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Abstract. The advancement of automotive technologies and the widespread
adoption of OBD-II (On-Board Diagnostics) devices have enabled real-time
vehicle data collection, supporting diagnostics and performance analysis ap-
plications. Although the OBD-II protocol is standardized, its implementation
across different hardware and vehicles can significantly impact communication
latency with the Electronic Control Unit (ECU). This study investigates how
such variability affects the efficiency of data acquisition and the performance of
embedded machine learning algorithms in a mobile application. Through a case
study involving multiple vehicle models and data collection devices, ECU res-
ponse times and algorithm execution times were analyzed under different ope-
rating conditions. The results show that system performance is sensitive to vehi-
cle and interface hardware characteristics, highlighting the need to adjust ac-
quisition parameters to ensure reliable and accurate real-time data processing.
The findings contribute to improving embedded solutions for smart mobility and
vehicle monitoring.

Resumo. O avanço das tecnologias automotivas e a popularização dos dis-
positivos OBD-II (On-Board Diagnostics) têm viabilizado a coleta de dados
veiculares em tempo real, favorecendo aplicações em diagnóstico e análise de
desempenho. Apesar da padronização do protocolo OBD-II, a forma como ele é
implementado em diferentes hardwares e veículos pode impactar significativa-
mente a latência na comunicação com a Unidade de Controle Eletrônico (ECU).
Este trabalho investiga a influência dessas variabilidades sobre a eficiência da
coleta de dados e o desempenho de algoritmos de aprendizado de máquina em-
barcado em um aplicativo móvel. Por meio de um estudo de caso com múltiplos
modelos de veículos e dispositivos de coleta, foram analisados os tempos de
resposta das ECUs e os tempos de execução dos algoritmos embarcados, con-
siderando diferentes contextos de operação. Os resultados demonstram que o
desempenho do sistema é sensível às características do veículo e do hardware de
interface, evidenciando a necessidade de ajustes nos parâmetros de aquisição
para garantir a confiabilidade e a precisão dos dados processados em tempo
real. As análises contribuem para o aprimoramento de soluções embarcadas
voltadas à mobilidade inteligente e ao monitoramento veicular.



1. Introdução

O setor automotivo tem passado por uma transformação significativa com a in-
corporação de tecnologias digitais, conectividade e processamento local de dados
[Pérez-Moure et al. 2023]. Essa transformação viabiliza a coleta, análise e utilização
de dados em tempo real para suportar decisões automatizadas e oferecer diagnósticos
mais precisos. Nesse contexto, o padrão On-Board Diagnostics (OBD-II) tem desem-
penhado papel central ao permitir o acesso padronizado a parâmetros operacionais dos
veículos em tempo real [Jung et al. 2024]. Inicialmente voltado à detecção de falhas
e emissões, o OBD-II tornou-se um mecanismo multifuncional, viabilizando aplica-
ções em manutenção preventiva, análise de desempenho e comportamento do condutor
[Kumar and Jain 2023a, Malik and Nandal 2023].

Diversos dispositivos comerciais implementam o padrão OBD-II e permitem sua
integração com sistemas móveis, possibilitando a construção de soluções de monitora-
mento veicular [Thajudheen et al. 2023, More et al. 2024]. Contudo, mesmo com a pa-
dronização do protocolo, observa-se variabilidade nos tempos de resposta dos sensores,
atribuída a fatores como o modelo do veículo, o hardware utilizado e as condições opera-
cionais [Costa et al. 2024, Khan et al. 2023]. Tal latência pode comprometer a temporali-
dade e a precisão das informações, afetando diretamente a eficácia das soluções baseadas
em dados [Kumar and Jain 2023b].

Paralelamente, tem crescido o uso de algoritmos de Aprendizado de Máquina
(AM) em aplicações automotivas, com foco em predição de falhas, análise de condução e
recomendação de ações [Rana and Khatri 2024, Mandala 2024]. A execução embarcada
desses algoritmos, utilizando arquiteturas como TinyML, busca reduzir a dependência
de conectividade e oferecer respostas em tempo real [Purnomo et al. 2023]. Entretanto,
a latência na aquisição dos dados pode impactar o desempenho dos modelos, sobretudo
em cenários sensíveis ao tempo. Ainda são limitados os estudos que analisam, de forma
integrada, a variabilidade nos tempos de resposta de dispositivos OBD-II e o impacto
dessa latência sobre a execução de algoritmos de aprendizado de máquina embarcado
[Purnomo et al. 2023, Waisara et al. 2023]. Compreender como as características dos
veículos e dos dispositivos influenciam esses tempos é essencial para garantir precisão
e eficiência em aplicações em tempo real. Neste contexto, destaca-se a importância de
investigar o intervalo ótimo de requisição de dados — ou seja, a periodicidade ideal para
coleta sensorial em diferentes combinações de hardware e veículos [Tak and Choi 2022].

Este trabalho propõe uma abordagem integrada de aquisição e análise de dados
veiculares, combinando processamento local em dispositivos móveis com transmissão se-
letiva para a nuvem. A estratégia visa reduzir a latência na coleta e otimizar a execução de
modelos embarcados, considerando o tempo de resposta das ECUs e o custo computacio-
nal dos algoritmos. A partir de um estudo de caso com diferentes veículos e dispositivos
OBD-II, analisam-se os fatores que influenciam o desempenho temporal do sistema de
monitoramento veicular.

O restante do artigo é organizado da seguinte forma. A Seção 2 apresenta os
trabalhos relacionados. A Seção 3 descreve a abordagem proposta. A Seção 4 apresenta
o estudo de caso. Na Seção 5, são discutidos os resultados obtidos e, por fim, a Seção 6
apresenta as conclusões e perspectivas para trabalhos futuros.



2. Trabalhos Relacionados

O uso de dispositivos compatíveis com o padrão OBD-II para coleta de dados veiculares
tem sido amplamente explorado, principalmente em aplicações de diagnóstico e moni-
toramento de desempenho. De acordo com [Roque et al. 2024], o OBD-II oferece uma
interface padronizada para acessar dados da ECU, sendo amplamente adotado em ferra-
mentas de diagnóstico automotivo. No entanto, a variabilidade nos tempos de resposta
entre diferentes dispositivos pode comprometer a qualidade e a eficiência da coleta de
dados [Ragab et al. 2024].

Paralelamente, algoritmos de Inteligência Artificial têm sido aplicados à análise
desses dados com o objetivo de prever falhas, identificar padrões de condução e otimizar
o desempenho veicular [Costa et al. 2024]. Estudos como o de [Manoharan et al. 2024]
demonstram que técnicas de aprendizado de máquina, ao integrar dados em tempo real de
múltiplos sensores, podem aumentar significativamente a precisão dos diagnósticos. No
entanto, grande parte da literatura negligencia o impacto da latência na coleta de dados
sobre o desempenho desses algoritmos embarcados [Slimani et al. 2025].

Apesar do crescente uso de aprendizado de máquina em sistemas automotivos, são
escassas as investigações que comparam diferentes dispositivos OBD-II sob a perspectiva
da latência de aquisição e sua influência na execução de modelos embarcados. A lite-
ratura carece de análises que considerem o papel conjunto do hardware e do modelo de
veículo no desempenho temporal do sistema. Este trabalho busca contribuir nesse sentido,
avaliando as diferenças nos tempos de resposta e nos tempos de execução de algoritmos
embarcados em diferentes configurações veiculares e de dispositivos.

3. Abordagem Proposta

Nesta seção, descreve-se a arquitetura modular proposta para aquisição, processamento
e transmissão de dados veiculares. A abordagem é composta por quatro módulos princi-
pais: (1) Requisição de Dados, (2) Envio de dados, (3) Predição e (4) Transmissão para a
Nuvem. Cada módulo é responsável por uma etapa específica do fluxo de monitoramento
veicular em tempo real, conforme ilustrado na Figura 1. A arquitetura foi projetada para
ser flexível e escalável, permitindo adaptações conforme as necessidades de aplicação,
desempenho ou segurança.
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Figura 1. Visão Geral da abordagem proposta.



3.1. Requisição de Dados
A coleta dos dados veiculares é realizada por meio do aplicativo App2Car, desenvolvido
em Flutter, com suporte à comunicação com dispositivos ELM327 (microcontrolador ou
scanner automotivo) conectados à porta OBD-II dos veículos. Esses dispositivos acessam
a rede Controller Area Network (CAN) do veículo e traduzem comandos AT e hexadeci-
mais enviados pelo aplicativo para consultas à ECU.

Inicialmente, o App2Car envia uma sequência de comandos AT para configurar
o ELM327, seguida dos comandos hexadecimais correspondentes aos Parameter IDs
(PIDs) – sensores do veículo – requisitados. O dispositivo interpreta as instruções, con-
sulta os sensores, e retorna os dados ao aplicativo, que decodifica e converte as respostas
em valores compreensíveis. No total, 27 PIDs foram configurados para coleta, incluindo
parâmetros como velocidade, rotação do motor, temperatura, entre outros. Um exemplo
da lista de comandos para requisitar a variável de rotações do motor do veículo (RPM) é
listada abaixo:

// Sequência de configuração e requisição de RPM
ATZ // Reset do ELM327
ATE0 // Desativa eco
ATL1 // Habilita múltiplas linhas
ATSP0 // Seleção automática de protocolo
010C // Requisição de RPM
// Resposta esperada: 41 0C 1A F8
// Conversão: (1AF8)_{16} = 6904 => RPM = 6904 / 4 = 1726

O tempo total de coleta dos dados pode ser modelado como:

TPID =
N∑
i=1

tPIDi
(1)

onde TPID representa o tempo total de coleta dos PIDs, N é o número de PIDs
requisitados e tPIDi

é o tempo necessário para coletar cada PID.

3.2. Envio de Dados
Os dados coletados pelo App2Car são organizados e armazenados localmente em arquivos
CSV, gerando dois tipos de registros: (1) Log Normal e (2) Log de Debug. O log normal
contém as informações principais requisitadas ao veículo, representando os mesmos da-
dos que serão posteriormente enviados ao servidor. Já o log de debug registra informações
detalhadas sobre o processo de aquisição, incluindo o sensor requisitado, o tempo de res-
posta de cada PID e os intervalos entre as requisições. Essa estrutura de registros permite
o rastreamento do desempenho do sistema e a análise posterior da eficiência de comuni-
cação e processamento, servindo como base para diagnósticos e validações técnicas.

3.3. Predição
O módulo de predição do App2Car executa quatro algoritmos embarcados de aprendizado
de máquina, com o objetivo de identificar padrões no comportamento do condutor e nas
condições de operação do veículo. Os modelos são executados sequencialmente após a
aquisição dos dados via OBD-II.



Detecção de Outliers (TEDA) – Utiliza o framework TEDA para identificar ano-
malias com base em medidas de tipicidade e excentricidade [Andrade et al. 2024]. A
entrada é a “área do radar”, um sensor virtual calculado a partir da combinação dos sinais
de velocidade, rotação do motor (RPM), carga do motor e posição do acelerador.

Classificação do Comportamento do Condutor (MMCloud) – Modelo incre-
mental de agrupamento online que classifica a condução em perfis como “Agressivo”,
“Normal” ou “Cauteloso” [Silva et al. 2023, Medeiros et al. 2024]. Utiliza como entra-
das a área do radar e a carga do motor.

Classificação do Tipo de Combustível (Random Forest) – Identifica se o veículo
utiliza como combustível gasolina ou etanol, com foco em aplicações voltadas a emissões
veiculares [Amaral et al. 2024]. As variáveis de entrada incluem a porcentagem de etanol,
avanço da ignição, velocidade, RPM, posição do acelerador e carga do motor.

Classificação do Tipo de Via (Random Forest) – Determina se o trajeto ocorre
em área urbana ou rodoviária, útil para análises de consumo e emissões. As entradas
incluem a magnitude do acelerômetro nos eixos X, Y e Z, além de RPM, velocidade,
carga e posição do acelerador.

O tempo total de execução dos algoritmos é calculado como:

Talg =
M∑
j=1

talgj (2)

onde:

• Talg representa o tempo total de execução dos algoritmos embarcados;
• M é o número total de algoritmos executados;
• talgj é o tempo de execução do algoritmo j.

O tempo total desde a coleta até a predição é dado por:

Ttotalreq = TPID + Talg (3)

onde:

• Ttotalreq representa o tempo total entre a requisição dos dados dos sensores e a
conclusão da execução dos algoritmos de predição;

• TPID é o tempo total para coleta dos dados via OBD-II;
• Talg é o tempo total de execução dos algoritmos embarcados (conforme definido

anteriormente).

3.4. Envio de Dados para a Nuvem

O App2Car inclui um módulo dedicado à transmissão periódica dos dados para a nu-
vem, com o objetivo de garantir persistência, integridade e disponibilidade para análises
posteriores. Essa comunicação é realizada via protocolo HTTPS, assegurando a confiden-
cialidade e a integridade das informações transmitidas.

O processo de envio é gerido por três mecanismos complementares:



Orquestração do Envio – Controla a geração e o disparo das requisições HTTP
em intervalos regulares.

Monitoramento da Conectividade – Garante que os dados só sejam transmitidos
quando houver conexão estável com a internet.

Gerenciamento Seguro da Comunicação – Administra os cabeçalhos, autenti-
cação e tratamento das respostas do servidor, com retentativas automáticas em caso de
falhas.

A latência de envio entre dois instantes consecutivos tk e tk+1 é dada por:

Tenvio,k = tk+1 − tk (4)

onde:

• Tenvio,k é o tempo de envio dos dados no ciclo k;
• tk é o instante de início da transmissão no ciclo k;
• tk+1 é o instante de término da transmissão no ciclo k.

O tempo total do processo até o instante tk+1 é dado por:

Tfinal,k = TPID,k + Talg,k + Tenvio,k (5)

onde:

• Tfinal,k representa o tempo total do ciclo k, incluindo aquisição, execução e envio;
• TPID,k é o tempo de coleta dos dados via OBD-II no ciclo k;
• Talg,k é o tempo de execução dos algoritmos embarcados no ciclo k;
• Tenvio,k é o tempo de transmissão dos dados no ciclo k.

Neste artigo, o foco está na análise do tempo total necessário para a obtenção
dos dados via OBD-II e para execução embarcada dos algoritmos de predição, conforme
definido na Equação 3. Esse tempo representa a latência do sistema até a geração de uma
resposta local, sem considerar o envio para a nuvem.

4. Estudo de Caso

Esta seção apresenta um estudo de caso com o objetivo de avaliar a eficiência e a confia-
bilidade da arquitetura proposta para coleta e predição embarcada de dados veiculares. A
investigação foi guiada pelas seguintes questões de pesquisa:

Q1: Qual é o intervalo ótimo para a requisição dos dados dos sensores em veículos
distintos?

Q2: Existe uma diferença significativa no tempo de resposta das ECUs entre os dife-
rentes veículos e dispositivos OBD-II (A e B)?

Q3: Os algoritmos embarcados apresentam variação significativa no tempo de execu-
ção entre diferentes veículos e dispositivos?

Q4: Como se comportam as distribuições dos tempos de resposta dos sensores para os
mesmos veículos, utilizando diferentes dispositivos OBD-II?



4.1. Instrumentação

Foram utilizados dois dispositivos OBD-II da linha ELM327: a versão 1.5 (denominada
A) e a versão 2.1 (denominada B). A comunicação com os dispositivos foi realizada via
Bluetooth, utilizando um smartphone Samsung Galaxy S20 FE com o aplicativo App2Car
instalado. A seleção dos veículos foi feita com base na disponibilidade e representativi-
dade de modelos comuns no mercado nacional, abrangendo diferentes marcas, anos e
configurações. A Tabela 1 apresenta os veículos utilizados, seus protocolos de comunica-
ção e a quantidade de unidades testadas por modelo.

Tabela 1. Características dos veículos utilizados na coleta de dados.

Veículo Marca Ano Protocolo CAN Unidades de ECU

Polo Volkswagen 2019 ISO 15765-4 2
T-Cross Volkswagen 2023 ISO 15765-4 1
HB20 Hyundai 2023 ISO 15765-4 1

Fit Honda 2012 ISO 15765-4 1

4.2. Preparação

A primeira etapa consistiu em validar a compatibilidade dos dispositivos OBD-II A e B
com os veículos da amostra. Foram realizados testes preliminares para assegurar a co-
municação com a ECU e a resposta correta aos comandos de leitura dos PIDs. Após
essa validação, foi definido um trajeto de aproximadamente 6 km, com trechos urbanos
e rodoviários na cidade de Natal/RN. Todos os veículos percorreram a mesma rota sob
condições operacionais semelhantes (horário, temperatura e tráfego), assegurando a com-
parabilidade dos dados.

4.3. Operação

Durante a coleta, foram registrados 27 PIDs, dados de localização (GPS), aceleração nos
três eixos e informações sobre o dispositivo OBD-II conectado. Cada veículo realizou
o percurso com ambos os dispositivos, permitindo comparação direta entre os tempos
de resposta. Os algoritmos embarcados foram executados em tempo real, e seus tem-
pos de execução foram registrados para cada contexto de uso. A análise estatística in-
cluiu os testes de Kolmogorov-Smirnov (KS) e Shapiro-Wilk para verificação da norma-
lidade, além do teste U de Mann-Whitney para comparação entre grupos independentes
[Wohlin et al. 2024].

Todos os dados e scripts utilizados no experimento estão disponíveis no repositó-
rio GitHub: https://github.com/conect2ai/SBRC2025-App2Car, permi-
tindo total reprodutibilidade dos resultados.

5. Resultados e Discussão
Esta seção apresenta os resultados obtidos a partir do estudo de caso descrito na Seção 4,
com foco na análise da latência de comunicação com a ECU e do desempenho dos al-
goritmos embarcados. Os dados coletados foram analisados com o intuito de responder
às quatro questões de pesquisa propostas, abordando aspectos como o intervalo ótimo de



requisição dos sensores, a variação nos tempos de resposta dos dispositivos OBD-II, a
eficiência computacional dos modelos de aprendizado de máquina e a estabilidade das
distribuições de tempo.

Inicialmente, analisaram-se os tempos de resposta dos sensores veiculares, medi-
dos separadamente para os dispositivos OBD-II A (versão 1.5) e B (versão 2.1), conforme
apresentados na Tabela 2. Os resultados indicam que o dispositivo A apresentou maior
consistência nas medições, com variações menores entre os veículos testados. A mediana
variou entre 137 ms (HB20) e 150 ms (T-Cross). Em contraste, o dispositivo B apresen-
tou maior dispersão, com medianas variando de 136 ms (Fit) até 179 ms (Polo Branco),
sugerindo instabilidade temporal em certos contextos de operação.

Tabela 2. Medianas para os Dispositivos OBD’s A e B.

Veículo Mediana - OBD-II A (ms) Mediana - OBD-II B (ms)

Polo Prata 149.00 178.00
Polo Branco 149.00 179.00
Fit 149.00 136.00
T-Cross 150.00 169.00
HB20 137.00 179.00

A presença de valores atípicos foi evidenciada por medidas de assimetria (Skew-
ness) e curtose (Kurtosis), cujos resultados indicaram distribuições fortemente distorci-
das em determinados cenários. Destaca-se o caso do T-Cross com o dispositivo A, que
apresentou uma Skewness de 21,15 e uma Kurtosis de 815,43 — valores extremamente
elevados, sugerindo forte concentração dos dados em torno da mediana com ocorrência
ocasional de tempos de resposta muito elevados (Tabela 3). Esse padrão é característico
de sistemas sujeitos a instabilidades momentâneas na comunicação com a ECU. Para mi-
tigar esse efeito, a mediana foi adotada como medida central, em substituição à média.
Adicionalmente, o teste de Kolmogorov-Smirnov indicou, com p-valores próximos de
zero em todos os casos, a rejeição da hipótese de normalidade, corroborando a escolha de
métodos não paramétricos nas comparações entre grupos.

Tabela 3. Métricas para o Dispositivo OBD-II A.

Grupo Skewness Kurtosis KS test p-value

Polo Prata 3.61 142.78 0
Polo Branco -0.68 14.23 2.56× 10−286

Fit -0.53 19.19 0
T-Cross 21.15 815.43 0
HB20 0.08 -1.10 5.29× 10−234

De forma complementar à análise das medidas de tendência central, realizou-se
a comparação estatística entre os tempos de resposta dos dispositivos OBD-II A e B.
Para isso, foi adotado o teste U de Mann-Whitney, apropriado para amostras indepen-
dentes sem suposição de normalidade, conforme evidenciado previamente pelos testes de
Kolmogorov-Smirnov. Os resultados, sumarizados na Tabela 4, indicam que as diferenças



entre os dois dispositivos são estatisticamente significativas para todos os veículos anali-
sados (p-value < 0,05), com destaque para os casos do Fit e do T-Cross, cujos p-valores
extremamente baixos reforçam a magnitude da divergência.

Tabela 4. Teste U de Mann-Whitney entre Dispositivos A e B.

Grupo Mann-Whitney U p-value

Polo Prata 0
Polo Branco 0
Fit 0
T-Cross 1.83× 10−123

HB20 1.83× 10−5

Essa discrepância sugere que a escolha do dispositivo OBD-II pode impactar na
confiabilidade da coleta em aplicações sensíveis à latência. A diferença observada entre os
tempos de resposta pode decorrer de fatores como o firmware embarcado no dispositivo,
a versão do protocolo suportado ou a capacidade de paralelismo na leitura dos PIDs.

Para aprofundar a análise, foi conduzida uma comparação entre dois veículos de
mesmo modelo (Volkswagen Polo), identificados como Polo Branco e Polo Prata. O ob-
jetivo foi investigar a influência de variações intra-modelo no comportamento temporal
dos sensores. Para o dispositivo OBD-II A, detectou-se uma diferença estatisticamente
significativa entre os veículos (p-value = 0,02), enquanto para o dispositivo B não houve
evidência de diferença (p-value = 0,94). Esses resultados revelam que, mesmo dentro de
um mesmo modelo, pequenas variações de fabricação ou atualizações no sistema eletrô-
nico podem influenciar a latência da ECU — efeito mais sensível quando o dispositivo
possui maior fidelidade na coleta (caso do dispositivo A).

Essas análises reforçam a importância de uma caracterização sistemática dos dis-
positivos e veículos utilizados, sobretudo em aplicações que exigem monitoramento em
tempo real e aprendizado de máquina embarcado. A seleção criteriosa do hardware de
interface não deve se restringir à compatibilidade, mas também considerar métricas em-
píricas de desempenho temporal e estabilidade da comunicação.

A análise dos tempos de execução dos modelos de aprendizado de máquina em-
barcados permitiu observar diferenças relevantes entre os algoritmos utilizados e tam-
bém entre os veículos testados. As Figuras 2(a–d) apresentam as distribuições empíricas
dos tempos de predição para cada um dos quatro modelos implementados no aplicativo
App2Car. Entre eles, destaca-se o Modelo de Detecção de Tipo de Combustível, cuja
mediana foi de 201 µs, demonstrando elevada eficiência computacional. Já o Modelo de
Comportamento do Motorista apresentou maior complexidade, refletida em uma mediana
de 299 µs e em uma distribuição assimétrica, com caudas mais extensas, indicando maior
variabilidade nas execuções. O Modelo de Identificação de Vias ocupou posição interme-
diária, com uma mediana de 168 µs, apresentando distribuição mais concentrada, o que
sugere maior estabilidade nos tempos de execução. O Modelo de Detecção de Outliers,
baseado no framework TEDA, apresentou os menores tempos de execução, com média
inferior a 2 µs, destacando-se pela leveza computacional.

A Tabela 5 consolida os tempos médios de execução dos modelos com suas res-



(a) Tipo de Combustível. (b) Detecção de outlier.

(c) Comportamento do Motorista. (d) Identificação de Vias.

Figura 2. Distribuições dos tempos de execução para os algoritmos de ML.

pectivas incertezas, permitindo uma comparação quantitativa. O tempo total médio para
a execução sequencial de todos os modelos embarcados foi de 671.37 ± 1.95 µs. Esses
valores evidenciam que, mesmo em dispositivos móveis com recursos computacionais li-
mitados, é possível realizar inferências em tempo quase real, desde que os modelos sejam
otimizados e projetados com foco em baixo custo computacional.

Tabela 5. Tempos médios de execução e suas incertezas para cada modelo.

Modelo Tempo Médio (µs)

Modelo de Combustível 201.41± 1.04
Modelo de Detecção de outlier 1.67± 0.01
Modelo de Comportamento do Motorista 299.45± 1.40
Modelos de Identificação de Vias 168.84± 0.87

Total 671.37± 1.95

A Figura 3 apresenta a comparação das distribuições dos tempos de resposta entre
os dispositivos OBD-II A e B em diferentes veículos, permitindo uma análise da consis-
tência e estabilidade na comunicação com a ECU. De maneira geral, observa-se que o
dispositivo A apresenta distribuições mais concentradas, com menor amplitude e menor
dispersão, sugerindo maior previsibilidade nos tempos de resposta. Em contrapartida, o
dispositivo B apresenta densidades com caudas mais longas, maior variabilidade e assi-
metrias acentuadas, indicando maior instabilidade na comunicação.

Destacam-se, em particular, os casos dos veículos T-Cross e Polo Prata, nos quais
as diferenças entre os dispositivos são mais pronunciadas. Nestes modelos, o dispositivo
B apresenta não apenas tempos medianos mais altos, mas também maior alargamento da
curva de densidade, o que evidencia maior latência e inconsistência nas respostas. Por
outro lado, chama atenção o fato de que os dois modelos de Polo — Branco e Prata —
exibem comportamentos praticamente idênticos quando se comparam os dispositivos A
e B, com distribuições muito semelhantes para cada tipo de dispositivo. Deste modo, re-
força a hipótese de que o desempenho da comunicação entre o OBD-II e a ECU depende
não apenas do modelo do dispositivo, mas também de características específicas de cada



Figura 3. Comparativo de intervalos de requisição para todos os veículos.

veículo. A semelhança nas distribuições dos Polos sugere uma possível homogeneidade
na arquitetura eletrônica entre as versões testadas, que pode mitigar os efeitos de vari-
ação entre os dispositivos. Assim, os dados evidenciam que a latência na comunicação
OBD-II não é apenas uma função do dispositivo utilizado, mas resulta de uma interação
entre o hardware de coleta e o sistema embarcado de cada modelo veicular. A análise
detalhada dessas distribuições contribui para a compreensão dessa variabilidade e reforça
a necessidade de testes multi-ambiente para validação de soluções baseadas em OBD-II.

A Tabela 6 apresenta os tempos totais de requisição de dados Ttotal medidos para
cada veículo em dois cenários distintos, representados pelos dispositivos OBD-II A e B.
Cada valor é acompanhado do respectivo desvio padrão, permitindo a análise da variabi-
lidade na latência de aquisição.

Tabela 6. Tempo total de Requisições.

Veículo A (ms) B (ms)

Polo Prata 3948.83± 7.21 4569.39± 14.42
Polo Branco 3920.10± 6.72 4625.27± 13.55
Fit 3935.82± 6.01 3691.00± 4.34
T-Cross 4057.68± 7.63 4355.85± 29.33
HB20 3247.02± 44.11 4616.78± 1.27

Observa-se que o dispositivo A apresentou, de modo geral, menor tempo total de
requisição em quatro dos cinco veículos testados. O menor tempo foi registrado no HB20
com 3247.02 ± 44.11 ms, contrastando com o maior tempo observado no T-Cross, que
alcançou 4057.68±7.63 ms. Já no cenário com o dispositivo B, os tempos totais foram, em
geral, mais elevados, destacando-se o Polo Branco com 4625.27± 13.55 ms como o caso
de maior latência média. Notavelmente, o veículo Fit apresentou comportamento atípico,
com tempo total inferior ao ser utilizado com o dispositivo B (3691.00 ± 4.34 ms) em
comparação ao cenário com o dispositivo A (3935.82 ± 6.01 ms). Essa inversão pontual
reforça a hipótese de que fatores específicos do hardware veicular ou particularidades
da ECU podem interferir na eficiência da comunicação com determinados dispositivos
OBD-II.

Tal variação evidencia a importância de estratégias de parametrização dinâmica
para os ciclos de aquisição, com vistas à otimização do desempenho do sistema de mo-



nitoramento embarcado. Esses resultados reforçam a hipótese de que o desempenho da
comunicação OBD-II não depende apenas do dispositivo em si, mas também de aspectos
específicos do veículo, como a implementação da ECU, o protocolo OBD-II utilizado e
eventuais limitações físicas ou elétricas do barramento CAN. Dessa forma, evidencia-se
a importância de adotar parâmetros de aquisição adaptativos, calibrados conforme o par
veículo-dispositivo, a fim de assegurar maior eficiência e estabilidade na coleta de da-
dos. Essa adaptabilidade pode ser especialmente relevante para aplicações embarcadas
que operam com restrições de tempo real ou que exigem previsibilidade nos intervalos de
aquisição.

Esses achados reforçam a importância de adotar uma abordagem adaptativa para
a coleta e o processamento de dados veiculares. Em relação à Q1, verificou-se que o
intervalo ideal para a requisição dos sensores varia significativamente conforme o par
veículo-dispositivo, o que evidencia a necessidade de estratégias de aquisição dinâmicas
e calibradas. Quanto à Q2, os dados revelaram diferenças estatísticas relevantes entre os
tempos de resposta das ECUs para distintos veículos e dispositivos, com destaque para
a maior variabilidade observada no dispositivo OBD-II B. A análise da Q3 mostrou que
os tempos de execução dos algoritmos embarcados de ML são influenciados pela natu-
reza dos modelos e pelas características dos dados, sendo os algoritmos mais complexos
— como o de comportamento do motorista — os mais sensíveis a essas variações. Por
fim, no tocante à Q4, observou-se que as distribuições dos tempos de resposta são mais
concentradas e estáveis no dispositivo OBD-II A, ao passo que o dispositivo B apresenta
maior dispersão, o que pode indicar instabilidades na comunicação com a ECU. Esses
resultados indicam que o desempenho da comunicação OBD-II não depende apenas do
dispositivo utilizado, mas também de aspectos específicos do veículo, como a implemen-
tação da ECU, o protocolo de comunicação e as limitações do barramento CAN. Assim,
conclui-se que soluções embarcadas eficazes exigem mecanismos de coleta e inferência
que se ajustem dinamicamente ao contexto operacional, especialmente em aplicações com
restrições de latência, previsibilidade e eficiência energética.

6. Conclusão

Este estudo avaliou o desempenho de um sistema embarcado para coleta e processamento
de dados veiculares, utilizando o aplicativo App2Car em conjunto com dispositivos OBD-
II. A investigação concentrou-se nos tempos de resposta das ECUs e na eficiência com-
putacional de modelos de aprendizado de máquina executados localmente, considerando
diferentes veículos e duas versões de dispositivos (A e B).

Os resultados mostraram que os tempos de resposta variam significativamente
conforme o par veículo-dispositivo, sendo o dispositivo OBD-II A mais estável e o B
mais suscetível a variações e outliers. A análise estatística confirmou essas diferenças e
evidenciou a necessidade de calibrar os parâmetros de aquisição com base no contexto.
Em relação aos algoritmos embarcados, modelos mais complexos apresentaram maior
tempo de execução, reforçando a importância de considerar a carga computacional nas
aplicações com restrições de tempo real. As perguntas de pesquisa foram respondidas
com base nos dados obtidos: (Q1) o intervalo ideal de requisição depende do veículo e
do dispositivo; (Q2) há diferenças significativas entre os tempos de resposta das ECUs;
(Q3) os algoritmos de ML respondem de forma distinta a diferentes contextos veiculares;



e (Q4) há variações relevantes nas distribuições dos tempos de resposta entre os disposi-
tivos, impactando a previsibilidade da coleta.

Como direções futuras, destaca-se a ampliação da base de veículos testados,
abrangendo diferentes modelos e configurações, com o objetivo de verificar a robustez
do sistema frente à variabilidade de assincronias e protocolos de comunicação. Propõe-se
também a inclusão de uma análise detalhada do tempo de envio de dados (Tenvio), por
meio da quantificação das latências de transmissão entre dispositivo móvel e servidor.
Essas ações viabilizarão uma validação das hipóteses propostas.
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