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Abstract. The advancement of automotive technologies and the widespread
adoption of OBD-II (On-Board Diagnostics) devices have enabled real-time
vehicle data collection, supporting diagnostics and performance analysis ap-
plications. Although the OBD-II protocol is standardized, its implementation
across different hardware and vehicles can significantly impact communication
latency with the Electronic Control Unit (ECU). This study investigates how
such variability affects the efficiency of data acquisition and the performance of
embedded machine learning algorithms in a mobile application. Through a case
study involving multiple vehicle models and data collection devices, ECU res-
ponse times and algorithm execution times were analyzed under different ope-
rating conditions. The results show that system performance is sensitive to vehi-
cle and interface hardware characteristics, highlighting the need to adjust ac-
quisition parameters to ensure reliable and accurate real-time data processing.
The findings contribute to improving embedded solutions for smart mobility and
vehicle monitoring.

Resumo. O avango das tecnologias automotivas e a popularizagcdo dos dis-
positivos OBD-II (On-Board Diagnostics) tém viabilizado a coleta de dados
veiculares em tempo real, favorecendo aplicacdes em diagnostico e andlise de
desempenho. Apesar da padronizacdo do protocolo OBD-II, a forma como ele é
implementado em diferentes hardwares e veiculos pode impactar significativa-
mente a laténcia na comunica¢cdo com a Unidade de Controle Eletronico (ECU).
Este trabalho investiga a influéncia dessas variabilidades sobre a eficiéncia da
coleta de dados e o desempenho de algoritmos de aprendizado de mdquina em-
barcado em um aplicativo movel. Por meio de um estudo de caso com miiltiplos
modelos de veiculos e dispositivos de coleta, foram analisados os tempos de
resposta das ECUs e os tempos de execugdo dos algoritmos embarcados, con-
siderando diferentes contextos de operagdo. Os resultados demonstram que o
desempenho do sistema é sensivel as caracteristicas do veiculo e do hardware de
interface, evidenciando a necessidade de ajustes nos parametros de aquisicdo
para garantir a confiabilidade e a precisdo dos dados processados em tempo
real. As andlises contribuem para o aprimoramento de solu¢des embarcadas
voltadas a mobilidade inteligente e ao monitoramento veicular.



1. Introducao

O setor automotivo tem passado por uma transformacdo significativa com a in-
corporagdo de tecnologias digitais, conectividade e processamento local de dados
[Pérez-Moure et al. 2023]. Essa transformacdo viabiliza a coleta, andlise e utilizacdo
de dados em tempo real para suportar decisdes automatizadas e oferecer diagndsticos
mais precisos. Nesse contexto, o padrao On-Board Diagnostics (OBD-II) tem desem-
penhado papel central ao permitir o acesso padronizado a parametros operacionais dos
veiculos em tempo real [Jung et al. 2024]. Inicialmente voltado a deteccdo de falhas
e emissdes, o OBD-II tornou-se um mecanismo multifuncional, viabilizando aplica-
¢oes em manutencao preventiva, andlise de desempenho e comportamento do condutor
[Kumar and Jain 2023a, Malik and Nandal 2023].

Diversos dispositivos comerciais implementam o padrdao OBD-II e permitem sua
integracdo com sistemas moveis, possibilitando a constru¢do de solugdes de monitora-
mento veicular [Thajudheen et al. 2023, More et al. 2024]. Contudo, mesmo com a pa-
dronizacdo do protocolo, observa-se variabilidade nos tempos de resposta dos sensores,
atribuida a fatores como o modelo do veiculo, o hardware utilizado e as condi¢cdes opera-
cionais [Costa et al. 2024, Khan et al. 2023]. Tal laténcia pode comprometer a temporali-
dade e a precisdo das informagdes, afetando diretamente a eficdcia das solu¢des baseadas
em dados [Kumar and Jain 2023b].

Paralelamente, tem crescido o uso de algoritmos de Aprendizado de Maquina
(AM) em aplicagdes automotivas, com foco em predicdo de falhas, anélise de condugdo e
recomendacao de a¢des [Rana and Khatri 2024, Mandala 2024]. A execuc¢ao embarcada
desses algoritmos, utilizando arquiteturas como TinyML, busca reduzir a dependéncia
de conectividade e oferecer respostas em tempo real [Purnomo et al. 2023]. Entretanto,
a laténcia na aquisicao dos dados pode impactar o desempenho dos modelos, sobretudo
em cendrios sensiveis ao tempo. Ainda sio limitados os estudos que analisam, de forma
integrada, a variabilidade nos tempos de resposta de dispositivos OBD-II e o impacto
dessa laténcia sobre a execucdo de algoritmos de aprendizado de méaquina embarcado
[Purnomo et al. 2023, Waisara et al. 2023]. Compreender como as caracteristicas dos
veiculos e dos dispositivos influenciam esses tempos € essencial para garantir precisao
e eficiéncia em aplicacdoes em tempo real. Neste contexto, destaca-se a importancia de
investigar o intervalo 6timo de requisi¢ao de dados — ou seja, a periodicidade ideal para
coleta sensorial em diferentes combinagdes de hardware e veiculos [Tak and Choi 2022].

Este trabalho propde uma abordagem integrada de aquisi¢do e andlise de dados
veiculares, combinando processamento local em dispositivos mdveis com transmissao se-
letiva para a nuvem. A estratégia visa reduzir a laténcia na coleta e otimizar a execugao de
modelos embarcados, considerando o tempo de resposta das ECUs e o custo computacio-
nal dos algoritmos. A partir de um estudo de caso com diferentes veiculos e dispositivos
OBD-II, analisam-se os fatores que influenciam o desempenho temporal do sistema de
monitoramento veicular.

O restante do artigo € organizado da seguinte forma. A Secdo 2 apresenta os
trabalhos relacionados. A Se¢do 3 descreve a abordagem proposta. A Secdo 4 apresenta
o estudo de caso. Na Sec¢do 5, sdo discutidos os resultados obtidos e, por fim, a Secdo 6
apresenta as conclusoes e perspectivas para trabalhos futuros.



2. Trabalhos Relacionados

O uso de dispositivos compativeis com o padrao OBD-II para coleta de dados veiculares
tem sido amplamente explorado, principalmente em aplicacdes de diagndstico e moni-
toramento de desempenho. De acordo com [Roque et al. 2024], o OBD-II oferece uma
interface padronizada para acessar dados da ECU, sendo amplamente adotado em ferra-
mentas de diagndstico automotivo. No entanto, a variabilidade nos tempos de resposta
entre diferentes dispositivos pode comprometer a qualidade e a eficiéncia da coleta de
dados [Ragab et al. 2024].

Paralelamente, algoritmos de Inteligéncia Artificial tém sido aplicados a andlise
desses dados com o objetivo de prever falhas, identificar padrdes de conducdo e otimizar
o desempenho veicular [Costa et al. 2024]. Estudos como o de [Manoharan et al. 2024]
demonstram que técnicas de aprendizado de maquina, ao integrar dados em tempo real de
multiplos sensores, podem aumentar significativamente a precisdo dos diagndsticos. No
entanto, grande parte da literatura negligencia o impacto da laténcia na coleta de dados
sobre o desempenho desses algoritmos embarcados [Slimani et al. 2025].

Apesar do crescente uso de aprendizado de maquina em sistemas automotivos, sao
escassas as investigagcdes que comparam diferentes dispositivos OBD-II sob a perspectiva
da laténcia de aquisicdo e sua influéncia na execu¢do de modelos embarcados. A lite-
ratura carece de andlises que considerem o papel conjunto do hardware e do modelo de
veiculo no desempenho temporal do sistema. Este trabalho busca contribuir nesse sentido,
avaliando as diferencas nos tempos de resposta e nos tempos de execucdo de algoritmos
embarcados em diferentes configuracdes veiculares e de dispositivos.

3. Abordagem Proposta

Nesta secdo, descreve-se a arquitetura modular proposta para aquisicdo, processamento
e transmissao de dados veiculares. A abordagem € composta por quatro méddulos princi-
pais: (1) Requisi¢ao de Dados, (2) Envio de dados, (3) Predi¢cao e (4) Transmissdo para a
Nuvem. Cada médulo € responsdvel por uma etapa especifica do fluxo de monitoramento
veicular em tempo real, conforme ilustrado na Figura 1. A arquitetura foi projetada para
ser flexivel e escalavel, permitindo adaptagdes conforme as necessidades de aplicagdo,
desempenho ou seguranca.
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Figura 1. Visao Geral da abordagem proposta.



3.1. Requisicao de Dados

A coleta dos dados veiculares € realizada por meio do aplicativo App2Car, desenvolvido
em Flutter, com suporte a comunicagcdo com dispositivos ELM327 (microcontrolador ou
scanner automotivo) conectados a porta OBD-II dos veiculos. Esses dispositivos acessam
arede Controller Area Network (CAN) do veiculo e traduzem comandos AT e hexadeci-
mais enviados pelo aplicativo para consultas a ECU.

Inicialmente, o App2Car envia uma sequéncia de comandos AT para configurar
o ELM327, seguida dos comandos hexadecimais correspondentes aos Parameter IDs
(PIDs) — sensores do veiculo — requisitados. O dispositivo interpreta as instru¢des, con-
sulta os sensores, e retorna os dados ao aplicativo, que decodifica e converte as respostas
em valores compreensiveis. No total, 27 PIDs foram configurados para coleta, incluindo
parametros como velocidade, rotagcdo do motor, temperatura, entre outros. Um exemplo
da lista de comandos para requisitar a varidvel de rotacdes do motor do veiculo (RPM) é
listada abaixo:

// Sequéncia de configuracdo e requisicdo de RPM

ATZ // Reset do ELM327

ATEOQ // Desativa eco

ATL1 // Habilita multiplas linhas

ATSPO // Selecdo automatica de protocolo
010C // Requisicdo de RPM

// Resposta esperada: 41 0C 1A F8
// Conversdo: (1AF8)_ {16} = 6904 => RPM = 6904 / 4 = 1726

O tempo total de coleta dos dados pode ser modelado como:
N
Teip = Z tpip, (1)
i=1

onde Tpp representa o tempo total de coleta dos PIDs, NV € o nimero de PIDs
requisitados e tpp, € 0 tempo necessdrio para coletar cada PID.

3.2. Envio de Dados

Os dados coletados pelo App2Car sdo organizados e armazenados localmente em arquivos
CSYV, gerando dois tipos de registros: (1) Log Normal e (2) Log de Debug. O log normal
contém as informacodes principais requisitadas ao veiculo, representando os mesmos da-
dos que serdo posteriormente enviados ao servidor. Ja o log de debug registra informacoes
detalhadas sobre o processo de aquisi¢ao, incluindo o sensor requisitado, o tempo de res-
posta de cada PID e os intervalos entre as requisi¢des. Essa estrutura de registros permite
o rastreamento do desempenho do sistema e a andlise posterior da efici€éncia de comuni-
cacdo e processamento, servindo como base para diagnésticos e validacdes técnicas.

3.3. Predicao

O modulo de predi¢ao do App2Car executa quatro algoritmos embarcados de aprendizado
de méquina, com o objetivo de identificar padrdes no comportamento do condutor e nas
condi¢Oes de operagdo do veiculo. Os modelos sdo executados sequencialmente apds a
aquisi¢ao dos dados via OBD-II.



Deteccao de Outliers (TEDA) — Utiliza o framework TEDA para identificar ano-
malias com base em medidas de tipicidade e excentricidade [Andrade et al. 2024]. A
entrada € a “drea do radar”, um sensor virtual calculado a partir da combinacdo dos sinais
de velocidade, rotacao do motor (RPM), carga do motor e posi¢ao do acelerador.

Classificacao do Comportamento do Condutor (MMCloud) — Modelo incre-
mental de agrupamento online que classifica a condugdo em perfis como “Agressivo”,
“Normal” ou “Cauteloso” [Silva et al. 2023, Medeiros et al. 2024]. Utiliza como entra-
das a area do radar e a carga do motor.

Classificacao do Tipo de Combustivel (Random Forest) — Identifica se o veiculo
utiliza como combustivel gasolina ou etanol, com foco em aplicagdes voltadas a emissdes
veiculares [Amaral et al. 2024]. As varidveis de entrada incluem a porcentagem de etanol,
avango da igni¢do, velocidade, RPM, posicao do acelerador e carga do motor.

Classificaciao do Tipo de Via (Random Forest) — Determina se o trajeto ocorre
em drea urbana ou rodovidria, util para andlises de consumo e emissdes. As entradas
incluem a magnitude do acelerdmetro nos eixos X, Y e Z, além de RPM, velocidade,
carga e posi¢ao do acelerador.

O tempo total de execugdo dos algoritmos € calculado como:
M
Talg - Z talgj (2)
j=1

onde:

* Ty, representa o tempo total de execug@o dos algoritmos embarcados;
* M € o nimero total de algoritmos executados;
* tag, € 0 tempo de execugdo do algoritmo j.

O tempo total desde a coleta até a predi¢ao € dado por:

ﬂotalreq = Tpp + Talg (3)

onde:

* Tiouireq TEPresenta o tempo total entre a requisi¢do dos dados dos sensores € a
conclusdo da execugdo dos algoritmos de predicao;

* Tpp € 0 tempo total para coleta dos dados via OBD-II;

* Ty € 0 tempo total de execucdo dos algoritmos embarcados (conforme definido
anteriormente).

3.4. Envio de Dados para a Nuvem

O App2Car inclui um médulo dedicado a transmissdo periddica dos dados para a nu-
vem, com o objetivo de garantir persisténcia, integridade e disponibilidade para anélises
posteriores. Essa comunicacao € realizada via protocolo HTTPS, assegurando a confiden-
cialidade e a integridade das informagdes transmitidas.

O processo de envio € gerido por trés mecanismos complementares:



Orquestracao do Envio — Controla a geracdo e o disparo das requisicdes HTTP
em intervalos regulares.

Monitoramento da Conectividade — Garante que os dados s6 sejam transmitidos
quando houver conexao estdvel com a internet.

Gerenciamento Seguro da Comunicacio — Administra os cabecalhos, autenti-
cacdo e tratamento das respostas do servidor, com retentativas automdticas em caso de
falhas.

A laténcia de envio entre dois instantes consecutivos tj e tx1 € dada por:

Tenvio,k - tk—i—l — 1y (4)

onde:

* Tenvio,k € 0 tempo de envio dos dados no ciclo k;
¢ ¢, € o instante de inicio da transmissdo no ciclo k;
* t;11 € o instante de término da transmissao no ciclo k.

O tempo total do processo até o instante 7, € dado por:

Thinak = Temk + Tag ke + Tenviok )

onde:

* Thna 1 Tepresenta o tempo total do ciclo £, incluindo aquisi¢do, execugdo e envio;
* Tpip, € 0 tempo de coleta dos dados via OBD-II no ciclo k;

* The, € 0 tempo de execucdo dos algoritmos embarcados no ciclo £;

* Tenvio ; € 0 tempo de transmissdo dos dados no ciclo k.

Neste artigo, o foco estd na andlise do tempo total necessdrio para a obtencao
dos dados via OBD-II e para execu¢do embarcada dos algoritmos de predicao, conforme
definido na Equacgdo 3. Esse tempo representa a laténcia do sistema até a geracao de uma
resposta local, sem considerar o envio para a nuvem.

4. Estudo de Caso

Esta secdo apresenta um estudo de caso com o objetivo de avaliar a eficiéncia e a confia-
bilidade da arquitetura proposta para coleta e predi¢cdo embarcada de dados veiculares. A
investigacao foi guiada pelas seguintes questdes de pesquisa:

Q1: Qual é o intervalo 6timo para a requisicdo dos dados dos sensores em veiculos
distintos?

Q2: Existe uma diferenca significativa no tempo de resposta das ECUs entre os dife-
rentes veiculos e dispositivos OBD-II (A e B)?

Q3: Os algoritmos embarcados apresentam variacdo significativa no tempo de execu-
cdo entre diferentes veiculos e dispositivos?

Q4: Como se comportam as distribui¢des dos tempos de resposta dos sensores para os
mesmos veiculos, utilizando diferentes dispositivos OBD-II?



4.1. Instrumentacio

Foram utilizados dois dispositivos OBD-II da linha ELM327: a versdo 1.5 (denominada
A) e a versao 2.1 (denominada B). A comunicag@o com os dispositivos foi realizada via
Bluetooth, utilizando um smartphone Samsung Galaxy S20 FE com o aplicativo App2Car
instalado. A selecdo dos veiculos foi feita com base na disponibilidade e representativi-
dade de modelos comuns no mercado nacional, abrangendo diferentes marcas, anos e
configuracdes. A Tabela 1 apresenta os veiculos utilizados, seus protocolos de comunica-
cdo e a quantidade de unidades testadas por modelo.

Tabela 1. Caracteristicas dos veiculos utilizados na coleta de dados.

Veiculo Marca Ano Protocolo CAN Unidades de ECU

Polo  Volkswagen 2019  ISO 15765-4 2
T-Cross Volkswagen 2023  ISO 15765-4 1
HB20 Hyundai 2023  ISO 15765-4 1
Fit Honda 2012 ISO 15765-4 1

4.2. Preparacao

A primeira etapa consistiu em validar a compatibilidade dos dispositivos OBD-II A ¢ B
com os veiculos da amostra. Foram realizados testes preliminares para assegurar a co-
municacdo com a ECU e a resposta correta aos comandos de leitura dos PIDs. Apés
essa validagdo, foi definido um trajeto de aproximadamente 6 km, com trechos urbanos
e rodovidrios na cidade de Natal/RN. Todos os veiculos percorreram a mesma rota sob
condicdes operacionais semelhantes (horario, temperatura e trafego), assegurando a com-
parabilidade dos dados.

4.3. Operacao

Durante a coleta, foram registrados 27 PIDs, dados de localizacdo (GPS), aceleracdo nos
trés eixos e informagdes sobre o dispositivo OBD-II conectado. Cada veiculo realizou
o percurso com ambos 0s dispositivos, permitindo comparacio direta entre os tempos
de resposta. Os algoritmos embarcados foram executados em tempo real, e seus tem-
pos de execucdo foram registrados para cada contexto de uso. A andlise estatistica in-
cluiu os testes de Kolmogorov-Smirnov (KS) e Shapiro-Wilk para verificacdo da norma-
lidade, além do teste U de Mann-Whitney para comparacio entre grupos independentes
[Wohlin et al. 2024].

Todos os dados e scripts utilizados no experimento estdo disponiveis no reposito-
rio GitHub: https://github.com/conect2ai/SBRC2025-App2Car, permi-
tindo total reprodutibilidade dos resultados.

5. Resultados e Discussao

Esta secdo apresenta os resultados obtidos a partir do estudo de caso descrito na Se¢ao 4,
com foco na andlise da laténcia de comunicacdo com a ECU e do desempenho dos al-
goritmos embarcados. Os dados coletados foram analisados com o intuito de responder
as quatro questdes de pesquisa propostas, abordando aspectos como o intervalo 6timo de



requisicao dos sensores, a variagdo nos tempos de resposta dos dispositivos OBD-II, a
eficiéncia computacional dos modelos de aprendizado de médquina e a estabilidade das
distribui¢des de tempo.

Inicialmente, analisaram-se os tempos de resposta dos sensores veiculares, medi-
dos separadamente para os dispositivos OBD-II A (versao 1.5) e B (versdo 2.1), conforme
apresentados na Tabela 2. Os resultados indicam que o dispositivo A apresentou maior
consisténcia nas medi¢des, com variacdes menores entre os veiculos testados. A mediana
variou entre 137 ms (HB20) e 150 ms (T-Cross). Em contraste, o dispositivo B apresen-
tou maior dispersdao, com medianas variando de 136 ms (Fit) até 179 ms (Polo Branco),
sugerindo instabilidade temporal em certos contextos de operagao.

Tabela 2. Medianas para os Dispositivos OBD’s A e B.

Veiculo Mediana - OBD-II A (ms) Mediana - OBD-II B (ms)
Polo Prata 149.00 178.00
Polo Branco 149.00 179.00
Fit 149.00 136.00
T-Cross 150.00 169.00
HB20 137.00 179.00

A presenca de valores atipicos foi evidenciada por medidas de assimetria (Skew-
ness) e curtose (Kurtosis), cujos resultados indicaram distribui¢des fortemente distorci-
das em determinados cendrios. Destaca-se o caso do T-Cross com o dispositivo A, que
apresentou uma Skewness de 21,15 e uma Kurtosis de 815,43 — valores extremamente
elevados, sugerindo forte concentracdo dos dados em torno da mediana com ocorréncia
ocasional de tempos de resposta muito elevados (Tabela 3). Esse padrdo € caracteristico
de sistemas sujeitos a instabilidades momentaneas na comunicacdo com a ECU. Para mi-
tigar esse efeito, a mediana foi adotada como medida central, em substituicdo a média.
Adicionalmente, o teste de Kolmogorov-Smirnov indicou, com p-valores préximos de
zero em todos 0s casos, a rejeicao da hipétese de normalidade, corroborando a escolha de
métodos nao paramétricos nas comparagdes entre grupos.

Tabela 3. Métricas para o Dispositivo OBD-II A.

Grupo Skewness Kurtosis KS test p-value
Polo Prata 3.61 142.78 0

Polo Branco  -0.68 14.23 2.56 x 107286
Fit -0.53 19.19 0
T-Cross 21.15 815.43 0

HB20 0.08 -1.10 5.29 x 107234

De forma complementar a andlise das medidas de tendéncia central, realizou-se
a comparagdo estatistica entre os tempos de resposta dos dispositivos OBD-II A e B.
Para isso, foi adotado o teste U de Mann-Whitney, apropriado para amostras indepen-
dentes sem suposi¢do de normalidade, conforme evidenciado previamente pelos testes de
Kolmogorov-Smirnov. Os resultados, sumarizados na Tabela 4, indicam que as diferencgas



entre os dois dispositivos s@o estatisticamente significativas para todos os veiculos anali-
sados (p-value < 0,05), com destaque para os casos do Fit e do T-Cross, cujos p-valores
extremamente baixos reforcam a magnitude da divergéncia.

Tabela 4. Teste U de Mann-Whitney entre Dispositivos A e B.

Grupo Mann-Whitney U p-value
Polo Prata 0

Polo Branco 0

Fit 0

T-Cross 1.83 x 107123
HB20 1.83 x 107

Essa discrepancia sugere que a escolha do dispositivo OBD-II pode impactar na
confiabilidade da coleta em aplicacdes sensiveis a laténcia. A diferenga observada entre os
tempos de resposta pode decorrer de fatores como o firmware embarcado no dispositivo,
a versao do protocolo suportado ou a capacidade de paralelismo na leitura dos PIDs.

Para aprofundar a anélise, foi conduzida uma comparacgdo entre dois veiculos de
mesmo modelo (Volkswagen Polo), identificados como Polo Branco e Polo Prata. O ob-
jetivo foi investigar a influéncia de variacdes intra-modelo no comportamento temporal
dos sensores. Para o dispositivo OBD-II A, detectou-se uma diferenca estatisticamente
significativa entre os veiculos (p-value = 0,02), enquanto para o dispositivo B ndo houve
evidéncia de diferenca (p-value = 0,94). Esses resultados revelam que, mesmo dentro de
um mesmo modelo, pequenas variacdes de fabricacdo ou atualizacdes no sistema eletro-
nico podem influenciar a laténcia da ECU — efeito mais sensivel quando o dispositivo
possui maior fidelidade na coleta (caso do dispositivo A).

Essas andlises reforcam a importincia de uma caracterizagdo sistemdtica dos dis-
positivos e veiculos utilizados, sobretudo em aplicagdes que exigem monitoramento em
tempo real e aprendizado de maquina embarcado. A selecdo criteriosa do hardware de
interface ndo deve se restringir a compatibilidade, mas também considerar métricas em-
piricas de desempenho temporal e estabilidade da comunicagdo.

A andlise dos tempos de execucdo dos modelos de aprendizado de miquina em-
barcados permitiu observar diferencas relevantes entre os algoritmos utilizados e tam-
bém entre os veiculos testados. As Figuras 2(a—d) apresentam as distribui¢des empiricas
dos tempos de predi¢do para cada um dos quatro modelos implementados no aplicativo
App2Car. Entre eles, destaca-se o Modelo de Deteccdo de Tipo de Combustivel, cuja
mediana foi de 201 us, demonstrando elevada eficiéncia computacional. J4 o Modelo de
Comportamento do Motorista apresentou maior complexidade, refletida em uma mediana
de 299 us e em uma distribui¢do assimétrica, com caudas mais extensas, indicando maior
variabilidade nas execucdes. O Modelo de Identificagdo de Vias ocupou posi¢do interme-
didria, com uma mediana de 168 s, apresentando distribui¢do mais concentrada, o que
sugere maior estabilidade nos tempos de execu¢do. O Modelo de Deteccao de Outliers,
baseado no framework TEDA, apresentou os menores tempos de execugdo, com média
inferior a 2 us, destacando-se pela leveza computacional.

A Tabela 5 consolida os tempos médios de execu¢ao dos modelos com suas res-
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Figura 2. Distribuicoes dos tempos de execucao para os algoritmos de ML.

pectivas incertezas, permitindo uma comparagdo quantitativa. O tempo total médio para
a execugdo sequencial de todos os modelos embarcados foi de 671.37 £ 1.95 us. Esses
valores evidenciam que, mesmo em dispositivos méveis com recursos computacionais li-
mitados, é possivel realizar inferéncias em tempo quase real, desde que os modelos sejam
otimizados e projetados com foco em baixo custo computacional.

Tabela 5. Tempos médios de execucao e suas incertezas para cada modelo.

Modelo Tempo Médio (15)
Modelo de Combustivel 201.41 £1.04
Modelo de Detecgao de outlier 1.67 £ 0.01
Modelo de Comportamento do Motorista 299.45 £ 1.40
Modelos de Identificagdo de Vias 168.84 £ 0.87
Total 671.37£1.95

A Figura 3 apresenta a comparacao das distribui¢cdes dos tempos de resposta entre
os dispositivos OBD-II A e B em diferentes veiculos, permitindo uma anélise da consis-
téncia e estabilidade na comunicacdo com a ECU. De maneira geral, observa-se que o
dispositivo A apresenta distribuicdes mais concentradas, com menor amplitude e menor
dispersao, sugerindo maior previsibilidade nos tempos de resposta. Em contrapartida, o
dispositivo B apresenta densidades com caudas mais longas, maior variabilidade e assi-
metrias acentuadas, indicando maior instabilidade na comunicacao.

Destacam-se, em particular, os casos dos veiculos T-Cross e Polo Prata, nos quais
as diferencas entre os dispositivos sdo mais pronunciadas. Nestes modelos, o dispositivo
B apresenta ndo apenas tempos medianos mais altos, mas também maior alargamento da
curva de densidade, o que evidencia maior laténcia e inconsisténcia nas respostas. Por
outro lado, chama atencdo o fato de que os dois modelos de Polo — Branco e Prata —
exibem comportamentos praticamente idénticos quando se comparam os dispositivos A
e B, com distribui¢des muito semelhantes para cada tipo de dispositivo. Deste modo, re-
forca a hipdtese de que o desempenho da comunicacio entre 0 OBD-II e a ECU depende
ndo apenas do modelo do dispositivo, mas também de caracteristicas especificas de cada
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Figura 3. Comparativo de intervalos de requisicao para todos os veiculos.

veiculo. A semelhanca nas distribuicdes dos Polos sugere uma possivel homogeneidade
na arquitetura eletronica entre as versoes testadas, que pode mitigar os efeitos de vari-
acdo entre os dispositivos. Assim, os dados evidenciam que a laténcia na comunicagdo
OBD-II ndo € apenas uma func¢do do dispositivo utilizado, mas resulta de uma interacao
entre o hardware de coleta e o sistema embarcado de cada modelo veicular. A andlise
detalhada dessas distribuicdes contribui para a compreensao dessa variabilidade e reforca
a necessidade de testes multi-ambiente para validacio de solucdes baseadas em OBD-II.

A Tabela 6 apresenta os tempos totais de requisicdo de dados 7, medidos para
cada veiculo em dois cendrios distintos, representados pelos dispositivos OBD-II A e B.
Cada valor € acompanhado do respectivo desvio padrdo, permitindo a andlise da variabi-
lidade na laténcia de aquisi¢do.

Tabela 6. Tempo total de Requisicoes.

Veiculo A (ms) B (ms)

Polo Prata 3948.83 £ 7.21 4569.39 £ 14.42
Polo Branco 3920.10 = 6.72 4625.27 £+ 13.55

Fit 3935.82 £6.01  3691.00 £4.34
T-Cross 4057.68 £7.63  4355.85 4= 29.33
HB20 3247.02 £44.11  4616.78 £ 1.27

Observa-se que o dispositivo A apresentou, de modo geral, menor tempo total de
requisicao em quatro dos cinco veiculos testados. O menor tempo foi registrado no HB20
com 3247.02 + 44.11 ms, contrastando com o maior tempo observado no T-Cross, que
alcancou 4057.68£7.63 ms. Ja no cendrio com o dispositivo B, os tempos totais foram, em
geral, mais elevados, destacando-se o Polo Branco com 4625.27 + 13.55 ms como o caso
de maior laténcia média. Notavelmente, o veiculo Fit apresentou comportamento atipico,
com tempo total inferior ao ser utilizado com o dispositivo B (3691.00 £+ 4.34 ms) em
comparac¢ao ao cendrio com o dispositivo A (3935.82 + 6.01 ms). Essa inversdo pontual
reforca a hipétese de que fatores especificos do hardware veicular ou particularidades
da ECU podem interferir na eficiéncia da comunicacdo com determinados dispositivos
OBD-IL.

Tal variagdo evidencia a importincia de estratégias de parametrizagdo dindmica
para os ciclos de aquisi¢do, com vistas a otimizacdo do desempenho do sistema de mo-



nitoramento embarcado. Esses resultados reforcam a hipétese de que o desempenho da
comunicacdo OBD-II ndo depende apenas do dispositivo em si, mas também de aspectos
especificos do veiculo, como a implementacdo da ECU, o protocolo OBD-II utilizado e
eventuais limitagdes fisicas ou elétricas do barramento CAN. Dessa forma, evidencia-se
a importancia de adotar parametros de aquisi¢do adaptativos, calibrados conforme o par
veiculo-dispositivo, a fim de assegurar maior eficiéncia e estabilidade na coleta de da-
dos. Essa adaptabilidade pode ser especialmente relevante para aplicacdes embarcadas
que operam com restricdes de tempo real ou que exigem previsibilidade nos intervalos de
aquisicao.

Esses achados reforcam a importancia de adotar uma abordagem adaptativa para
a coleta e o processamento de dados veiculares. Em relacdo a QI, verificou-se que o
intervalo ideal para a requisicdo dos sensores varia significativamente conforme o par
veiculo-dispositivo, o que evidencia a necessidade de estratégias de aquisi¢cao dindmicas
e calibradas. Quanto a Q2, os dados revelaram diferencgas estatisticas relevantes entre os
tempos de resposta das ECUs para distintos veiculos e dispositivos, com destaque para
a maior variabilidade observada no dispositivo OBD-II B. A andlise da Q3 mostrou que
os tempos de execucdo dos algoritmos embarcados de ML sdo influenciados pela natu-
reza dos modelos e pelas caracteristicas dos dados, sendo os algoritmos mais complexos
— como o de comportamento do motorista — os mais sensiveis a essas variacdes. Por
fim, no tocante a Q4, observou-se que as distribui¢des dos tempos de resposta sdo mais
concentradas e estaveis no dispositivo OBD-II A, ao passo que o dispositivo B apresenta
maior dispersdo, o que pode indicar instabilidades na comunica¢do com a ECU. Esses
resultados indicam que o desempenho da comunicacio OBD-II ndo depende apenas do
dispositivo utilizado, mas também de aspectos especificos do veiculo, como a implemen-
tacdo da ECU, o protocolo de comunicacdo e as limitacdes do barramento CAN. Assim,
conclui-se que solugdes embarcadas eficazes exigem mecanismos de coleta e inferéncia
que se ajustem dinamicamente ao contexto operacional, especialmente em aplicagdes com
restri¢des de laténcia, previsibilidade e eficiéncia energética.

6. Conclusao

Este estudo avaliou o desempenho de um sistema embarcado para coleta e processamento
de dados veiculares, utilizando o aplicativo App2Car em conjunto com dispositivos OBD-
II. A investigagc@o concentrou-se nos tempos de resposta das ECUs e na eficiéncia com-
putacional de modelos de aprendizado de maquina executados localmente, considerando
diferentes veiculos e duas versdes de dispositivos (A e B).

Os resultados mostraram que os tempos de resposta variam significativamente
conforme o par veiculo-dispositivo, sendo o dispositivo OBD-II A mais estdvel e o B
mais suscetivel a variacdes e outliers. A andlise estatistica confirmou essas diferencas e
evidenciou a necessidade de calibrar os parametros de aquisi¢cdo com base no contexto.
Em relacdo aos algoritmos embarcados, modelos mais complexos apresentaram maior
tempo de execugdo, reforcando a importancia de considerar a carga computacional nas
aplicacdes com restricdes de tempo real. As perguntas de pesquisa foram respondidas
com base nos dados obtidos: (Q1) o intervalo ideal de requisi¢cdo depende do veiculo e
do dispositivo; (Q2) ha diferencas significativas entre os tempos de resposta das ECUs;
(Q3) os algoritmos de ML respondem de forma distinta a diferentes contextos veiculares;



e (Q4) ha variagdes relevantes nas distribui¢des dos tempos de resposta entre os disposi-
tivos, impactando a previsibilidade da coleta.

Como diregdes futuras, destaca-se a ampliacdo da base de veiculos testados,
abrangendo diferentes modelos e configuragdes, com o objetivo de verificar a robustez
do sistema frente a variabilidade de assincronias e protocolos de comunica¢do. Propde-se
também a inclusdo de uma andlise detalhada do tempo de envio de dados (7iyio), por
meio da quantificacdo das laténcias de transmissdo entre dispositivo mével e servidor.
Essas acdes viabilizardo uma validacao das hipdteses propostas.
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