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Abstract. Fault-tolerant distributed systems offer high reliability because even

if faults in their components occur, they do not exhibit erroneous behavior. De-

pending on the fault model adopted, hardware and software errors that do not

result in a process crashing are usually not tolerated. To tolerate these rather

common failures the usual solution is to adopt a stronger fault model, such as

the arbitrary or Byzantine fault model. Algorithms created for this fault model,

however, are considerably more complex and require more system resources

than the ones developed for less strict fault models. One approach to reach a

middle ground is the non-malicious arbitrary fault model. This model assumes

it is possible to detect and filter faults with a given probability, if these faults are

not created with malicious intent, allowing the isolation and mapping of these

faults to benign faults. In this paper we describe how we incremented an im-

plementation of active replication in the non-malicious fault model with a basic

type of distributed validation, where a deviation from the expected algorithm

behavior will make a process crash. We experimentally evaluate this implemen-

tation using a fault injection framework showing that it is feasible to extend the

concept of non-malicious failures beyond hardware failures.

1. Introduction

Fault-tolerant distributed systems offer high reliability because even if faults in their com-

ponents occur, they do not exhibit erroneous behavior. Depending on the fault model

adopted, common faults such as message loss and processes crashes have no effect on the

distributed algorithm being run. However, hardware and software errors that do not result

in a process crashing are usually not tolerated in the most used fault models. Considering

the hardware, examples of these faults are memory corruption caused by spontaneous bit-

flips, disk corruption caused by media defects, message corruption due to interference,

among others. Looking at the software, programmer error, operating system bugs and

operator error can violate the assumptions of the target fault model.

To tolerate these rather common failures the usual solution is to adopt a stronger

fault model that assumes any type of fault can occur. The arbitrary or Byzantine fault

model [Lamport et al. 1982] is very well understood and in fact offers tolerance to a wide

range of fault types. Algorithms created for this fault model, however, are considerably



more complex and require more system resources than the ones developed for less strict

fault models. For instance, many arbitrary fault model algorithms require that at most a

third of the components of the system present any type of fault [Castro and Liskov 2002].

This is a reasonable requirement considering the strength of fault tolerance provided.

Nonetheless, this implies that to achieve the same level of fault tolerance a system de-

signer would have to use a third more machines than necessary for basic crash tolerance.

Worse still, if one considers programming error as the more likely fault to be tolerated, no

more than one third of the system is allowed to use the same implementation. This hap-

pens because if a single implementation were used in the entire system, a programming

error in this implementation would generate faulty behavior in more than a third of the

machines.

The choice of fault model can be considered a trade off between stronger fault

tolerance and simpler implementation requiring fewer resources. In a sense, the gap be-

tween crash-tolerant fault models and arbitrary fault model is too large [Behrens et al.

2013]. One approach to reach a middle ground, focused on hardware faults, is the non-

malicious arbitrary fault model [Behrens et al. 2013]. This model assumes it is possible

to detect and filter faults with a given probability, if these faults are not created with

malicious intent, allowing the isolation and mapping of these faults to benign faults. In

practice this means that it is possible to use a generic adapter that allows crash-tolerant

algorithms to tolerate non-malicious arbitrary faults.

We believe it is possible to go further than detecting hardware faults, and detect

other faults that are non-malicious, such as programming and configuration faults. By

its non-malicious nature, the effects of these failures will be probabilistic detectable, and

the system can be made tolerant to them. To this end we have as a first step modified an

implementation of active replication [Schneider 1990] as a testbed for tolerating failures

in a non-malicious arbitrary setting. We were successful in hardening the testbed against

hardware failure and local data corruption [Barbieri and Vieira 2015].

In this paper we describe how we implemented a basic type of distributed valida-

tion, where a deviation from the expected algorithm behavior will make a process crash.

We also experimentally evaluate the hardened testbed using a fault injection framework.

Our results show that it is feasible to extend the concept of non-malicious failures be-

yond hardware failures. The main contributions of this paper are the description of the

distributed validation used, the protocol to validate its effectiveness and evidence that this

approach is sound. The paper starts by defining more precisely the non-malicious arbi-

trary fault model in Section 2 and how to implement algorithms for it in Section 3. Then,

we describe our testbed and our proposed distributed validation in Section 4. We close

the paper with an experimental evaluation of our implementation in Section 5.

2. Fault Model

Fault models abstract the properties a system must satisfy and how a distributed algorithm

should tolerate faults. Two very common fault models in which distributed algorithms are

designed are the crash-stop and crash-recovery models. In both models processes only

fail by completely crashing. We can call these models benign because it is assumed

that the tolerated failures will respect a (probably unknown) probability distribution. A

stronger fault model that assumes more types of failures is the Byzantine or arbitrary



model in which processes can deviate in any way from the algorithm specification.

In the arbitrary fault model it is impossible for processes to decide whether another

process is behaving arbitrarily intentionally or not. This assumption covers virtually any

type of failure a system might encounter. We refer to malicious faults when a process is

behaving arbitrarily intentionally, through manipulation from a malicious agent. These

type of faults do not follow a pre-defined probability distribution and can occur in re-

sponse to measures taken to tolerate them.

Fault models range from weaker (more strict) to stronger (more general), as shown

in Figure 1. The stronger the model, the more complex and difficult it is to implement

an algorithm. When building a practical distributed system, it is desirable to adopt a fault

model that better fits the system and satisfies its requirements for performance and types

of faults it must tolerate. However, this is not always the case, since any distributed system

that relies on actual computers is prone to arbitrary faults.

Distributed system designers desire to tolerate arbitrary faults, but would pre-

fer a less performance intensive algorithm than a byzantine one [Bhatotia et al. 2010,

Correia et al. 2012, Behrens et al. 2013]. While malicious faults are being tolerated using

different techniques [Bhatotia et al. 2010, Correia et al. 2012], and based on the premise

that any fault model can be hardened to tolerate some arbitrary faults, it is possible to

harden the crash-recovery benign model to tolerate non-malicious arbitrary faults, thus

achieving a fault model similar to the arbitrary fault model, but where malicious faults are

not necessarily tolerated by the algorithm.

Figure 1. Relationship among fault classes

An algorithm for the non-malicious arbitrary fault model can be considered to

be less complex than an classical arbitrary one because it does not tolerate malicious

faults in its implementation. However, the implementation required to tolerate all non-

malicious arbitrary faults adds its own complexity to the algorithm. This fault model is

more precisely described in terms of the two following properties [Behrens et al. 2013]:

No impersonation: the environment never creates valid messages, except for duplicates.

This property assumes that only processes themselves are able to create valid mes-

sages, so malicious agents cannot interact with existing processes in a system.

No propagation: a process that is considered faulty, by either itself or by another pro-

cess, cannot ever create a valid message. This property assumes that when the

process has become faulty, it is not allowed to send any more messages, nor any

correct process is allowed to accept messages from a faulty process.



An algorithm for this fault model is expected to tolerate faults caused by data

corruption, such as from persistent memory, main memory or network, in addition to

benign faults [Bhatotia et al. 2010, Correia et al. 2012, Behrens et al. 2013].

3. Tolerating Non-malicious Arbitrary Faults

Non-malicious arbitrary fault types are present not only in any practical distributed sys-

tem, but in any system that relies on computer components that can fail. These faults

can be tolerated through error detection techniques, such as integrity checks and semantic

checks. The techniques described below aim to detect data corruption, memory corrup-

tion, and in some cases programmer and operator mistakes. However, each approach

mentioned has its overhead cost associated, for either performing repeated checks and

recalculations, encrypting, or doubling memory requirements due to redundancy.

3.1. Integrity checks

Integrity checks verify data by saving at least one redundant copy that can be used to

validate against the original data, such as checksums, duplicate states, timestamps or data

size values. This approach is commonly used when reading and writing data from main

memory, storage and peer-to-peer network message exchanges. We now describe in more

detail these techniques:

Data and state redundancy : each process variable or stored data has a duplicate which

can be validated against and used for backup. The duplicates must be always be

kept in sync and checked for consistency on each read and write operation. This

approach clearly uses a significant amount of additional memory and has an in-

creased overhead for keeping both states in sync [Bhatotia et al. 2010, Correia et al.

2012, Chandra et al. 2007];

Checksums and hashes redundancy : the usage of encoded redundancy allows for fu-

ture detection of undesired corruption. The most common type of redundancy

is generating a checksum or hash of data and attaching it to the protocol mes-

sages prior to transmitting across the network or saving them in storage. Any read

or write operation on data must recalculate the checksum and verify against the

one attached to the message, adding a significant performance cost related to the

checksum algorithm used [Bhatotia et al. 2010, Correia et al. 2012, Chandra et al.

2007];

Encoding and arithmetic codes : the usage of in-place encoding and decoding, like nu-

merical properties of data, can be used to detect undesired corruption in each read

and write operation. For instance, if numerical variables are multiplied by a prime

number upon writing and divided by the same number when they are read back,

the remainder should always be zero. This approach is considered to be very effi-

cient performance-wise, but lacks coverage [Behrens et al. 2013].

3.2. Semantic checks

Semantic checks validate that after an operation has been applied on data, the newly

obtained state is semantically correct according to the applied operation [Bhatotia et al.

2010]. For instance: after adding an element to a list, check if the element is in the list.

This approach has the added benefit of testing the system against possible bugs, which

was one scenario in the experiment found in [Chandra et al. 2007].



4. Hardened Treplica

4.1. Treplica and Paxos

Treplica [Vieira and Buzato 2008, 2010] is a Java framework that allows distributed appli-

cations to use Paxos as middleware to manage state replication through its state machine.

Its implementation is close to the Multi-Paxos approach [Lamport 1998] with a few addi-

tional optimizations, like Fast Paxos support [Lamport 2006] and broadcast votes, where

each learner agent receiving a majority of votes can commit the change immediately.

In Treplica, replicas can concurrently perform any Paxos role, such as coordina-

tor, proposer, learner and acceptor. This is analogue to many practical middlewares im-

plementing Paxos, and allows for greater flexibility in the amount of replicas and system

configurations. Figure 2 illustrates Multi-Paxos algorithm messages exchanged during a

common round in a consensus instance, highlighting the differences between theoretical

Multi-Paxos and Treplica’s implementation. The message roles are as follows:

Message #1: Client proposal message sent to coordinator;

Message #2: Proposal sent to acceptors for voting;

Message #3: Acceptors vote on proposal;

Message #4: Decision is broadcast to learners.

In Treplica, voting messages, labeled #3 in the figure, are received by learners

and the proposer as well, thus allowing learners to apply the state transition immediately.

Also, the proposer can respond to the client as soon as receiving a majority of votes.

Moreover, message #4 is not necessary but is used to broadcast a decision if there is any

message loss.

Figure 2. Multi-Paxos (left) and Multi-Paxos in Treplica (right)

Applications designed according to the Model-View-Controller standard can eas-

ily be modeled to use Treplica. We chose Treplica because its modular architecture allows

for improvements to be easily coded and tested. Since it is designed to tolerate benign

faults, upon analysis we validated that it is prone to non-malicious arbitrary faults we

are interested in. Additionally, Treplica is object-oriented and makes use of immutable

objects design, where an object is never changed after being instantiated. This allows

for more efficient use of checksums. State transition semantic checks can also be easily

coded by the application due to its integration with the state machine modeling.



4.2. Tolerating non-malicious arbitrary faults

Our main approach to harden the benign crash-recovery fault model into the non-malicious

arbitrary one is to employ fault detection techniques, as described in Section 3, to detect

faults resulting from data corruption, while initially not worrying about how to recover

from them. Moreover, we have created a distributed validation mechanism to try and de-

tect deviations from the expected algorithm properties, that is, if the replicas state start to

diverge. Upon detecting unexpected faults, our proposal is to abort the replica execution,

preventing it from propagating corrupt data and further participating in the consensus al-

gorithm. This strategy reduces the crash-recovery fault model to a simpler crash-stop

one, but tolerating non-malicious arbitrary faults. This is similar to the approach taken

by [Behrens et al. 2013], but adds the ability to detect protocol violations.

From the point of view of a benign fault model distributed system, most arbitrary

faults behave as silent faults because their errors cannot be easily detected. For instance,

if a user clicks a button to buy one book, but a replica processes that two books have been

bought because bits got flipped along the way, then this is not an error from Paxos point

of view, because the message was delivered consistently across all replicas. In order to

effectively tolerate such silent faults, we employed the following techniques:

• Integrity checks, to address data corruption.

• State checks, to address state corruption.

• Semantic checks, to address programmer mistakes in the application.

• Distributed validation, to address data corruption, programmer or configuration

faults.

Integrity, state and semantic checks were implemented based on the ideas de-

scribed in Section 3. Details of this implementation can be found in [Barbieri and Vieira

2015], and are unfortunately omitted from this paper because of lack of space. Next, we

describe in detail our proposal for distributed validation of replication algorithms.

4.3. Distributed validation

In a distributed system in which each replica has its independent state, although Paxos can

guarantee state transitions are applied in the same order, it cannot guarantee that all repli-

cas will have the same state in the presence of non-malicious arbitrary faults. A replica

that experiences an arbitrary fault may have its state diverged from the others, while state

transitions will continuously be applied on top of the corrupt state. This may allow the

system to display incorrect data when the replica is queried by a client application. This

divergence can happen by a corruption in the memory holding the code of the protocol

or, more likely, be caused by programming or configuration fault. In order to completely

satisfy the “No propagation” property of the fault model, this scenario must be covered

by a validation mechanism.

A distributed validation mechanism allows replicas to validate their state upon

receiving a network message containing a checksum or hash that is related to the state

they currently are, thus detecting possible state divergences. A state of a replica comprises

both the application state and the internal state of all Paxos agents. We developed a

way to use the Paxos algorithm to perform this validation, thus having the algorithm

extended with this mechanism. We attempt to detect state divergence between replicas by



including the state checksum in the voting messages exchanged by Paxos in the accepting

phase (Message #3, see Section 4.1). Acceptors read the checksum from the application

when creating the immutable voting messages and attach it to them. In Treplica, all

replicas receive the voting messages, thus the learner module validates the local state

upon receiving them using the attached checksum.

In order to minimize the performance impact and adapt the mechanism to Treplica’s

architecture, we decided to take an eventual and opportunistic validation approach. By

defining a window of state counters in which the state checksum is updated, the repli-

cas are able to eventually validate a state within the defined window. For instance, if the

window value is 100, then the state checksum will change only every one hundred state

transitions have been applied. This makes it easier to synchronize all replicas in the same

window, because Paxos, and many other distributed algorithms, does not impose a hard

limit on the speed differences of the system processes. The only requirement is that a quo-

rum be approximately synchronized, a single straggler process can be in a state arbitrarily

behind the others.

In Figure 3, acceptors include their state checksum numbered #14 when consen-

sus instance of the state transition numbered #15 is running. Both consensus instances

#14 and #15 are related to the same window, which is from state transition #1 to state

transition #100, thus they carry the checksum generated in transition #1. The learner vali-

dates state checksum numbered #14 before committing the state transition numbered #15.

In this example, if any of the replicas have their state diverging within this window, it

will be detectable only after transition #100, where a new checksum will be included in

exchanged messages. Without this window mechanism, replicas would rarely be able to

validate received state checksums related to the same state count, because they apply the

state transitions in an asynchronous way. Treplica packs a set of state transitions in the

same Paxos instance, and replicas end up advancing rounds in different paces, resulting

in the current window and backlog variables frequently getting discarded due to the state

count advancing before having a chance to validate.

Figure 3. Distributed validation mechanism implemented in Treplica

We defined two variables where we store the received state checksums. One that



is related to the current window, and a backlog one that is related to the next window to be

processed. The next window is determined by the first received message that does not fit

into the current window. Messages received that fit into the current window are validated

immediately, while messages related to the subsequent registered window are stored for

later validation. When a replica advances to the window that contains messages to be

processed later, it moves all the stored messages to the current window variable, clears

the backlog one and starts processing them.

Validation consists in comparing the validating replica’s state checksum to the

majority of received state checksums. As soon as the number of received common state

checksums is the same as the number of replicas in the majority quorum in the system,

the validating replica’s state checksum is compared to this common state checksum. If

the validating replica’s state checksum is not the same as the majority, then the validating

replica detects that it has diverged and aborts execution.

In Algorithm 1 it is shown the validation code that is performed by learners. Every

state checksum received that is not related to the current window is saved for later pro-

cessing. When a state checksum that matches the current window is received, it is saved

in a structure responsible for storing state checksums indexed by replica unique identi-

fication numbers. This structure has a method getMostCommonChecksum() responsible

for returning a list of the most common occurrence for the current window. If the size of

this list matches the quorum size, then the learner validates its own checksum against that

common checksum, which raises an exception if it diverges.

Algorithm 1 Distributed validation
void receiveVotingMessage(Message message){

StateChecksum checksum = message.stateChecksum;

if (checksum.stateCount == Application.currentChecksum.stateCount){

saveAndProcessStateChecksum(checksum);

} else {

if (backlog.stateCount == checksum.stateCount){

saveMessageInBacklog(checksum);

}

}

processVotingMessage(message);

}

void saveAndProcessStateChecksum(StateChecksum checksum){

currentWindow.saveMessageInCurrentWindow(checksum);

List<StateChecksum> list = currentWindow.getMostCommonChecksum();

if (list.lengh == Application.quorumSize){

if (checksum.hash != list.get(0).hash){

throw new StateDivergedException(

Application.currentChecksum);

}

}

}

Expecting a majority is a way to avoid a correct process from terminating as it

encounters the state from a corrupted process. If a majority of processes has the same



state checksum and this value is different from the local state checksum, the process is

certain to be one that diverged. We consider this mechanism to be eventual, since replicas

may not participate in certain voting rounds. Moreover, this approach would fail in case

a majority of replicas diverge in the same window. Such mechanism would still depend

on the application being able to generate a checksum of its state or of certain data that is

comparable to other replicas. The more precise this information, the more coverage this

mechanism can achieve.

5. Experimental Validation

To evaluate the dependability of hardened Treplica, we injected randomly generated faults

in a test system and analyzed the occurrence of errors. Our testing system consists in a

set of replicas of a distributed application, implemented on top of Treplica. We have

generated load to simulate user requests to each replica while injecting failures, and we

have measured the error ratio of the hardened Treplica. In this section we describe our

experimental setup, how faults were injected, the parameters of these fault injections, and

the observed error rate.

5.1. Test Setup

In order to generate the load, the test system running an example application received

requests which cause state transitions for five minutes. We created a manager application

to run 50 instances of the same test, preparing and cleaning each replica instance resources

used by each instance, such as storage folders and logs. When starting a test instance the

manager application starts the replicas and starts the load generating application, which

sends the requests. In case an error is detected, the application crashes or times out, then

the manager application aborts the test execution, cleans the storage folders and logs the

results to a separate folder indexed by the test instance count. Our request timeout was set

to five minutes, in order to detect whether a failure made the system unable to continue

processing requests.

We coded a simple application built on top of Treplica to perform tests: a hash

table of strings. Client requests can add, remove and list elements in the hash. In this

application, the application-defined state information implemented counts the number of

elements in the hash. The semantic checks implemented for the “AddElement” operation

validates if the added element is present in the hash, while for the “RemoveElement”

operation it validates if the element is not present in the hash. Each request was always

an “AddElement” operation, where the element consisted of a Long-type counter value

converted to string value, appended by the replica identification number. When running

tests with fault injections using this application, we always printed all the elements in the

hash when the test finished without detected faults to get a record of the final state of the

replica.

Instead of running Treplica on separate machines in a cluster, we opted to run five

instances of the same application at the same time in a single machine. Each instance

had a separate folder for individual storage, thus the replicas were independent. Running

in the same machine makes it easier to overload the system, dropping and reordering

messages, creating configurations not easily found in a system with low load. Curiously,

we actually did run the tests in independent machines in a cluster to parallelize individual



executions and cut total time required for the 50 runs of each experiment. Each node

in the cluster had the following configuration: Intel Xeon E5-2665 2.40 GHz processor,

16 GB DDR3 1333 MHz RAM, 1 TB HDD, Linux CentOS 6, Java Development Kit

(JDK) version 1.8.0 update 191. The specific amount of requests per second we chose

was calibrated to overload it, creating messages reordering and loss. For this particular

hardware we settled with 10000 Op/s per replica, for a total of 50000 Op/s total.

5.2. Fault Injection using AspectJ

To inject faults we used an aspect-oriented library known as AspectJ. This library allows

us to change the behavior of any Java program without changing its main code. In Algo-

rithm 2 it is shown an example injection, where in order to inject a fault in the operation

of adding a string to a list, a method must be created to have its behavior overridden.

The method in this case is “listAdd”. Our injection code runs instead of the original code

every time “listAdd” is invoked, we then use a local variable to decide whether we inject

a fault that consists in running the original function with a different argument value, or if

we allow the function to continue without faults. The idea is to “corrupt” the execution of

the method as if its arguments were subject to bit flips or memory corruption.

Algorithm 2 Example injection
private List<String> list;

boolean inject;

boolean listAdd(String name){

list.add(name);

}

boolean around(String name) : listAdd(name){

if (inject)

return proceed(random.nextLong().toString());

else

return proceed(name);

}

From this basic idea, we created a fault injection framework that reads a config-

uration file when Treplica is initialized and sets the fault injection conditions and modes

according to a set of parameters. Whenever an aspect-marked method in the original code

is executed, the aspect code is invoked. If the condition is not met, no code is injected and

the original code is run. The two modes of operation implemented are:

Single timed injection mode: in this mode, a timer value is defined in the configuration

file for each injection. Once the timer expires, the condition allows the fault to be

injected. The fault is injected the next time the aspect is invoked. Once the fault

is injected, the condition is permanently disabled. This mode is useful when we

want to confirm that a single fault was tolerated or not;

Probability-based injection mode: in this mode, a probability value is defined in the

configuration file for each injection. Whenever the aspect-marked code is exe-

cuted, it randomly generates a probability value. If it is higher than the probability

value defined, then the condition for fault injection is met and the fault is injected

immediately. All subsequent executions of the aspect-marked code will check



against the probability of injection, which may inject more fault occurrences. This

mode is useful when we cannot guarantee that a single fault injection can cause an

error to occur, because it may require specific conditions to be met. For example,

a failure may require many consecutive messages to be lost, else the errors will be

absorbed by the algorithm.

5.2.1. Injection Scenarios

With the framework in place, we choose three sets of specific faults to inject in the repli-

cas: message faults, application faults and algorithm faults. Message injections corrupts

data arriving or leaving the address space of the replica, such as network messages ex-

changed between replicas, log of operations saved and retrieved from secondary storage,

and checkpoints, also saved and retrieved from secondary storage. Application injections

corrupts the internal state of the application. Algorithm injections makes the algorithm

behave differently from its specification.

For message injections, we used single timed injection mode to corrupt messages

in transit. In network, storage and checkpoint messages, we change a random value in the

message as soon as it is received from the network or recovered from storage, while re-

taining the checksum value on the hardened Treplica. For application injections, we used

single timed injection mode to inject faults during state transition in the hash of strings

application. We inject faults in the state by manipulating the state transition operation

to either not add the elements or by changing their string values. For both message and

application injections the fault was injected 10 seconds after the test started.

For algorithm injections, we used probability-based injection mode attempting to

cause failures by breaking simple but very important algorithm mechanics, in order to

cause replica states to diverge. Assuming the Paxos algorithm is keeping replica consis-

tency, the faults injected are as follows:

Learner commits with no quorum: This injection causes the affected learner to have a

probability of committing a proposal without requiring a quorum to do so. If the

round does not succeed and a new value is proposed, the replica ends up with its

state diverging from the others.

Acceptor forgets its previous votes: This injection causes the affected acceptor to have

a probability of returning no previously registered votes for a given round. The

coordinator, upon receiving this message, will assume that no previous value has

been proposed, and will propose a new one instead, while the previous value may

have been decided and committed by learners.

Coordinator forgets last proposals received: This injection causes the coordinator to

have a probability of forgetting the previous proposals he receives from acceptors,

thus choosing to start a new round with a new value while the previous value may

have been decided and committed by learners.

We used 80% fault injection probability for the injection scenarios being tested.

The Paxos algorithm is surprisingly resilient, even when the injected faults made it behave

as if a programmer had made a mistake, the algorithm gives the correct answer most of

the time. The high probability of fault injection coupled with the overload of the system



Table 1. Message and application injection tests
Test Runs Fault

injections

Fault

detections

Errors Rate

Message injections - Fault on a protocol message received 100 100 100 0 100%

Application injections - Fault when adding element 100 100 100 0 100%

Table 2. Algorithm injection tests
Test Runs Fault

injections

Fault

detections

Errors Rate

Learner commits with no quorum

Single replica

50 23500 45 1 98%

Acceptor forgets previous votes

Single replica

50 3662900 0 0 100%

Learner commits with no quorum

All replicas

50 194500 23 3 94%

Acceptor forgets previous votes

All replicas

50 14584980 16 0 100%

Coordinator forgets received proposals

All replicas

50 15000 47 2 96%

are required to create the scenarios in which the algorithm exhibit an error. With the

selected parameters, we had a high probability at least one replica to commit an undecided

proposal in each test run, causing a state divergence.

However, to assess the behavior of hardened Treplica with more faults we also ran

tests where we performed Paxos injections in all replicas. Those test runs are labeled “All

replicas” in the table, whereas the “Single replica” labels refer to injections performed

in a single replica. We noticed that the test runs where we performed injections in all

replicas were more likely to result in all replicas diverging. Additionally, we analyzed the

possibility of the fault injected causing failures only to the replica which it was injected,

or if errors propagated. In all our test runs, at least one execution had error propagation.

5.3. Injection Test Results

Table 1 lists the error rates for message and application fault injection tests in hardened

Treplica. These faults model hardware faults that happen locally in a replica. For each

run, a fault was injected and it was detected by the integrity, state or semantic checks. We

confirmed the detection of all fault occurrences either through logging or replicas aborting

their executions upon detection.

For algorithm injections, the error rate is shown in Table 2. For the test runs where

faults were not detected, there were cases where there were no errors, thus there was no

state divergence between any of the replicas. We confirmed such scenario by comparing

all the elements printed by each replica at the end of a test run. The runs where there

were errors, however, a majority of replicas diverged to different states, rendering the

distributed validation incapable of detecting any divergence for the rest of the test run.

These cases could also be confirmed by comparing the printed elements. We consider

these occurrences to be beyond our technique’s coverage capability at this moment.

Hardened Treplica was able to detect faults in all the fault injection scenarios,

except for when all replicas got their state diverged in algorithm injection scenarios. The



Table 3. Non-malicious fault class coverage
Fault Detected? Fault model mapped to Can be propagated? Rate

Message injections

(network)

Yes Benign crash-recovery

(single message loss)

No 100%

Message injections

(stable storage)

Yes Benign crash-stop

(replica unavailable)

No 100%

Application injections

(memory corruption)

Yes, but requires

application support

Benign crash-recovery

(replica restarted)

Not applicable 100%

Application injections

(bugs)

Yes, but requires

application support

Benign crash-stop

(replica unavailable)

Not applicable 100%

Paxos injections Mostly Benign crash-stop

(replica unavailable)

Yes 97,6%

only scenario we injected faults and we could not detect the resulting errors was the case

of a majority of replicas (five replicas in our test suite), diverging while in the same state

count window. We consider the following conditions are needed for this to happen:

• There must be several consecutive messages lost while the fault is injected. We

validated that without message loss, there could not be any failure.

• The majority of replicas needs to diverge within the same state validation window

(see Section 4.3). The divergence of individual replicas can be easily detected

once the validation window changes and updates the state checksum, if there is

still a majority of correct replicas.

We summarize our test suite results and analysis in Table 3, where we check for

each injection scenario we tested:

• If a potential error from the fault injected was successfully detected and which

conditions were necessary for this detection;

• To which fault model the fault occurrence can be mapped to and what other repli-

cas observe of the faulty replica;

• If the error can be propagated and disrupt other replicas;

• Our coverage rate for the given fault.

Upon detecting a failure, we abort the replica execution. Our current solution re-

sults in a crash-stop non-malicious arbitrary fault model instead of an ideal crash-recovery

non-malicious arbitrary fault model. We consider the non-malicious arbitrary crash-stop

fault model to be more resilient than the original benign crash-recovery implementation.

If a benign fault occurs, the system is able to recover itself and continue, but if an er-

ror from a non-malicious arbitrary fault is detected and is non-recoverable, we abort the

replica execution, preventing any propagation of erroneous behavior.

6. Conclusion

In this paper we described the non-malicious arbitrary fault model and how we adapted the

implementation of active replication found in the Treplica framework to use it. We pro-

posed a novel distributed validation mechanism that expands the scope of non-malicious

arbitrary faults tolerated. Our experimental evaluation has shown a very good coverage

of protocol deviation faults, reaching 97,6% in the sum of all tests.

These results are particularly good, because here we report our very first attempt

to detect deviations from the distributed algorithm. The idea is very simple and is prone



to fail to detect multiple faults if they happen too fast. We believe this is a promising

approach and we intend to create a more robust distributed validation mechanism.
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