). Session-persistent load balancing
for clustered web servers without acting as a reverse-proxy. In 2021 17th International
Conference on Network and Service Management (CNSM), pages 360-364. IEEE.

Hu, Y., Nanda, A., and Yang, Q. (1999). Measurement, analysis and performance
improvement of the apache web server. In 1999 IEEE International Performance,
Computing and Communications Conference (Cat. No. 99CH36305), pages 261-267.
IEEE.

Ibrahim, I. M., Ameen, S. Y., Yasin, H. M., Omar, N., Kak, S. F., Rashid, Z. N., Salih,
A. A., Salim, N. O., and Ahmed, D. M. (2021). Web server performance improvement
using dynamic load balancing techniques: A review. system, 19:21.

Jader, O. H., Zeebaree, S., and Zebari, R. R. (2019). A state of art survey for web server

performance measurement and load balancing mechanisms. International Journal of
Scientific & Technology Research, 8(12):535-543.

Johansson, A. (2022). Http load balancing performance evaluation of haproxy, nginx,
traefik and envoy with the round-robin algorithm.

Kostadinov, B., Jovanov, M., and Stankov, E. (2017). Cost-effective website failover
through a cdn network and asynchronous replication. In /JEEE EUROCON 2017-17th
International Conference on Smart Technologies, pages 151-156. IEEE.

Liu, G., Xu, J., Wang, C., and Zhang, J. (2018). A performance comparison of http servers
in a 10g/40g network. In Proceedings of the 3rd International Conference on Big Data
and Computing, pages 115-118.

Mbarek, F. and Mosorov, V. (2018). Load balancing algorithms in heterogeneous web
cluster. In 2018 International Interdisciplinary PhD Workshop (IIPhDW), pages
205-208. IEEE.

Noveck, B. S. (2011). The single point of failure. Innovating Government: Normative,
policy and technological dimensions of modern government, pages 77-99.

Rawls, C. and Salehi, M. A. (2022). Load balancer tuning: Comparative analysis of
haproxy load balancing methods. arXiv preprint arXiv:2212.14198.

Reese, W. (2008). Nginx: the high-performance web server and reverse proxy. Linux
Journal, 2008(173):2.

Sadqi, Y. and Maleh, Y. (2022). A systematic review and taxonomy of web applications
threats. Information Security Journal: A Global Perspective, 31(1):1-27.

Setiawan, E., Setiyadi, A., and Wahdiniwaty, R. (2019). Quality analysis of mobile web
server. In IOP Conference Series: Materials Science and Engineering, volume 662,
page 022043. IOP Publishing.

Tarreau, W. et al. (2012). Haproxy-the reliable, high-performance tcp/http load balancer.

Zebari, R. R., Zeebaree, S. R., and Jacksi, K. (2018). Impact analysis of http and syn flood
ddos attacks on apache 2 and iis 10.0 web servers. In 2018 International Conference
on Advanced Science and Engineering (ICOASE), pages 156-161. IEEE.

Zeebaree, S., Zebari, R. R., and Jacksi, K. (2020). Performance analysis of iis10. 0
and apache?2 cluster-based web servers under syn ddos attack. TEST Engineering &
Management, 83(March-April 2020):5854-5863.

