Reusable TLA+ Communication Primitives for Modeling and
Verifying Distributed Systems

Diogo Canut Freitas Peixoto!, Odorico Machado Mendizabal'

!Departamento de Informatica e Estatistica
Universidade Federal de Santa Catarina (UFSC) Floriandpolis — SC — Brasil

diogocanutl@gmail.com, odorico.mendizabal@ufsc.br

Abstract. Challenges associated with developing distributed systems go beyond
understanding business requirements, specific protocols or technologies. Mod-
ular design, inherent concurrency, and the occurrence of faults are some of the
main difficulties when designing a correct and reliable distributed system. Tra-
ditional testing and debugging methods are often insufficient for distributed sys-
tems due to the complexity of reproducing rare but critical failure scenarios. Al-
ternatively, verification techniques, such as model checking, can address these
challenges by enabling the formal verification of system properties. By repre-
senting a system model and expressing temporal logic formulas, designers can
identify potential safety and liveness violations. This paper introduces a mod-
ular and reusable TLA+ library for modeling communication primitives over
perfect, fair-loss, and stubborn links, allowing system designers to describe and
verify their solutions using these primitives as the foundation of their commu-
nication subsystem. In addition, it enables fault injection, facilitating the anal-
ysis of system behavior under unreliable communication conditions, including
message drop, duplication, and out-of-order delivery. To illustrate its utility,
we implemented a simple protocol and demonstrated how the assumptions and
guarantees provided by the underlying communication affect correctness, even
in fault-prone scenarios.

1. Introduction

Distributed systems are fundamental to modern computing, powering cloud services,
large-scale data processing, and global communication networks. However, designing
correct and reliable distributed systems is notoriously difficult due to inherent challenges
such as network unreliability, consistency enforcement, distributed coordination, fault tol-
erance, and latency constraints. These challenges are exacerbated by the system’s intrinsic
non-determinism, the presence of race conditions, and the exponential growth of reach-
able states as the system scales. Subtle design flaws may remain undetected until they
cause severe failures in production, making rigorous verification techniques essential.

Traditional testing and debugging methods are often insufficient for distributed
systems due to the complexity of reproducing rare but critical failure scenarios. Saltzer
et al. [Saltzer et al. 1984] highlight the importance of reasoning about correctness at the
right abstraction level rather than relying solely on low-level mechanisms. Similarly,
Schneider [Schneider 1993] argues that abstraction and formal modeling are crucial for
understanding and verifying complex systems. These perspectives emphasize the ne-
cessity of formal verification techniques, such as model checking, which systematically
explore all possible execution paths to detect correctness violations.

Model checking enables rigorous validation of key system properties, such as
safety (ensuring that nothing bad happens) and liveness (ensuring that something good
eventually happens). Unlike traditional testing, which samples a subset of executions,
model checking provides exhaustive analysis within a formally defined specification
[Baier and Katoen 2008]. One such formal method is TLA+ (Temporal Logic of Ac-
tions) [Lamport 1994], a specification language designed for reasoning about concurrent
and distributed systems. By formally specifying system behavior, TLA+ allows design-
ers to identify safety and liveness violations early in the design process, reducing costly
late-stage errors.

In this work, we introduce a modular and reusable TLA+ library for modeling
communication primitives in distributed systems. This library provides system design-
ers with a structured approach to specifying and verifying distributed protocols while
abstracting away low-level communication details. Our library supports point-to-point
communication over perfect, fair-loss, and stubborn links.

It also enables fault injection, allowing researchers and practitioners to observe
system behavior under unreliable communication conditions, including message drop,
duplication, and out-of-order delivery. Finally, we demonstrate the usage of the proposed
library with a simple use case, where the echo protocol is modeled. Changing underlying
communication guarantees makes it easy to observe how and why protocol properties are
violated.

The rest of this paper is organized as follows: Section 2 discusses related work.
Section 3 introduces common system model assumptions and definitions in distributed
systems. Section 4 presents the communication models considered in this work. Section
5 details the implementation of our TLA+ library, and Section 6 illustrates its application
through a case study. Finally, Section 7 concludes the paper.

2. Related Work

Model checking is a well-established technique in protocol and system verification, with
numerous contributions advancing the state of the art in distributed systems verification.
Of particular relevance to this work, TLA+ has demonstrated versatility in verifying a
wide range of distributed protocols. For instance, it has been used to specify and verify
the Pastry protocol, which provides a distributed hash table over a peer-to-peer network
[Lu et al. 2011], as well as Tendermint, an open-source Byzantine Fault Tolerant consen-
sus engine for blockchain systems [Braithwaite et al. 2020]. Additionally, TLA+ has been
employed to verify Zookeeper’s atomic broadcast protocol [Yin et al. 2020], ensure secu-
rity properties of smart contracts [Kolb et al. 2020], and model the Lightning Network
protocol [Grundmann and Hartenstein 2023].

These examples illustrate the broad applicability of TLA+ in distributed system
verification. However, they are typically domain-specific and require a full specification
of each target application, including its semantics, communication, and fault behavior.
Our approach differs by providing a modular and reusable library for point-to-point com-
munication, where fault behaviors and different guarantees are predefined, eliminating the
need for system designers to model them explicitly.

Automatic fault injection in model checking has been explored in prior work. For
example, [Dotti et al. 2005] employs Object-Based Graph Grammars (OBGG) to model

fault-tolerant distributed systems, introducing crash and omission faults via automatic
specification translation. In contrast, our approach does not require specification trans-
formation; instead, we provide an API for message transmission, allowing designers to
select communication assumptions directly.

Similarly, [House and Tang 2018] presents a reusable TLA+ module for model-
ing asynchronous message-passing systems, assuming reliable channels and using graph-
based representations of communication structures. While also benefiting from modu-
larity, their approach does not generalize to unreliable communication links. Our work
was further inspired by [dmilstein 2019], which provides reusable TLA+ modules with
guarantees such as out-of-order delivery and message duplication. However, unlike our
approach, it does not account for message loss or provide a link abstraction for different
communication properties.

3. System models and assumptions in distributed systems

In point-to-point communication, a distributed system is represented as a graph, where
nodes correspond to system processes and edges represent communication links between
them. Each link connects two nodes through their network interfaces, enabling message
exchange.

Distributed systems are classified based on timing assumptions into synchronous,
asynchronous, and hybrid models. In a synchronous system, upper bounds exist on
message transmission delays, process execution times, and clock drift, allowing for
precise coordination. In contrast, an asynchronous system imposes no timing con-
straints—messages may experience arbitrary delays, processes execute at unpredictable
speeds, and there is no global clock, making failure detection more challenging. Time-
synchronous and partially synchronous models lie between these extremes, assuming par-
tially known timing bounds, such as loosely synchronized clocks, probabilistic message
delays, or alternating synchronous and asynchronous behavior. These hybrid models en-
hance coordination while accommodating some level of unpredictability. A comprehen-
sive survey on system models and assumptions is presented in [Gértner 1999].

Failures in distributed systems stem from hardware faults (e.g., network or node
failures) and software faults (e.g., design or implementation errors). To abstract system-
specific behaviors, failures are commonly categorized into the following classes:

* Fail-Stop The affected component halts execution, and its failure can be detected
by other processes;

* Crash The component stops or loses its internal state, but unlike fail-stop failures,
its failure is not detectable by others;

* Send Omission A process fails to send a subset of messages. This model may
exhibit crash-like behavior (e.g., if all sent messages are dropped);

* Receive Omission A process fails by receiving only a subset of expected mes-
sages. This model also may exhibit crash-like behavior (e.g., if all received mes-
sages are dropped);

* General Omission In the general omission model, both send omission and receive
omission are present;

* Byzantine or Arbitrary Nodes exhibit unrestricted behavior, potentially sending
conflicting or malicious messages.

Our approach does not model fail-stop, or Byzantine failures. Fail-stop is ex-
cluded as it is overly restrictive, with crash failures being more commonly assumed in
distributed systems literature. Byzantine failures depend on application semantics and are
thus beyond the scope of our reusable library.

4. Communication primitives

In distributed systems, processes interact through message passing to share data, coordi-
nate actions, and maintain consistency among replicas. This interaction relies on com-
munication primitives, which serve as low-level abstractions providing fundamental mes-
saging capabilities. Practical implementations of these primitives vary in their reliability
guarantees, including message ordering, fault tolerance, and delivery integrity.

For every pair of communicating processes, there exists a communication channel
that facilitates message exchange. These channels are abstracted to model the proper-
ties and behavior of the underlying communication infrastructure. In real-world systems,
messages can be lost due to network failures, delays, or transient issues. However, the
probability of a message successfully reaching its destination is nonzero, as long as the
network is not experiencing severe or permanent failures.

Point-to-point communication is commonly referred to as a link, with its proper-
ties defined using two event abstractions: Send and Receive. The Send event represents a
source process initiating message transmission over a link to a destination process. The
link is then responsible for delivering the message according to its specified guarantees.
In this paper, we use Receive to denote the action of passing a received message to the
destination process, whereas other works may refer to this as the Deliver event.

4.1. Perfect Link

The Perfect link abstraction, also referred to as a Reliable link, builds upon the basic
properties of no duplication and no creation by adding the property of reliable delivery.
This means that every message sent by a correct sender to a correct receiver is guaranteed
to be delivered exactly once, provided both processes are correct. This abstraction ensures
that no messages are lost or invented, and each message is delivered in the same form it
was sent. In [Cachin et al. 2011], the authors define perfect link properties as follows:

Property 1 (Reliable delivery) If a correct process p sends a message m to a correct
process q, then q eventually delivers m.

Property 2 (No duplication) No message is delivered by a process more than once.

Property 3 (No creation) Ifa process q delivers a message m with sender p, then m was
previously sent to q by process p.

4.2. Fair-loss link

The fair-loss link assumes that messages might be lost due to network issues. However,
the probability of a message being delivered is nonzero if it is sent infinitely often. This
means that if the sender continues to retransmit a message, there is a guarantee that the
message will eventually be delivered. Additionally, it is assumed that no message is
created or corrupted by the network, and the network does not transmit more messages
than those originally sent by the sending process. In [Cachin et al. 2011], the authors
define the properties as follows:

Property 1 (Fair-loss) If a correct process p infinitely often sends a message m to a
correct process q, then q delivers m an infinite number of times.

Property 2 (Finite duplication) If a correct process p sends a message m a finite num-
ber of times to a process q , then m cannot be delivered an infinite number of times by

q.

Property 3 (No creation) Ifa process q delivers a message m with sender s, then m was
previously sent by process s.

4.3. Stubborn link

The Stubborn link is an extension of the Fair-loss link that hides the retransmission mech-
anisms used by the sender. While Fair-loss links allow messages to be lost, Stubborn
links ensure that the sender continues to retransmit messages indefinitely, increasing the
likelihood of eventual delivery. This extension retains the no-creation property, ensuring
that no new messages are invented by the link. Additionally, Stubborn links differ by
allowing the same message to be delivered to the receiver multiple times, unlike Fair-loss
links which do not implement retransmissions [Cachin et al. 2011].

Property 1 (Stubborn delivery) If a correct process p sends a message m once to a
correct process q, then q delivers m an infinite number of times.

Property 2 (No creation) Ifa process q delivers a message m with sender s, then m was
previously sent by process s.

5. The TLA+ Communication Module

This section presents our TLA+ module implementation, which provides a reusable im-
plementation of common abstractions used for channels over various communication
links.

TLA+ (Temporal Logic of Actions) is a formal specification language designed for
modeling and verifying concurrent and distributed systems [Lamport 1994]. It combines
first-order logic, set theory, and temporal logic to describe system behaviors, enabling rig-
orous reasoning about correctness. The language supports state-based modeling, where
system states and transitions are explicitly defined, and modular specification, allowing
for reusable components. To verify system properties, TLA+ employs Linear Temporal
Logic (LTL), enabling the formal expression of safety and liveness properties. Key tem-
poral operators include L] (always), < (eventually), and — (leads to), which facilitate
reasoning about system evolution over time.

The TLC model checker is a verification tool that systematically explores all pos-
sible system executions to detect violations of specified properties. It supports exhaustive
and bounded model checking, simulation-based verification, and state-space reduction
techniques to handle large models. TLC can identify issues such as deadlocks, safety
violations, and invariant failures, providing counterexamples that illustrate erroneous ex-
ecutions.

In TLA+, point-to-point communication between processes is often modeled us-
ing channels. However, accurately modeling communication links can be challenging due

to the variety of reliability guarantees required, such as handling message loss, duplica-
tion, or eventual delivery. To address these challenges, this work introduces a communica-
tion module that abstracts the behavior of different types of communication links, offering
reusable building blocks for specifying and verifying distributed systems in TLA+.

5.1. Modularity and reuse

TLA+ allows one to create reusable pieces of code that can be composed to model com-
plex systems. Through its modular design capabilities, TLA+ supports the definition of
parameterized modules and operators, enabling encapsulation of common patterns and
abstractions. There is also the possibility to define constants during module extension,
which gives users the flexibility to adapt the module to their specification’s scale.

5.2. Faulty behavior

Faulty behavior in distributed systems arises due to the inherent challenges of asyn-
chronous communication lacking a global clock. As discussed in [Girtner 1999], fault-
tolerant systems are designed to handle various types of faults, categorized broadly as
crash faults, omission faults, and Byzantine faults. Handling each type introduces unique
challenges and requires distinct strategies to ensure reliability and correctness.

In our specifications, faulty behavior is inspired by the strategy outlined in
[Gértner 1999, Dotti et al. 2005]. Omission faults are modeled by allowing messages to
be dropped in unreliable communication links, as demonstrated in our Fair-Loss Link
module. Additionally, we conducted our case studies under two scenarios: with process
fairness and without fairness. In the absence of fairness, crash faults were simulated by
allowing a process to halt execution at any point during the execution. This halt behav-
ior is naturally captured by TLC through the inclusion of stuttering steps, which model
the possibility of a process ceasing to make progress without violating the temporal logic
semantics.

5.3. Application Programming Interface and Implementation

The initial focus of this work was on the implementation of three types of communication
links: the Perfect Link, the Fair-Loss Link, and the Stubborn Link, each with distinct guar-
antees and behaviors. The Perfect Link ensures reliable communication by guaranteeing
that messages are neither lost nor duplicated and are always received in the order they
are sent. In contrast, the Fair-Loss Link simulates unreliable communication, allowing
for message loss and providing no guarantees regarding message ordering or duplication.
Finally, the Stubborn Link guarantees eventual delivery of messages without loss but per-
mits message duplication and does not enforce any ordering.

Figure 1 depicts an high-level overview of the abstracted API interface and the
underlying communication modules. Users can describe their distributed algorithms or
protocols using our TLA+ communication module, where primitives Send and Receive are
available through operators for each link. Thus, these operators encapsulate the underly-
ing behavior of the links while presenting a uniform interface to the user. This abstraction
allows system designers to model communication patterns without being burdened by
the implementation details of each link. When modeling, the only differences lie in the
specific parameters the Send and Receive operators require for each link type. Therefore,

users can easily switch between different underlying communication links to evaluate how
their distributed protocol behaves under various reliability assumptions, without needing
to modify the core logic of their specification.

Distributed protocols User
models
e N
. Common
Send / Receive AP
. J
e N
Fair-loss Stubborn Perfect Assumptions
Link Link Link P
Ny J

Figure 1. Module Interface

5.4. Perfect Link Module

For modeling a channel in TLA+ we created a mapping that associates each process in
the set processes to an initially empty sequence. We used the set to represent the inbox of
the channel of each process. The definition is as follows:

PerfectLink(processes) = [p € processes — ()]

For those who are not familiar with TLA+, this is the definition of an operator
called PerfectLink, which takes a parameter processes (typically a set of process identi-
fiers). The right-hand side defines a function (or mapping) that associates each process p
in the set processes with an empty sequence. In TLA+, sequences are used to represent
ordered collections of elements, and the empty sequence () denotes that no messages
have yet been received.

To send messages, we defined a Send operator that models the act of delivering a
message to a specific receiver by appending it to the receiver’s inbox. In TLA+, complex
operators are often supported by auxiliary definitions, and in our case, Send relies on two
local helper functions: WrapMessage and AppendMessage.

The WrapMessage operator constructs a structured record that encapsulates the
sender, receiver, and the actual message. This wrapping provides contextual information
with each message, which can be useful when handling more advanced features such as
tracing, deduplication, or error handling. The AppendMessage operator takes the current
link state, retrieves the inbox of the receiver, and appends the wrapped message to it using
TLA+’s Append function. These two helper functions are declared as LOCA L, meaning
they are internal to the module and not visible when the module is extended or instantiated
elsewhere. This allows us to encapsulate implementation details while exposing only the
Send operator as the public interface.

LOCAL WrapMessage(sender, receiver, msq) 2

[sender — sender, receiver — receiver, message — msg|
LOCAL AppendMessage(link, sender, receiver, msgq) =
Append (link[receiver|, WrapMessage(sender, receiver, msg))
Send(link, sender, receiver, msq) 2
[link EXCEPT ![receiver] =
AppendMessage(link, sender, receiver, msg)]

To deliver a message, the HasMessage operator checks whether a message is
available in the inbox, while the Message operator retrieves the first message in the inbox.
The Receive operator then removes the message from the inbox, marking it as successfully
delivered. Additionally, since we have added extra information to the message structure,
we use the UnwrapMessage operator to extract the original message content.

UnwrapMessage(wrappedMessage) = wrappedMessage.message
HasMessage (link, process) = link|process] # ()
Message(link, process) = Head (link[process))
Receive(link, process) =
[link EXCEPT ![process] = Tail(link[process])]

5.5. Fair-loss Link Module

There are several differences between the implementations of the Perfect Link, Fair-Loss
Link, and Stubborn Link. Instead of using a sequence to define the inboxes, both the
Fair-Loss and Stubborn Link implementations use a set. This allows for the simulation
of out-of-order delivery; however, since a set does not allow duplicates, it is necessary to
ensure that messages are uniquely identifiable. To achieve this, each message is wrapped
with an incremental message ID.

In the Fair-Loss Link, it is necessary to track the total number of messages
dropped. For this purpose, a variable named totalDrops is added to the link and is updated
during each DropMessage operation. Additionally, to keep track of the next incremental
integer ID, a variable named nextMessageld is included. This variable is incremented
with each Send operation to ensure that every message has a unique identifier.

LOCAL InitLink(linksPerProcess) =
[links — linksPerProcess, nextMessageld — 0, totalDrops +— 0]
FuairLossLink(processes) = InitLink([p € processes — {}])

To mitigate state space explosion, we define a constant called MaxDrops, which
serves as the upper limit for the number of messages that can be dropped. During each
invocation of the Send operator, we check whether totalDrops has reached or exceeded
MaxDrops. If it has, further message drops are halted to ensure the limit is not exceeded.

LOCAL ShouldDrop(link) 2 link.totalDrops < MazDrops

We delegate the handling of message-dropping non-determinism to the end user,
allowing them to manage it outside the module. This approach enables the designer to
decide when a message should be dropped, based on their own fairness specifications.
The Send operation is defined as follows:

Send(link, sender, receiver, msg, nonDeterministicShouldDrop) 2
IF nonDeterministicShouldDrop A ShouldDrop(link)
THEN DropMessage(link)

ELSE ReliableSend(link, sender, receiver, msq)

Both the implementations of DropMessage and ReliableSend return the link map-
ping structure. The difference is that DropMessage does not add the new message to the
set and increments the fotalDrops value, whereas ReliableSend updates the receiver’s
inbox by adding the new message and increments the nextMessageld.

LOCAL DropMessage(link) = |

links — link.links,
nextMessageld — link.nextMessageld,
totalDrops — link.totalDrops + 1]

LOCAL ReliableSend(link, sender, receiver, msg)
links v [link.links EXCEPT ![receiver] =

AppendMessage(link, sender, receiver, msg)],

nextMessageld — link.nextMessageld + 1,
totalDrops +— link.totalDrops]

2|

Both the Stubborn Link and Fair-Loss Link share the same interface for delivering
messages. The first operator, HasMessages, is used to check whether the process inbox
set is empty or contains any messages. Next, the Messages operator can be used to retrieve
the set of messages currently in the process inbox. Finally, the Receive operator is used
to deliver a single message and remove it from the inbox. It is the user’s responsibility to
ensure that every message read from the inbox is eventually delivered.

Messages(link, process) = link.links[process
Receive(link, process, wrappedMessage) = [
links — [link.links EXCEPT ![process] =
{m € link.links[process| : m # wrappedMessage}|,
nextMessageld — link.nextMessageld,
totalDrops s link.totalDrops|

5.6. Stubborn Link Module

The main difference between the Stubborn Link and the Perfect Link is that the Stub-
born Link is an implementation of the retransmit-forever algorithm over a Fair-Loss Link,
which can lead to potential duplication of messages but ensures no message loss. In the
Stubborn Link specification, we define a constant called MaxCopies, which specifies the
maximum number of times a single message will be duplicated. We define a maximum
number of copies to avoid state space explosion.

Additionally, a new field is added to each message to represent the copy number.
The duplication behavior is defined in the Send operator by simulating the retransmis-
sion of the message up to the MaxCopies limit. The out-of-order behavior is preserved
by employing the same strategy as in the Fair-Loss Link, where a set is used to model
the link for each process. To support this functionality, we define an operator called
DuplicableAppendMessage.

LOCAL DuplicableAppendMessage(link, sender, receiver, msg) =

(link.links[receiver]| U
{ WrapMessage(sender, receiver, msg, link.nextMessageld, copy)
:copy € 1.. MazCopies})

We then define the operator DuplicableSend using DuplicableAppendMessage,
such that it transforms the underlying link structure by appending all copies of the mes-
sage and increments the nextMessageld.

LOCAL DuplicableSend(link, sender, receiver, msg) =S
[links — [link.links EXCEPT !|[receiver]
= DuplicableAppendMessage(link, sender, receiver, msg)],
nextMessageld — link.nextMessageld + 1]

Finally, we define the Send interface as

Send(link, sender, receiver, msq) 2
DuplicableSend(link, sender, receiver, msg)

6. Case studies: Verification of distributed protocols

To verify the implementation of the communication module, we utilized the PlusCal lan-
guage [Lamport 2009], which resembles a procedural programming language and can be
translated into TLA+ for formal verification using the TLC model checker. We modeled
a version of the Echo Protocol, which operates as follows:

Process A sends a message to Process B and waits synchronously for a reply from
B. Upon receiving the message, Process B forwards it back to Process A. The messages
consist of a predefined sequence of integers, with the number -1 used to signify the end
of the connection, acting as a FIN (Finish) signal. When Process B receives a FIN signal,
it forwards the signal back to Process A and terminates its execution. Similarly, when
Process A receives the FIN message in response, it also terminates.

Additionally, we defined three essential properties that the Echo Protocol imple-
mentation must satisfy. These properties ensure the protocol’s correctness under varying
conditions and guarantee its expected behavior. The properties are as follows:

Property 1 (Delivery Guarantee) If process A sends a message m, then process A even-
tually delivers m.

Property 2 (Termination) Eventually both process A and B will receive the FIN signal
and terminate.

Property 3 (Causal Consistency) If a process A delivers a message m, it means that
process A sent m.

We also utilized reusable design patterns to express Linear Temporal Logic (LTL)
properties, as outlined in [Salamah et al. 2005]. For our first property, we employed the
Universality Pattern, which ensures that a specified condition holds true across all sys-
tem states. The adoption of design patterns in LTL promotes consistency in specifying
behaviors, and facilitates their application across various contexts. Below, we present the
formal specifications of the desired echo properties using LTL.

Property 1 (Delivery Guarantee)

O(messageToSend = m — (receivedMessageA = m))
Property 2 (Termination)

O(receivedMessageB = —1 N receivedMessageA = —1)
Property 3 (Causal Consistency)

O(receivedMessageB = m — m € sentMessagesA)

In our PlusCal implementation of the echo protocol we define macros for sending
and delivering messages using the specified module interface. By using macros, repetitive
tasks such as appending messages to the inbox, checking for available messages, and
updating the link structure are simplified. This modular approach ensures that operations
align with the underlying communication semantics of the specified link interface, making
the implementation more structured and easier to understand. For the Perfect Link we can
abstract both send and receive with the macros:

macro send(from, to, msg)begin
link := Send(link, from, to, msg);
end macro ;

macro receive(proc, message)begin
await HasMessage(link, proc) ;
message := UnwrapMessage(Message(link, proc)) ;
link := Receive(link, proc);

end macro ;

6.1. Echo protocol with Perfect links

Initially, we modeled the echo protocol using the Perfect Link module. In this specifica-
tion, we were able to verify that all desired properties held true for a given finite number
of messages. This implementation served as a baseline to ensure the correctness of the
protocol in an ideal communication setting.

6.2. Echo protocol with Fair-loss links

Starting from the Perfect Link implementation, we made necessary modifications to
the macro definitions to adapt them to the Fair-Loss structure. Additionally, we intro-
duced non-determinism through the either function, which bifurcates each state into two
branches: one where the non-determinism holds true and the message is dropped, and
another where the message is not dropped. This approach ensures that every possible
message-drop scenario is verified. The macros used for sending and delivering messages
are as follows:

macro send(from, to, msg)begin

either
nonDeterminism := TRUE ;
or
nonDeterminism := FALSE ;
end either ;
link := Send(link, from, to, msg, nonDeterminism)
end macro ;

macro receive(proc, messages)begin
await HasMessage(link, proc) ;
with wrappedMessage € Messages(link, proc) do
link := Receive(link, proc, wrappedMessage) 3
messages := Append(messages, UnwrapMessage(wrappedMessage)) s
end with ;
end macro ;

When switching to the Fair-loss Link module, we observed changes in behavior.
The inherent unreliability of the Fair-Loss Link made it easy to reach inconsistent states

where properties were violated, particularly when MaxDrops was set to a value greater
than zero. Specifically, message loss often led to unhandled states, causing deadlocks or
incomplete protocol execution. These issues arose even before we could validate any of
the desired temporal properties. This experience highlighted the critical importance of
designing distributed systems to account for such scenarios, as unreliable communication
is a common occurrence in real-world systems.

6.3. Echo protocol with Stubborn links

During the verification of the echo protocol using the Stubborn Link abstraction, we ob-
served a considerable increase in the state space size. This growth in state space can be
attributed to the retransmissions used by the Stubborn Link, which ensures reliable mes-
sage delivery through retransmissions. We set the value of MaxCopies to two, as follows:

INSTANCE StubbornLink WITH MaxCopies < 2

Unlike the execution of the echo protocol with the Fair-Loss Link, which often
resulted in inconsistent states or incomplete executions due to message loss, the state
space verification of the protocol completed successfully under the Stubborn Link. The
retransmission mechanism effectively mitigated the unreliability of message delivery, en-
suring that all intended messages were eventually received. However, this came at the cost
of increased computational complexity, as the system had to manage multiple redundant
messages while maintaining out-of-order delivery semantics. This challenge was partic-
ularly evident in our implementation of the echo protocol, where every message sent was
forwarded, effectively doubling the duplication overhead.

Due to the duplication behavior, we encountered states where Property 1 was not
valid. For example, in a scenario where process B received a FIN message and subse-
quently forwarded a duplicated message to process A that was not a FIN, process B could
finish execution before the property was satisfied. Similarly, Property 2 did not hold, as
the duplication and out-of-order behavior led to a state where process A received a FIN
message while there were still messages in its inbox waiting to be delivered. Property 3
was the only property that held true, guaranteeing that all received messages were previ-
ously sent.

7. Conclusion

In this paper, we introduced a modular and reusable TLA+ library for modeling funda-
mental communication primitives in distributed systems. Our library includes point-to-
point communication over Perfect Links, Fair-Loss Links, and Stubborn Links, providing
a structured way to model different reliability assumptions. By encapsulating these com-
munication behaviors, our approach simplifies the specification, analysis, and verification
of distributed protocols, reducing the complexity for system designers.

As future work, we aim to extend the library to support multicast and broadcast
communication primitives with varying reliability and ordering guarantees. This includes
exploring causal, FIFO, and total order delivery semantics. By incorporating these exten-
sions, we seek to further generalize the framework, enabling more comprehensive verifi-
cation of distributed protocols under diverse communication conditions, including group
communication and replicated services.

References
Baier, C. and Katoen, J.-P. (2008). Principles of Model Checking. The MIT Press.

Braithwaite, S., Buchman, E., Konnov, I. V., Milosevic, Z., Stoilkovska, 1., Widder, J.,
and Zamfir, A. (2020). Formal specification and model checking of the tendermint
blockchain synchronization protocol (short paper). In FMBC @ CAV.

Cachin, C., Guerraoui, R., and Rodrigues, L. (2011). Introduction to Reliable and Secure
Distributed Programming (2. ed.). Springer.

dmilstein (2019). Channels: TLA+ modules for modeling message-passing with differ-
ent guarantees. Available at https://github.com/dmilstein/channels,
accessed: 2025-01-28.

Dotti, F. L., Mendizabal, O. M., and dos Santos, O. M. (2005). Verifying fault-tolerant
distributed systems using object-based graph grammars. In Dependable Computing,
pages 80—100. Springer Berlin Heidelberg.

Girtner, F. C. (1999). Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Comput. Surv., 31(1):1-26.

Grundmann, M. and Hartenstein, H. (2023). Towards a formal verification of the lightning
network with tla+. arXiv:2307.02342 [cs.LO].

House, A. and Tang, P. (2018). A tla+ module for asynchronous message-passing systems.
In SoutheastCon 2018, pages 1-7.

Kolb, J., Yang, J., Katz, R. H., and Culler, D. E. (2020). Quartz: A framework for
engineering secure smart contracts. Technical Report UCB/EECS-2020-178, EECS
Department, University of California, Berkeley.

Lamport, L. (1994). The temporal logic of actions. ACM Trans. Program. Lang. Syst.,
16(3):872-923.

Lamport, L. (2009). The pluscal algorithm language. In Leucker, M. and Morgan, C.,
editors, Theoretical Aspects of Computing - ICTAC 2009, pages 36—60, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

Lu, T., Merz, S., and Weidenbach, C. (2011). Towards verification of the pastry proto-
col using tla+. volume 6722 of Lecture Notes in Computer Science, pages 244-258.
Springer.

Salamah, S., Gates, A., Roach, S., and Mondragon, O. (2005). Verifying pattern-
generated 1tl formulas: A case study. In Model Checking Software, Proceedings of

the 12th International SPIN Workshop, volume 3639 of Lecture Notes in Computer
Science, pages 200-220. Springer.

Saltzer, J. H., Reed, D. P., and Clark, D. D. (1984). End-to-end arguments in system
design. ACM Transactions on Computer Systems (TOCS), 2(4):277-288.

Schneider, F. B. (1993). What good are models and what models are good? In Distributed
Systems, pages 17-26. ACM Press/Addison-Wesley Publishing Co., USA, 2nd edition.

Yin, J.-Q., Zhu, H.-B., and Fei, Y. (2020). Specification and verification of the zab proto-
col with tla+. Journal of Computer Science and Technology, 35:1312—-1323.

