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Abstract. Software systems are used to execute critical tasks on a daily basis.
Failures can easily lead to significant losses or even loss of lives. Online Failure
Prediction (OFP) tries to predict incoming failures using the current state of the
system. This relies on the premise that there are symptoms (i.e., some misbehav-
ior of the system) prior to failure, however, characterizing the (mis)behavior of
a complex system is an open issue. How can we know if the failure predictors
are actually modeling the symptoms, and not just identifying correlations in the
data? In this work, we explore the use of Statistical Process Control (SPC) to
characterize the stability and instability of the Linux Operating System (OS).

1. Introduction

Nowadays, software systems are used to execute critical tasks on a daily basis. Failures
in such systems can easily lead to significant losses or even loss of lives. Facebook out-
age in 2019 cost approximately $90 million [Brown 2020] and software faults have been
identified as a major contributor to Boeing 737 Max crashes [McFall-Johnsen 2020]. On-
line Failure Prediction (OFP) is a fault-tolerance technique that tries to predict incoming
failures by using past data and the current state of the system [Salfner et al. 2010].

OFP has been successfully used in domains that rely on a specific set of
metrics that can accurately characterize the state of the system (e.g., disk fail-
ure [Zhang et al. 2020]). However, OS-level failure prediction, whose characteriza-
tion relies on hundreds of system metrics, is not trivial. Still, recent works (e.g.,
[Campos et al. 2023]) have shown that it is possible to create accurate OS-level failure
predictors for various failure modes and OSs. These approaches focus on symptom mon-
itoring, and they rely on the premise that the system will exhibit some out-of-norm be-
havior before a failure event. Given the plethora of different failures that can be observed
in a complex system, determining whether or not there are in fact symptoms to monitor
is still an open issue. The impact is clear: given the ability that Machine Learning (ML)
algorithms have to detect patterns in the data, how can we know if there is, in fact, some
symptom to monitor, or if the algorithms just leverage some correlation in the data?

Statistical Process Monitoring (SPM), or SPC, is a technique that is extensively
used in industrial domains. SPC is a statistical tool for checking the conformance of prod-
ucts and systems to their operational requirements [Qiu 2013]. It tries to distinguish be-
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tween common cause variation (i.e., variability inherent to the system) and special cause
variation (i.e., variation caused by the malfunction of a component in the process).

Given the successful uses of SPC in industry, our main research question is: is
it possible to apply the same principles to monitor modern complex digital systems? To
explore this hypothesis, we conducted a thorough analysis of the state of the art in SPC
techniques and applied them to a Linux failure dataset [Campos et al. 2022]. Taking the
characteristics of the dataset into account, discussed further in Section 3, the technique
selected for the analysis was PCA-MSPM. Using this technique, for some experiments it
was possible to clearly observe the system becoming unstable up until the subsquent fail-
ure. This demonstrates the potential of such techniques, as they can be used for situations
where the system might fail but existing detection mechanisms do not trigger an alert, as
well as for forensics analysis of past failures.

2. Background and Related Work

OFP is a fault tolerance technique that tries to predict failures in the near future, us-
ing the current state of the system. It has been extensively used in domains such
as disk failure (e.g., [Zhang et al. 2020]) and job failures in cloud applications (e.g.,
[Jassas and Mahmoud 2018]) where it is possible to define a set of metrics that accurately
characterize the system. OS-level failure prediction is not so trivial as it requires hun-
dreds of system metrics. Notwithstanding, recent works (e.g., [Campos et al. 2023]) have
shown that with a proper methodology it is possible to create accurate failure predictors.
The most promising OFP approaches focus on symptom monitoring. This means that
they rely on the premise that the system will exhibit some out-of-norm behavior before a
failure event. However, given the plethora of different failures that can be observed in a
complex system, some of which just simply occur because some corruption occurred and
immediately led to a failure, determining whether or not there are symptoms to monitor
is still an open issue.

SPM, or SPC, is a technique that has been around since 1924 and that is ex-
tensively used in various domains such as industry and chemical engineering (e.g.,
[Reis et al. 2021]). Given the impact that a malfunctioning system can have, quality
assurance and quality management are of utmost importance. SPC is a statistical tool
for checking the conformance of products and systems to their specified requirements
[Qiu 2013]. SPC tries to distinguish between variation inherent to the production system
and variation that is caused by the malfunction of a component. These variations are re-
lated to the stabilitylinstability of the system. In short, the in-control (stable) distribution
of the data is analyzed and both Upper Control Limit (UCL) and Lower Control Limit
(LCL) are computed, which define the Normal Operating Conditions (NOC) of the sys-
tem. At runtime, the state of the system is analyzed and if it falls out of these ranges
the system is no longer stable. Associated with this process, control charts are typically
used to assist in the assessment. Given that modern systems are now typically charac-
terized through multiple indicators, various techniques were developed for Multivariate
Statistical Process Monitoring (MSPM). Other techniques such as Principal Component
Analysis (PCA) were also proposed to address the high-dimensionality of modern sys-
tems. Additionally, techniques such as CUSUM, or EWMA have also been proposed to
take into account the sequential evolution of the data [Qiu 2013]. Overall, the concept of
SPC is identical to that of anomaly detection, however, these are supported by a statistical



background that allows identifying the NOC and its limits.

SPC techniques have been used for the task of failure prediction, but not in com-
plex computer systems. As an example, [Ogden et al. 2017] used SPC to detect jet engine
failures prior while [Liu et al. 2021] predicts failures of aero-engine load-bearing trans-
mission system. [Lim et al. 2017] develop an SPC model for predicting the failure of a
printed circuit board. Recent works have also tried to combine SPC with ML techniques
[Tran 2022].

3. Experimental Methodology and Preliminary Results

The dataset used for this analysis is available at [Campos et al. 2022]. Briefly, it is a com-
prehensive failure dataset that was generated using fault injection on the Linux OS. Var-
ious types of faults were used in the experimental process along with various workloads
to exercise the system. Golden runs (where no fault was injected) were also executed to
establish the baseline behavior of the system. The subset of the data used for this task is
comprised of 371 system metrics, all numeric, collected every second. The dataset com-
prises various failure modes. This dataset has been studied in various works, which have
shown that it is possible to create accurate failure predictors for the various failure modes
[Campos et al. 2023]. However, given the number of features and the complexity of the
various failure modes, it is not yet clear when the symptoms start to occur.

To explore whether SPC can be used to assist in this task, because we are working
with multivariate data, with high dimensionality and correlation, the PCA-MSPM process
using Hotelling T? statistics was chosen. SPC processes are typically divided into two
phases. Phase I aims to assess the stability of the system, by analyzing historic data
from the process (the golden runs) to define preliminary control limits and checking if the
monitoring statistics fall inside the NOC region (i.e., within the control limits). In Phase
Il we use these limits to determine if the system is in or out of control. It is important
to notice that control limits result from the inherent variability of the process. PCA is
used for two main reasons: i) to reduce the dimensionality of the data while maximizing
explained variance in the data; ii) and to remove correlation in the data (Hotelling T?
cannot handle high correlation). To determine the number of components to keep, the
elbow method was used, as illustrated in Figure 1. 25 components were selected, which
account for 70% of the variation in the data. The LCL and UCL were defined based on
the golden runs data projected through PCA.

Figure 2 presents the control chart for Phase I T? (the x axis are the golden runs
samples, the y the corresponding T? statistic). The red line identifies the UCL, above
which it is considered that the system is out of control. As can be observed, almost every
sample is below the UCL, which means the system is under NOC. Although there is
variation in the data, this is modulated as variation inherent to the process.

In Phase II we assessed the stability of the failure experiments. The initial results
were rather interesting, as for some failures the system exhibited a growing instability, as
can be seen in Figure 3. In this particular experiment, using this technique it is possible to
observe that there are in fact symptoms of an incoming failure, as the system is steadily
moving away from NOC. However, there were also experiments where the symptoms are
not so clear. In Figure 4, which belongs to a hang failure, it is also possible to observe
that the system has an uncommon behavior, but it is not always out of control.
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A similar observation can be made in Figure 5 and Figure 6. In the first, the
system moves out of control at the beginning of the experiment and stays there until a
failure occurs later in the experiment. Although there are symptoms, they are not exactly
progressively moving away from NOC. As for the latter, there is some variation at the
beginning of the experiment, however, the system as a whole never gets out of control.

One of the possible reasons for these differences, besides the fact that there might
not actually be symptoms, is that the best indicators for certain types of failures are fea-
tures that have low variance throughout the golden runs. In fact, the feature with the
highest importance for the crash failure mode is constant in every golden run. As a result,
it has O contribution to the components obtained from PCA. This means that in Phase II,
even strong variations in these features will not change the computed T? statistical value.

4. Conclusion

In this paper, we explored whether SPC could also be used for monitoring the stability of a
modern OS. Results have shown promising results, making it possible to observe a system
moving towards instability and subsequent failure. Notwithstanding, further research is
necessary to generalize the process to other types of failures and causes.
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