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Abstract—Oral epithelial dysplasia is a common precancer-
ous lesion type that can be graded as mild, moderate and
severe. Although not all oral epithelial dysplasia become cancer
over time, this premalignant condition has a significant rate
of progressing to cancer and the early treatment has been
shown to be considerably more successful. The diagnosis and
distinctions between mild, moderate, and severe grades are made
by pathologists through a complex and time-consuming process
where some cytological features, including nuclear shape, are
analysed. The use of computer-aided diagnosis can be applied as
a tool to aid and enhance the pathologist decisions. Recently, deep
learning based methods are earning more and more attention and
have been successfully applied to nuclei segmentation problems
in several scenarios. In this paper, we evaluated the impact
of different color spaces transformations for automated nuclei
segmentation on histological images of oral dysplastic tissues
using fully convolutional neural networks (CNN). The CNN
were trained using different color spaces from a dataset of
tongue images from mice diagnosed with oral epithelial dysplasia.
The CIE L*a*b* color space transformation achieved the best
averaged accuracy over all analyzed color space configurations
(88.2%). The results show that the chrominance information, or
the color values, does not play the most significant role for nuclei
segmentation purpose on a mice tongue histopathological images
dataset.

Index Terms—CNN, deep learning, dysplasia, nuclei segmen-
tation, color spaces

I. INTRODUCTION

Cancer can be defined as a group of non-communicable
diseases (NCD) that can start almost anywhere in the body.
The disease is caused when cells begin to divide uncontrollably
with potential to invade other parts of the body and/or spread to
other organs and surrounding tissues. According to the World
Health Organization (WHO), cancer is the second leading
cause of death globally, accounting for 18.1 million cases and
9.6 million deaths worldwide in 2018 [1]. Projections from
the Instituto Nacional do Cancer (INCA) show that in 2020,
686 thousand new cancer cases will be registered in Brazil
and, from those cases, 15 thousand will be oral cavity-derived
cancer [2].

Tumors of the oral cavity can be grouped into two broad cat-
egories: benign and malignant tumor (cancer). Benign tumors
are not considered cancer, as they do not invade other tissues
and do not spread to other parts of the body. Precancerous

This work was supported by the National Council for Scientific and
Technological Development - CNPq (Grant 304848/2018-2) and the State of
Minas Gerais Research Foundation - FAPEMIG (Grant APQ-00578-18).

conditions, on the other hand, are still harmless lesions, but
some of those precancerous conditions can give rise to cancer
over time.

Dysplasia is an important precancerous condition charac-
terized by the presence of abnormal cells in the oral mucosa.
The histological evaluation, i.e. the study of tissue samples
of affected region under the microscope, remains the most
reliable way for diagnosing and grade oral epithelial dys-
plasia [3], [4]. Despite being referred as gold-standard in
cancer diagnosis, the histological evaluation is plagued by
inter- and intra-observer variability problem. This difficulty
requires experienced pathologists and is an expensive, highly
skilled and very time-consuming process.

Fast scanners can be used to capture tissue samples into
digital images to obtain the so-called digital histological
images, allowing to view tissue samples on computer rather
than through a microscope. Digitized histological samples can
be analyzed by computational image processing techniques to
aid and enhance the pathologist decision making, minimizing
human interventions, discovering measurable and traceable
clinical information, providing reliable prognostic factors and
eliminating the inter- and intra-observer variability.

There are several potential applications of digital pathology,
such as nuclei detection and segmentation that are critical pre-
requisite steps for diagnosing and grading dysplasia in image-
based computer-aided diagnosis (CAD). Nuclei extracted fea-
tures are critical for evaluating the existence of diseases and its
severity. Furthermore, nuclei commonly appear in overlapping
clusters, have heterogeneous aspects and remain a challenging
problem, which keeps nuclei segmentation methods under
investigation [5]. Particularly, deep learning techniques, such
as convolutional neural networks (CNN), has been successfully
applied in medical and biological researches [6].

As the color is one of the most dominant and visually
distinguishable visual properties, color variations could play
a high influence on automated analysis of histological images.
This paper evaluates the impact of different color space
transformations applied to our previously proposed method for
automated nuclei segmentation on dysplastic oral tissue histo-
logical images using fully convolutional neural networks [7].
For this, CNN models were trained using different color spaces
from a dataset of tongue images from epithelial dysplasia-
harboring mice.

The rest of the paper is organized as follows. The next



section describes some important background concepts. Sec-
tion III presents the experimental evaluation and the Section IV
presents the main results achieved and its discussion. Finally,
the Section V concludes the paper and presents further work
directions.

II. BACKGROUND REVIEW

A. Color Spaces

The purpose of a color space is to facilitate the specification
of colors in some standard providing a coordinate system and a
subspace in which each color is represented by a single point.
There have been numerous different color spaces in use today.
Some of these color spaces are ideally suited for hardware
implementations and others for the way that humans describe
and interpret colors [8]–[10].

In this paper, we focused on using RGB, HSV and CIE
L*a*b* color spaces in hematoxylin-eosin (H&E) stained
histological images for nuclei segmentation purposes:

• RGB (red, green, blue) color space defines each color
as a combination of the three primary spectral compo-
nents: red, green, and blue. The RGB color space is the
hardware-oriented color space most widely used for a
broad class of video cameras and color monitors.

• HSV (hue, saturation, value/brightness) color space is a
nonlinear transformation of the RGB that describes the
pure color (hue) in terms of gray presented in each color
(saturation) and how bright the color is (value). The HSV
color space corresponds closely with the way humans
describe and interpret color.

• CIE L*a*b was defined by the International Commission
on Illumination (CIE) and is also based on human per-
ception. The L* channel indicates lightness and a* and
b* channels indicate chromaticity directions: a* indicates
the color value between green and red and b* indicates
the color value between blue and yellow.

B. Histological Images Dataset

The histological images dataset was built using H&E-
stained tongue slides extracted from 30 mice previously
diagnosed with oral epithelial dysplasia. The images were
digitized using a Leica DM500 light microscope with original
magnification of 400×. A total of 66 images were scanned
and saved in TIFF format using the RGB color space and
resolution of 2048×1536 pixels. A experienced pathologist
used the criteria described by Lumerman et al. [11] to classify
each image into four predominant classes: healthy tissue, mild,
moderate or severe dysplasia.

The digitized images were then cropped into regions of
interest (ROI) with size of 448×256 pixels, totalling 120 ROI
images – 30 ROI images for each class. Examples of the
produced histological images are shown in Fig. 1 and examples
of the extracted ROI images are shown in the first column in
Fig. 3 (3a, 3e, 3i, 3m).

(a) Healthy mucosa. (b) Mild dysplasia.

(c) Moderate dysplasia. (d) Severe dysplasia.

Fig. 1: H&E stained histological images of mice oral epithelial
tissues.

C. Automated Nuclei Segmentation Using CNN

The method used for nuclei segmentation in oral tissue
histological images was originally proposed by dos Santos et
al. [7]. The proposed CNN architecture, which was slightly
modified to support images with one or three color channels
as input, is depicted in Fig. 2.

Deep learning segmentation models requires a large number
of samples and their corresponding segmentation masks to
be properly trained. Since producing these image samples
is a very hard and time consuming-task, data augmentation
becomes an essential technique to overcome this general
problem of scarcity of available training samples [13]. Six
different image transformation techniques were used together
as data augmentation: horizontal/vertical flip, rotation, elastic
transformation, grid distortion and optical distortion. Some
examples of data augmentation applied to the ROI images and
their corresponding targets are illustrated in the most right two
columns in Fig. 3 (3c, 3d, 3g, 3h, 3k, 3l, 3o, 3p).

In the training step, we directly apply the histological ROI
images (e.g., Figs. 3a, 3c, 3e, 3g, 3i, 3k, 3m and 3o) and their
corresponding masks (e.g., Figs. 3b, 3d, 3f, 3h, 3j, 3l, 3n and
3p) to the deep neural network to train the model. After the
last convolution step be performed, the Otsu [14] threshold is
applied to binarize the resulting mask image that predicts the
nuclei for the input ROI image.

In order to investigate the influence of color space trans-
formations on the evaluated nuclei segmentation method, we
transformed the 120 ROI images from the original training and
test sets into three different color spaces (RGB, HSV, and CIE
L*a*b*). We retrained the nuclei segmentation model using
the grayscale image and each color space and their respective
individual channels separately, resulting in 13 new training
datasets (thirteen sets of 96 images) and performed evaluations



Fig. 2: Adaptation of the CNN architecture proposed in [7], which is based on U-Net [12] model. The number of convolutional
feature channels and the height×width of images for each layer are denoted on their corresponding boxes.

using the test set (24 images transformed thirteen times for
each corresponding color space configuration).

The nuclei segmentation model was implemented using the
PyTorch framework [15]. The models were trained using a
desktop computer (Intel Core i7 3.4GHz×8 processor, 32
GB memory, 1TB SSD) equipped with GeForce GTX 1050
Ti graphic card and Ubuntu 20.04 operational system. The
elapsed time to train the models with 500 epochs for each
color space transformation was about 400 minutes. After
training, the elapsed time to process an input image was
about 0.3 seconds. To provide better understanding and make
this work as reproducible as possible, the source code is
publicly available at: https://github.com/dalifreire/dysplastic
oral tissues segmentation.

III. EXPERIMENTAL EVALUATION

We performed experimental evaluations using thirteen con-
figurations for the 24 ROI images from the test subset:
Grayscale image, RGB, only the R channel from RGB, only
the G channel from RGB, only the B channel from RGB,
HSV, only the H channel from HSV, only the S channel from
HSV, only the V channel from HSV, CIE L*a*b*, only the
L* channel from CIE L*a*b*, only the a* channel from CIE
L*a*b* and only the b* channel from CIE L*a*b*.

The influence of different color space transformations on
the automated nuclei segmentation using fully convolutional
neural network [7] was investigated. The automated nuclei
segmentation results were compared quantitatively and qual-
itatively (visually) with the nuclei manually segmented by

the specialist. The segmentation performance was measured
calculating the overlapping regions of the resulting auto-
mated segmented image and the regions of a reference image
segmented by the specialist. The average performance was
measured by six of the most commonly used quantitative
criteria with respect to pixel classification (nuclei or non-
nuclei). Accuracy is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
. (1)

Precision indicates if the segmentation results bring only
nuclei areas and does not bring any non-nuclei areas:

Precision =
TP

TP + FP
. (2)

Sensitivity (or Recall) indicates if the segmentation results
bring all the nuclei areas and is defined as:

Sensitivity =
TP

TP + FN
. (3)

F1 score (or Dice Coefficient) is the harmonic mean of the
precision and recall and can be defined as:

F1 =
2 · TP

2 · TP + FP + FN
. (4)

Jaccard index emphasizes similarity between gold-standard
and segmentation results for both nuclei and non-nuclei areas
and is defined as:

https://github.com/dalifreire/dysplastic_oral_tissues_segmentation
https://github.com/dalifreire/dysplastic_oral_tissues_segmentation


(a) ROI image - healthy (b) Gold standard for (a) (c) Augmented image for (a) (d) Augmented mask for (b)

(e) ROI image - mild (f) Gold standard for (e) (g) Augmented image for (e) (h) Augmented mask for (f)

(i) ROI image - moderate (j) Gold standard for (i) (k) Augmented image for (i) (l) Augmented mask for (j)

(m) ROI image - severe (n) Gold standard for (m) (o) Augmented image for (m) (p) Augmented mask for (n)

Fig. 3: ROI images from healthy and epithelial dysplasia-harboring tongue mice: 1st row hows healthy mucosa class; 2nd row
shows mild dysplasia class; 3rth row shows moderate dysplasia class and 4rth row shows severe dysplasia class.

Jaccard =
TP

TP + FP + FN
. (5)

Specificity measures the proportion of non-nuclei areas
correctly identified and is defined as:

Specificity =
TN

TN + FP
, (6)

where TP means true positives (the amount of correctly
detected pixels), TN means true negatives (the amount of
correctly undetected pixels), FP means false positives (number
of incorrectly detected pixels) and FN means false negatives
(the number of incorrectly undetected pixels).

IV. RESULTS

In this section qualitative and quantitative results are shown.
Fig. 4 shows one selected image from the dataset to serve as
a reference for the qualitative analysis. The original image
is shown in Fig. 4a, its corresponding nuclei mask manually
delimited by the specialist is shown in Fig. 4b, and the
segmentation result using the masks manually delimited by the
specialist – referenced as gold-standard – is shown in Fig. 4c.
Fig. 5 reveals the results obtained by the automated segmen-
tation method for each configuration on RGB color space and
the Grayscale image. Fig. 6 depicts the results for HSV color

space transformation and its respective individual channels.
Fig. 7 shows the results obtained by CIE L*a*b* color space
transformation and its respective individual channels.

(a) Original input ROI image.

(b) Manually segmented nuclei. (c) Nuclei segmentation result.

Fig. 4: Gold standard segmentation.

Regarding quantitative analysis, the Table I summarizes the
average results for each quantitative measure in the test subset.
The same 24 ROI images – test subset transformed thirteen



(a) Grayscale mask (b) Grayscale segmentation

(c) RGB mask (d) RGB segmentation

(e) RGB R mask (f) RGB R segmentation

(g) RGB G mask (h) RGB G segmentation

(i) RGB B mask (j) RGB B segmentation

Fig. 5: Qualitative analysis for RGB color space segmentation:
first column (a, c, e, g, i) shows nuclei masks obtained; second
column (b, d, f, h, j) shows the final segmentation results –
red arrows indicate some false negative areas; yellow arrows
indicate some false positive areas.

times for each corresponding color space configuration – were
employed to evaluate all configurations.

As we can see in Figs. 5, 6 and 7 and Table I, the original
RGB and the CIE L*a*b* color spaces present the best results,
outperforming all the configurations. It is important to note
that despite visually presenting good results and contours close
to the gold-standard, as indicated in the images by the red and
yellow arrows, all configurations present some false negative
and false positive regions.

The worst results were presented by the CIE a* and HSV
H color space configurations. It is worth noting that these
results indicate that the chrominance information alone, or the
color values, does not play the most significant role for nuclei
segmentation purpose on oral epithelial dysplasia-harboring
tongue mice image datasets. The color space channels that
indicate lightness information (Grayscale, CIE L*, HSV S/V)
performed very close to the best configurations, revealing that

(a) HSV mask (b) HSV segmentation

(c) HSV H mask (d) HSV H segmentation

(e) HSV S mask (f) HSV S segmentation

(g) HSV V mask (h) HSV V segmentation

Fig. 6: Qualitative analysis for HSV color space segmentation:
first column (a, c, e, g) shows nuclei masks obtained; second
column (b, d, f, h) shows the final segmentation results –
red arrows indicate some false negative areas; yellow arrows
indicate some false positive areas.

lightness information plays a pivotal role for nuclei segmen-
tation purposes (note also that Grayscale and L* channel are
computed from a very similar equation from the RGB color
space).

V. CONCLUSIONS

In this paper we evaluated the impact of different color
space transformations applied to H&E-stained histological im-
ages for nuclei segmentation purposes. A fully convolutional
neural networks model for automated nuclei segmentation was
trained and run using thirteen different color space config-
urations of tongue mice-derived epithelial dysplasia image
datasets.

Experimental results revealed that the chrominance infor-
mation does not play the most significant role for nuclei
segmentation purposes in H&E-stained histological images.
Furthermore, the results indicates that most significant role for
nuclei segmentation purposes may be played by the lightness
information contained in the color spaces.

The dataset employed in this study has a reduced number
of images and, in future works, the number of images will
be expanded and images of human oral tissues will also be
employed.



Color Space Accuracy Precision F1 / Dice Jaccard Sensitivity / Recall Specificity
Grayscale 0.862 0.769 0.795 0.667 0.842 0.877
RGB 0.879 0.793 0.820 0.699 0.860 0.891
R channel from RGB 0.874 0.788 0.811 0.689 0.848 0.893
G channel from RGB 0.860 0.794 0.780 0.647 0.782 0.908
B channel from RGB 0.862 0.775 0.794 0.666 0.832 0.885
HSV 0.881 0.807 0.819 0.698 0.844 0.904
H channel from HSV 0.784 0.691 0.659 0.503 0.648 0.858
S channel from HSV 0.842 0.752 0.765 0.628 0.801 0.871
V channel from HSV 0.863 0.783 0.792 0.663 0.817 0.895
Lab 0.882 0.853 0.814 0.689 0.788 0.937
L channel from Lab 0.865 0.775 0.797 0.670 0.835 0.886
a channel from Lab 0.758 0.637 0.648 0.490 0.679 0.803
b channel from Lab 0.819 0.711 0.738 0.590 0.790 0.841

TABLE I: The average quantitative results by each color space transformation applied on the test set (24 images).

(a) CIE L*a*b* mask (b) CIE L*a*b* segmentation

(c) CIE L* mask (d) CIE L* segmentation

(e) CIE a* mask (f) CIE a* segmentation

(g) CIE b* mask (h) CIE b* segmentation

Fig. 7: Qualitative analysis for CIE L*a*b* color space
segmentation: first column (a, c, e, g) shows nuclei masks
obtained; second column (b, d, f, h) shows the final segmen-
tation results – red arrows indicate some false negative areas;
yellow arrows indicate some false positive areas.
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