
SEU Mitigation for SRAM FPGAs: A comparison via

Probabilistic Model Checking

Viny Cesar Pereira1, Valdivino Alexandre de Santiago Júnior1, Silvio Manea1

1Instituto Nacional de Pesquisas Espaciais (INPE)

Av. dos Astronautas, 1758, São José dos Campos, São Paulo – SP – Brazil

{viny.pereira,valdivino.santiago,silvio.manea}@inpe.br

Abstract. Although there are several Single-Event Upset (SEU) mitigation tech-

niques for SRAM-based Field Programmable Gate Arrays (FPGAs), compar-

isons are still necessary regarding dependability analyzes of these techniques.

Most of these assessments analyze the techniques after design and implementa-

tion in FPGA which may be too costly. Stochastic/Probabilistic analysis allow

to obtain results in the early stages of design. In this paper, we compare three of

these strategies, Scrubbing, Triple Modular Redundancy (TMR), and Hamming

code, via Probabilistic Model Checking. Results show that TMR allows upsets to

accumulate and must be combined with Error Correction Codes (ECCs), such

as Hamming, and that the Scrubbing interval directly affects reliability while

safety is more related to the coverage rate.

1. Introduction

Ensuring safety, reliability and availability in complex systems has been a major challenge

for designers, especially in applications where hardware and software failures can cause

catastrophic financial and scientific harm. For aerospace systems development, SRAM-

based Field Programmable Gate Arrays (FPGAs) have some advantages over the Anti-

fuse technology such as decreased cost and reconfiguration flexibility [Berg et al. 2008].

However, the harsh environment of space may trigger the occurrence of Single-Event Ef-

fects (SEEs) such as Single-Event Upset (SEUs) in SRAM-based FPGAs. Thus, it is

necessary to develop techniques to mitigate the consequences of SEUs in FPGA’s config-

uration and funcional logic paths.

Several techniques of detection, mitigation and correction of SEU have ap-

peared in the past as a way to avoid failures in space systems based on FPGAs

[Heiner et al. 2009, Hentschke et al. 2002, Liu et al. 2012, Morgan et al. 2007]. In re-

cent years, researchers have proposed improvements to adapt these techniques to ad-

vances in the manufacturing process of integrated circuits. The most common ap-

proaches involve hardware redundancy, such as the Triple Modular Redundancy (TMR)

[Rollins et al. 2003] which consists of tripling circuit modules that demonstrate greater

sensitivity to upsets and, via a voting mechanism, to decide the correct output based on

the majority. Other forms of redundancy exist, such as temporal redundancy which masks

the occurrence of a fault because it obtains the signal at different times, saves the values

obtained and, as in TMR, uses a voter to decide which output is correct.

Another category of technique is known as Error Correction Code (ECC) based on

the addition of information (parity bits) next to the input data to detect and mitigate pos-

sible errors [Dutta and Touba 2007]. There are several ECCs used in the context of SEUs

� � � � � � � � � 	
 � �

� �

such as Hamming code [Kumar and Umashankar 2007], Reed-Solomon code, and Bose-

Chaudhuri-Hocquenghem (BCH) codes. By checking the parity bits these techniques are

able to detect and correct single-bit errors and, in some more complex implementation,

also correct double-bit errors [Kastensmidt 2007].

Comparative analyzes of SEU mitigation techniques have been recently published

[Shuler et al. 2009, Morgan et al. 2007, Liu et al. 2012, Hentschke et al. 2002]. Many

factors must be taken into account before deciding on one particular technique or even

the decision to combine the techniques. Some important aspects such as additional area

required, performance impact, ability to correct faults or just mitigate them, robustness

against multiple upsets may interfere in deciding which technique is most interesting to

use. Studies such as [Ejlali et al. 2006, Sari et al. 2013] suggest combining techniques for

best results, however, ensuring performance, reliability and safety can become a challenge

given the complexity of the problem. To validate these techniques, most of these works

use simulations and tests after design and implementation in FPGAs, and fault-injection

tools to simulate the upsets and evaluate the behavior of the techniques. These approaches

are not able to evaluate, earlier within the development process, all possible situations and

may miss faults that will be costly to detect and correct later.

Formal Verification methods [Baier et al. 2008] have been used in sev-

eral different application domains. Particularly, Probabilistic Model Checking

[Kwiatkowska et al. 2009] has shown to be an efficient and robust technique for mod-

eling a wide variety of problems in diverse fields such as biology, security, network and

communication protocols, performance and reliability just to name a few. Probabilistic

models such as Discrete-Time Markov Chain (DTMC), Continuous-Time Markov Chain

(CTMC) and Markov Decision Process (MDP) have been employed in this context.

In [Hoque et al. 2014, Hoque 2016] the authors analyzed the dependability of

SEU mitigation methods on SRAM-based FPGAs via Probabilistic Model Checking.

However, the authors’ approach deals with a combination of two techniques (TMR

and Scrubbing), which when compared, are placed in only two situations: only Scrub-

bing and TMR with Scrubbing. In addition to not being considered independently, the

TMR was analyzed in a simplified way, only as spares components, ignoring impor-

tant details such as the voter and the input and output data. Hence, in this paper we

present a comparison between three popular SEU mitigation techniques for SRAM FP-

GAs, Scrubbing [Berg et al. 2008], TMR [Kastensmidt et al. 2005], and Hamming Code

[Kumar and Umashankar 2007], via Probabilistic Model Checking. Our dependability

analysis relied on CTMC and Continuous Stochastic Logic (CSL) extended with Rewards.

Results show that TMR allows upsets to accumulate and must be combined with ECCs,

such as Hamming, and that the Scrubbing interval directly affects reliability while safety

is more related to the coverage rate.

This paper is structured as follows. Section 2 presents some background to bet-

ter understand the three mitigation techniques and an overview of Probabilistic Model

Checking. Section 3 shows a general explanation of how the CTMC models were created

to support our analysis, and what types of CSL properties we considered. Dependability

results and discussion are in Section 4. Section 5 presents related work. In Section 6, we

point out the conclusions and future directions of this research.

� � � � � � � � � 	
 � �

�

2. Background

This section presents details of the SEU mitigation techniques addressed in the paper and

the concepts related to Probabilistic Model Checking.

TMR is one of the most commonly used technique to prevent failures caused by

SEUs, especially single bit upsets (SBUs) [Kastensmidt et al. 2005]. In general, the TMR

strategy is to use three replicates of the components that are most sensitive to the effects

of radiation, because in case of upset the voting mechanism will be able to choose through

the majority what will be the correct output [Rollins et al. 2003].

The masking of the component reached by radiation is possible because TMR

removes individual points of failure through redundancy however, as in any redundant

system, there is a cost. To ensure that a failure does not reach a common point between

all replicas and propagates the fault to the output, each redundant component must have

individual input and output ports, causing an approximately six-fold increase in the re-

quired memory area [Morgan et al. 2007]. Thus, deciding which logical level the TMR

will be applied is a complicated task, and the relation between the additional area and the

effective gain must be considered.

In addition to area overload, another important feature about TMR is that due

to masking of the fault rather than the correction, the hit component will continue to

deteriorate, causing an upset buildup [Kastensmidt 2007]. TMR should be considered in

applications with a low incidence of MBUs, since it is not capable of handling more than

one simultaneous failure in the replicated modules.

Scrubbing is the mechanism that reconfigures the memory using the bitstream with

the original configuration, usually stored in a memory that is immune to radiation and

SEEs [Sari et al. 2013]. One of the greatest advantages of Scrubbing over full reconfigu-

ration is that Scrubbing does not completely interrupt the operation mode of the system,

only part of the configuration is updated with each Scrubbing interval [Berg et al. 2008].

The most common form of Scrubbing is known as Blind Scrubbing because it does

not include a fault detection mechanism, only a copy of the original data is used to rewrite

the current configuration. One of the decisions in blind Scrubbing is the time interval, i.e.

the frequency at which a cycle should occur. The Scrubbing interval depends on the level

of reliability desired by the system and how often the upsets occur. We also consider the

coverage rate which is responsible for the conditional probability of detecting the fault

given that the fault exists. In this way, it is possible to change the coverage rate of the

model and observe how it behaves. Other more sophisticated forms of Scrubbing, such as

Readback Scrubbing, use detection techniques and are able to restore settings only when

a failure is reported [Heiner et al. 2009].

Hamming code is one of the techniques of ECC used in several applications for

the detection of single or double bit errors and correction of single bit errors in binary

codes [Dutta and Touba 2007]. As in TMR, Hamming code is a technique indicated in

applications with low incidence of MBUs.

The operation of the Hamming code is structured in two modules, an encoder and

a decoder. The encoder is responsible for calculating the parity bits based on the original

data and, as the name says, encode it to the bitstream [Kastensmidt et al. 2005]. The

� � � � � � � � � 	
 � �

� �

actual work is done by the decoder which must check the parity bits again to see if there

is a error. In case of error, the decoder is also responsible for finding which bit has failed

and repairing it [Liu et al. 2012]. There are several Hamming code variations designed

to serve applications with different goals. In this research, we used Hamming code (7,4)

which encodes three parity bits for each four bits of data.

2.1. Probabilistic Model Checking

Critical complex systems used in aerospace, medical, communication and other applica-

tions are very sensitive to software and/or hardware failures. To date, classical systems

validation methods include simulation which is still utilized at a modeling level and later,

with the model already constructed, the test cycle runs. Although efficient for most prob-

lems, when it comes to critical systems, only simulation may not be sufficient to address

all possibilities and ensure the desired level of safety.

To increase accuracy, Formal Methods have shown great potential to reduce the

time spent and increase the effectiveness of the modeling process by applying mathe-

matical rigor to ensure system correctness [Baier et al. 2008]. Model Checking is a very

popular Formal Verification method that exhaustively explores the state space in an au-

tomated way and is able to find failures in the solution (Transition System - TS) like

unreachable states or deadlocks. Typically, a property is formalized via a variety of tem-

poral logics such as Linear Temporal Logic (LTL) and Computation Tree Logic (CTL)

and the approach systematically verifies if the Transition System (model) satisfies this

property (TS |= Φ).

Within Model Checking, a category that deals with systems that present stochas-

tic behavior is Probabilistic Model Checking [Baier et al. 2008, Kwiatkowska et al. 2009,

Hoque et al. 2014] where, instead of the absolute guarantee of correctness hardly

achieved by Model Checking, is able to guarantee, within a specified probability and in a

less demanding manner, the correctness of the system. Markov chains (DTMCs, CTMCs)

are typically used as the probabilistic model of the system. Variations of CTL, such as

Probabilistic Computation Tree Logic (PCTL) for DTMC and CSL for CTMC, are used

in this approach.

3. CTMC Models and CSL Properties

For our dependability analysis we used PRISM [Kwiatkowska et al. 2009], a tool that al-

lows to create stochastic models and check their properties. We selected CTMC to model

the three mitigation techniques and properties were formalized in CSL. The CSL opera-

tors P , S and R indicate the probability of an event occurring, the long-run probability of

a condition being satisfied and the values returned by the costs or rewards of the models,

respectively.

Our work is based on [Hoque 2016, Hoque et al. 2014] where the authors inves-

tigated Scrubbing and TMR combined. The CTMC models represent SEU mitigation

techniques in applications that use adders and multipliers because these components are

implemented in the memory of SRAM-based FPGAs, therefore, sensitive to upsets. Fail-

ure rates (λ) of the components were estimated in [Hoque 2016], using per bit upset rate

for Xilinx Virtex-5 in Highly Elliptical Orbit (HEO), which is 7.31x10−12 SEUs/bit/sec.

� � � � � � � � � 	
 � �

� �

This rate is multiplied by the number of critical bits of each component. For the com-

ponents used, the Mean Time Between Failures (MTBF) was 11.85 days for the Wallace

Tree Multiplier and 38.15 days for the Kogge-Stone Adder. Hence, λ = 1/MTBF .

The mitigation techniques were designed in PRISM by describing the behavior of

each technique and the characteristics desired for the system, such as quantity of compo-

nents, size of input and output data, failure rates and coverage rates. With this information,

each model was implemented in modules, where each module has sets of commands that

will make the necessary transitions to represent the states of the models.

For Scrubbing, the model was provided in [Hoque 2016] but rather than analyz-

ing the results with adders and multipliers limited to three components each, our model

handled 10 adders and 10 multipliers to evaluate the availability, safety and reliability of

Scrubbing into a more complex application that requires more components in the con-

figuration. In summary, our aim here is to confirm whether the conclusions presented in

[Hoque 2016] are valid for more complex applications. In Scrubbing there are only two

modules, one for adders and another for multipliers and the function of these modules is

to control the amount of operational and degraded components.

As the model addresses Blind Scrubbing, there is no fault detection technique and

the repair is performed regardless of the number of operating components. The Scrubbing

interval stipulated in [Hoque 2016] is 1, 4 and 9 days and occurs synchronously between

adders and multipliers.

The CTMC model in [Hoque 2016] does not actually address a true TMR. In his

analysis, the author used a model with Scrubbing and to represent the TMR, added spare

components, but ignored the structure and functioning of the TMR, since it did not include

the majority voting mechanism nor the input and output data of each component. In ad-

dition to a superficial modeling of the technique, the TMR was not analyzed individually,

only combined with Scrubbing. Thus, we decided to create our own TMR model.

Our PRISM code has eight modules: six represent the triple redundancies of the

adders and multipliers, and there is one voter for the adders and another for the multi-

pliers. Figure 1 presents PRISM’s code of the first adder, the same logic was applied to

multipliers. Note that a1 and a2 represent the 4-bit inputs, outA1 represents the output

of the module, Na is the number of operational adders and lambda A is the failure rate

stipulated for the adders. PRISM’s language allows synchronization between modules

and we have used this feature in our CTMC model. Unlike the model in [Hoque 2016],

our solution is more refined in the sense that we explicitly represent inputs (4-bit for

adders and multipliers) and outputs (5-bit for adders and 8-bit for multipliers), as well as

the modules that actually represent the functioning of a voter. The calculation of the event

rates in synchronized commands is the product of the rates stipulated for each command.

We chose the passive/active approach: rate 1 in one module and the true λ in the other

module.

Initially, all components are operational and receive two 4-bit input values. Based

on the stipulated failure rate, each module can function properly and assign the correct

value to the output or have an upset and return an incorrect value. The failure rate is

multiplied by the number of operating components, so the upset modules will not be

taken into account in the next cycle. With the output values returned by the modules,

� � � � � � � � � 	
 � �

� �

module adder1

a1 : [0..15] init 0;

a2 : [0..15] init 0;

outA1 : [0..31] init 31;

[input] (a1=0 & a2=0) -> 1: (a1’=5) & (a2’=7);

[adder] ((a1 > 0 | a2 > 0) & (Na > 0)) -> Na*(1-lambda_A) :

(outA1’= a1+a2) + Na*lambda_A : (outA1’= a1+a2-1);

endmodule

Figure 1. Adder module for our TMR model in PRISM.

the voters take action and decide what the final output will be based on the majority, so

TMR is able to ignore the occurrence of an upset because the other two modules have the

correct output value. In the case of two simultaneous upsets, the voter will consider the

wrong output as a majority, and consequently the result will be incorrect.

To classify the states of CTMC models, PRISM offers the concept of formulas.

In our TMR we separated them into three types: operational, where all components are

functional; degraded, where at most one component of adders and multipliers suffered

an upset, but the output is still correct; and failed, where more than one component has

suffered upset and the output generated by the voter is incorrect. A representation of the

failure formula is shown below:

formula fail = ((outMf!=m1*m2) | (outAf!=a1+a2));

We considered a third SEU mitigation approach in our research. The model de-

veloped for the Hamming code is not directly related to adders and multipliers because it

can be implemented to detect errors in any memory component of SRAM-based FPGAs.

To represent the operation, two modules, an encoder and a decoder, were created, where

the encoder receives a 4-bit input and based on these values, calculates the 3 additional

parity bits. The detection and correction of a possible error is performed in the decoder

which can receive the unchanged bits from the encoder or insert a error in any of the bits

based on a failure rate.

As the model is generic, the failure rate of the Hamming code is dependent on the

sensitivity of the FPGA model and the architecture of the protected component. For a fair

comparison between the techniques and considering that Hamming code is dealing with

upsets in the same components, the failure rate chosen follows the previous techniques

with a 10-day MTBF to ensure that the results represent a scenario where the incidence of

upsets is greater than stipulated for adders and multipliers in TMR and Scrubbing. When

the decoder checks the parity and input bits and does not detect any changes, the value

is passed to the output normally, but if the values do not match, the decoder identifies

the position of the upset and restores the correct bit value. As well as TMR, we used

formulas to classify the states: operational, indicating that the output bits of the decoder

coincide with the input bits of the encoder; degraded, which represents the states that

detected a fault and are in the process of correction; and failed for the interval between

the occurrence of a SEU and the detection by the decoder.

Each property we used is in Table 1 where we show the formula in CSL extended

with Rewards (R), related dependability attribute, and its informal meaning. Note that

� � � � � � � � � 	
 � �

� �

since only in Scrubbing exists the possibility of a fault occurring and not being detected,

only this technique had its safety analyzed. We considered that in both TMR and Ham-

ming code, the occurrence of a fault will always be detected by the voter and the decoder,

respectively.

Table 1. Properties formalized in CSL extended with Rewards

Attribute Formula Meaning

Availability R{“timeOperational”}=? [C <= t] Accumulated time in the operational mode

within the time interval [0, t].

Availability R{“timeDegraded”}=? [C <= t] Accumulated time in the degraded mode

within the time interval [0, t].

Availability R{“timeFailure”}=? [C <= t] Accumulated time in the failure mode

within the time interval [0, t].

Availability S=? [fail] The long-run probability of the system

fails.
Reliability P=? [G[0, t] oper|degrade] The probability of the system being opera-

tional or degraded in the first t days.

Safety P=? [G[0, t] oper|degrade|failsafe] The probability of the system being opera-

tional, degraded or failed safe, in the first t

days.

4. Results and Discussion

This section presents the results obtained with CTMC models for SEU mitigation tech-

niques discussed in this paper and a comparative analysis.

4.1. Availability Analysis

For this analysis, we considered a 90-day mission time to analyze how long each SEU

mitigation technique would be in an operational, degraded, or failure state. Figure 2 shows

the rewards results obtained with TMR where approximately half of the mission time in

failed state demonstrates that, a mitigation technique implemented individually without

a correction technique capable of restoring the functioning of the degraded components,

can cause problems in a short period of time.

By analyzing the same properties for the Hamming code model, Figure 2 also il-

lustrates a better result even if we have a higher failure rate than the one used in TMR.

With more than 80% of the total mission time in operational state, Hamming code be-

comes an interesting correction technique for systems with low incidence of MBUs. One

of the disadvantages of Hamming code is that if the number of protected bits is too large

and several memory components implement the encoder and decoder blocks, the impact

on FPGA’s performance can be very large. An option to work around this problem is to

implement TMR and Hamming code together, so the correction will only be performed

in the case of upsets accumulations.

Rewards results obtained with Scrubbing using 10 adders and 10 multipliers were

compared directly with the results presented in [Hoque 2016] using 2 adders and 2 mul-

tipliers. Figure 3 shows that for a 1 day interval, the results presented by the model with

less components can keep the system in an operational state for a longer time, while the

configuration with 10 adders and 10 multipliers spends more time degraded than opera-

tional but remains functional almost 100% of the time. The coverage rate used in both

models was 99%.

� � � � � � � � � 	
 � �

�

Figure 2. TMR and Hamming code’s rewards analysis: 90-day mission.

Figure 3. Rewards analysis, 1-day Scrubbing interval: 2A 2M = presented in
[Hoque 2016]; 10A 10M = our contribution.

The situation is reversed with a Scrubbing interval of 9 days, even degraded, the

configuration of 10 adders and 10 multipliers can keep the system running for much of

the mission time, while the time in failure state presented by the other configuration goes

up and may become unacceptable for systems that require high reliability, as shown in

Figure 4.

With these results, it is possible to infer that in models with a smaller area, i.e.

with less components susceptible to upsets, a very large Scrubbing interval can become

a problem because the upsets will accumulate and it is likely that no operational compo-

nents will left over. With a larger number of components, the larger Scrubbing interval

becomes acceptable, since even if the upsets accumulates, the operating components will

be overloaded but will keep the system functional. The accumulation of upsets occurs

when more than one component is reached within the same Scrubbing interval, and since

there is no detection technique (Blind Scrubbing), the corrections will only occur at the

end of the stipulated interval.

Regarding the other perspective of availability, the probability of long-run failure

of TMR and Hamming code techniques, Table 2 shows the values obtained in the long

run. Again, due to the lack of a technique that prevents the accumulation of upsets, TMR

presents a high probability of failure.

For Scrubbing, the failure probability in the long-run directly depends on the cho-

� � � � � � � � � 	
 � �

� �

Figure 4. Rewards analysis, 9-day Scrubbing interval: 2A 2M = presented in
[Hoque 2016]; 10A 10M = our contribution.

Table 2. TMR and Hamming code failure probability in the long-run.

SEU mitigation technique Failure probability

TMR 50.5%
Hamming Code 13.5%

sen interval, as shown in Figure 5. For a small interval, the results are very similar be-

tween the configurations, but as the interval grows, the amount of components becomes

inversely proportional to the probability of failures. In other words, the more components

in the system, the less chance that all will suffer an upset within an interval of Scrubbing.

Figure 5. Scrubbing failure probability in the long-run: 2A 2M and 3A 3M = pre-
sented in [Hoque 2016]; 10A 10M = our contribution.

4.2. Reliability and Safety Analysis

In the reliability analysis, which is the probability of the system being operational or

degraded in the first 90 days, the Hamming code presented a superior result compared to

TMR: in half the mission time, TMR was already with zero chances of remaining without

failures. Figure 6 shows the results obtained in the analysis and despite the superiority of

the Hamming code, both results were lower than expected.

As before, Scrubbing reliability analysis was split into two intervals: 1 day and

� � � � � � � � � 	
 � �

� �

Figure 6. Reliability of TMR and Hamming code: 90-day mission.

9 days. From now on, the configuration presented in [Hoque 2016] with 2 adders and

2 multipliers will be called C1 while our configuration of 10 adders and 10 multipliers

will be C2. Figure 7 represents the reliability of Scrubbing for C1 and C2 by varying the

coverage percentage between 100% and 90% on a 90-day mission with a 1-day Scrubbing

interval. The maximum reliability was obtained in C2 with 100% coverage, but it is

possible to observe that the reduction of the coverage rate affected more drastically the

reliability of C2 in both 95% and 90%. This shows that the more components in the

system, more important is to ensure an efficient fault detection mechanism to keep the

coverage always close to 100%.

Figure 7. Scrubbing reliability, 1-day interval: 90-day mission.

Keeping the same properties but increasing the Scrubbing interval to 9 days, with

the exception of C2 with 100% coverage, all other configurations lost their reliability until

the end of the 90 days, as shown in Figure 8. This indicates how much the Scrubbing

interval can influence the correct functioning of the system, especially in systems with

fewer components.

The safety of a system that has a mitigation method such as Blind Scrubbing is

related to the probability of detecting a fault since the fault occurred, i.e. with the coverage

rate. This is because there is no fault detection technique in the Blind Scrubbing, so it runs

at every preset time interval, even if no fault has occurred. Figures 9 and 10 show how

decreasing coverage from 99% to 95% drastically decreases safety in both C1 and C2.

This result indicates that for systems that value for safety, ensuring a high coverage rate

� � � � � � � � � 	
 � �

� �

Figure 8. Scrubbing reliability, 9-day interval: 90-day mission.

will yield better results than changes in the Scrubbing interval. In addition, C1 was able to

maintain safety greater than C2 at both coverage rates, showing that systems with fewer

components decrease the chances of failures to go unnoticed and make the system unsafe.

Figure 9. Scrubbing safety, 2 adders and 2 multipliers (C1): 90-day mission.

5. Related Work

SEU mitigation techniques in SRAM-based FPGAs used today have also undergone evo-

lutions, and several works over the past few years have brought comparisons, combi-

nations, and variations of these techniques to fit their needs. In [Morgan et al. 2007],

the authors compare TMR with three additional techniques of SEU mitigation for FP-

GAs: quadded logic, state machine encoding and temporal redundancy. To simulate the

harsh environment of space, they used a Xilinx Virtex fault-injection tool and analyzed

the results based on reliability, area overload and reduced sensitivity of FPGAs. The

conclusion was that these techniques presented a greater area overload and a smaller

sensitivity reduction when compared with TMR, guaranteeing TMR a higher reliabil-

ity. In [Shuler et al. 2009], TMR is also compared with other mitigation methods such

as radiation-hardened flip flops and dual-rail logic. Considering area efficiency, TMR

presented the best result with 95% efficiency.

In [Berg et al. 2008], the authors compare the effectiveness of two different forms

of Scrubbing. The first form is internal, implemented by Xilinx, and the second one is

external, but without a frame by frame readback and no method of detection of upsets.

� � � � � � � � � 	
 � �

� �

Figure 10. Scrubbing safety, 10 adders and 10 multipliers (C2): 90-day mission.

Results showed that even the internal scrubber being more complete, its efficiency was

not superior to the external scrubber, being little ahead of an FPGA with no Scrubbing

technique.

In [Liu et al. 2012], the authors compare Hamming code with another ECC, the

Difference-Set Cyclic Codes (DSCC). The objective was to analyze performance, cost de-

sign and failure rate. The results showed that although the DSCC is more suitable for the

Xilinx FPGA architecture, in practice Hamming code showed a lower failure rate and a

better energy consumption, resulting in a more feasible cost design. A direct comparison

between the TMR and the Hamming code was presented in [Hentschke et al. 2002] ana-

lyzing the impact on performance and area. As expected, the results showed advantages

and disadvantages in each of the techniques. The TMR significantly increases the area

of memory cells but performs better because it has a lower delay while Hamming code

has only a small increase in memory cells, but depending on the amount of bits it must

protect, it can add a significant delay. In our analysis, TMR had a lower performance.

All previous comparative analyzes have been conducted after implementing the

techniques in FPGAs and simulate upsets with fault-injection tools, but this type of ap-

proach can be costly, since it presents the results only at the end of the simulations. On

the other hand, stochastic models can be used in initial stages of the project and possibly

help traditional approaches achieve better results in a complementary manner. Probabilis-

tic analyzes via Formal Verification methods are still scarcely found in the literature, but

in [Hoque et al. 2014] and [Hoque 2016] the authors have presented case studies using

Probabilistic Model Checking for dependability analysis of SEU techniques. Our work is

different from theirs in several ways, starting with the individually analyzed techniques

rather than a single model combining two techniques. Moreover, our TMR not only deals

with spare components but also includes the input and output bits and the voter. In Scrub-

bing, a different scenario was addressed, where 10 adders and 10 multipliers showed sig-

nificant results. In addition, Hamming code was another technique analyzed and showed

promising results.

6. Conclusions

In this work, we presented a comparison between three well-known techniques of mit-

igation of SEU in SRAM-based FPGAs. By using Probabilistic Model Checking, we

claim that the benefits are high because we are able to get earlier results of these tech-

� � � � � � � � � 	
 � �

�

niques without the cost and effort spent designing and implementing in FPGA and using

fault-injection tools. Eventually, our analysis may not replace such implementation-based

approaches, but our results may complement such strategies with an additional probabilis-

tic perspective. We relied on CTMC models to verify possible failures and to analyze the

availability, reliability and safety of the techniques within a radiation environment with

the characteristics described in this work. The properties formalized in CSL were auto-

matically verified by PRISM [Kwiatkowska et al. 2009].

Results obtained in the availability analysis showed that Hamming code was the

technique that stayed the longest in operational state even if we considered the worst-case

failure rate. Scrubbing comes in the sequence with interval of 1 day and with interval

of 9 days. Comparing the results of the two Scrubbing configurations, smaller systems

(less amount of components) can spend less time in failure if the Scrubbing interval is

as small as possible. For larger systems, like our configuration with 10 adders and 10

multipliers, larger intervals make the system degraded, but still functional. The worst

result was TMR which spent half the total mission time failing because it could not fix the

upsets, generating a buildup that makes the system inoperable. One of the alternatives is

to combine TMR with some correction technique such as Scrubbing or Hamming code.

In the reliability analysis, TMR also presented the worst result but Hamming code

was worse than presented in our availability analysis. For Scrubbing, the greatest influ-

ence on reliability is the length of the interval between corrections, especially on smaller

systems. Thus, if the application focus is to ensure reliability, the ability to detect faults

(coverage rate) can be relaxed, but the Scrubbing interval should be as small as possible.

The safety analysis presented the inverse result, since the coverage rate was more relevant

in the results than the variation in the Scrubbing interval in both configurations.

We need to realize about the effectiveness of this Formal Verification and proba-

bilistic analysis. Therefore, our next efforts will focus on implementing these SEU mit-

igation techniques in FPGA and compare whether the results of our analysis meet the

practical results and, if the conclusion is positive, in the future one may rely on such

probability comparison rather than really implementing the techniques in FPGAs.

References

Baier, C., Katoen, J.-P., and Larsen, K. G. (2008). Principles of model checking. MIT

press.

Berg, M., Poivey, C., Petrick, D., Espinosa, D., Lesea, A., LaBel, K. A., Friendlich, M.,

Kim, H., and Phan, A. (2008). Effectiveness of internal versus external seu scrubbing

mitigation strategies in a xilinx fpga: Design, test, and analysis. IEEE Transactions on

Nuclear Science, 55(4):2259–2266.

Dutta, A. and Touba, N. A. (2007). Multiple bit upset tolerant memory using a selective

cycle avoidance based sec-ded-daec code. In VLSI Test Symposium, 2007. 25th IEEE,

pages 349–354. IEEE.

Ejlali, A., Al-Hashimi, B. M., Schmitz, M. T., Rosinger, P., and Miremadi, S. G. (2006).

Combined time and information redundancy for seu-tolerance in energy-efficient real-

time systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

14(4):323–335.

� � � � � � � � � 	
 � �

� �

Heiner, J., Sellers, B., Wirthlin, M., and Kalb, J. (2009). Fpga partial reconfiguration via

configuration scrubbing. In Field Programmable Logic and Applications, 2009. FPL

2009. International Conference on, pages 99–104. IEEE.

Hentschke, R., Marques, F., Lima, F., Carro, L., Susin, A., and Reis, R. (2002). Analyzing

area and performance penalty of protecting different digital modules with hamming

code and triple modular redundancy. In Proceedings. 15th Symposium on Integrated

Circuits and Systems Design, pages 95–100. IEEE.

Hoque, K. A. (2016). Early Dependability Analysis of FPGA-Based Space Applica-

tions Using Formal Verification. PhD thesis, Concordia University Montréal, Québec,

Canada.

Hoque, K. A., Mohamed, O. A., Savaria, Y., and Thibeault, C. (2014). Probabilistic

model checking based dal analysis to optimize a combined tmr-blind-scrubbing mit-

igation technique for fpga-based aerospace applications. In 2014 Twelfth ACM/IEEE

Conference on Formal Methods and Models for Codesign, pages 175–184. IEEE.

Kastensmidt, F. L. (2007). See mitigation strategies for digital circuit design applicable

to asic and fpgas. In IEEE NSREC Short Course.

Kastensmidt, F. L., Sterpone, L., Carro, L., and Reorda, M. S. (2005). On the optimal

design of triple modular redundancy logic for sram-based fpgas. In Proceedings of the

conference on Design, Automation and Test in Europe-Volume 2, pages 1290–1295.

IEEE Computer Society.

Kumar, U. and Umashankar, B. (2007). Improved hamming code for error detection

and correction. In Wireless Pervasive Computing, 2007. ISWPC’07. 2nd International

Symposium on. IEEE.

Kwiatkowska, M., Norman, G., and Parker, D. (2009). Prism: probabilistic model check-

ing for performance and reliability analysis. ACM SIGMETRICS Performance Evalu-

ation Review, 36(4):40–45.

Liu, S., Sorrenti, G., Reviriego, P., Casini, F., Maestro, J., Alderighi, M., and Mecha,

H. (2012). Comparison of the susceptibility to soft errors of sram-based fpga error

correction codes implementations. IEEE Transactions on Nuclear Science, 59(3):619–

624.

Morgan, K. S., McMurtrey, D. L., Pratt, B. H., and Wirthlin, M. J. (2007). A comparison

of tmr with alternative fault-tolerant design techniques for fpgas. IEEE transactions

on nuclear science, 54(6):2065–2072.

Rollins, N., Wirthlin, M., Caffrey, M., and Graham, P. (2003). Evaluating tmr techniques

in the presence of single event upsets. In Proceedings of the 6th Annual International

Conference on Military and Aerospace Programmable Logic Devices, page P63.

Sari, A., Psarakis, M., and Gizopoulos, D. (2013). Combining checkpointing and scrub-

bing in fpga-based real-time systems. In VLSI Test Symposium (VTS), 2013 IEEE 31st,

pages 1–6. IEEE.

Shuler, R. L., Bhuva, B. L., O’Neill, P. M., Gambles, J. W., and Rezgui, S. (2009). Com-

parison of dual-rail and tmr logic cost effectiveness and suitability for fpgas with re-

configurable seu tolerance. IEEE Transactions on Nuclear Science, 56(1):214–219.

� � � � � � � � � 	
 � �

� �

