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Abstract—Data augmentation is a key procedure in many
image classification tasks, mainly to overcome the problem of
small datasets. In this work, we exploit the data augmentation
as a hyperparameter optimization approach. We tested our
methods to classify erythrocytes to assist the diagnosis of sickle
cell anemia. In this study, we proposed a data augmentation
approach based on hyperparameter optimization to find the
best augmentation policies through the Bayesian optimization
algorithm. We also developed a convolutional neural network
architecture from scratch and compared it with two classic
architectures to classify sickle cell images. Our approach defines
the best data augmentation solutions and sends those solutions to
be carried out by CNN in the final training. All experiments were
validated using a stratified five-fold cross-validation procedure,
and our best result achieves 92.54% of accuracy. The results
suggest the best augmentation policies defined with optimization
allow us to obtain superior results than other strategies such
as without data augmentation, several randomly defined image
transformations, and only random rotations. As far as we know,
our paper is the first to propose optimizing data augmentation
policies in biomedical images leading to a better exploration of
these strategies in several fields.

Keywords—sickle cell; medical imaging; deep learning; data
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I. INTRODUCTION

Sickle cell anemia is an inherited disease caused by a single
genetic mutation in the hemoglobin resulting in the abnormal
hemoglobin S (HbS). Thus, the erythrocyte (red blood cell)
assumes an irregular shape becoming a sickle cell. This format
reduces the oxygen and blocking the blood vessels, which may
cause stroke and other chronic complications. It is estimated
that approximately 300,000 children are born with sickle cell
anemia each year, making the disease a global health problem
[1].

Visual analysis of blood smear is a procedure that can
be used to identify sickle cell disease. However, this task is
subjective, very time-consuming, and challenging in emerging
countries, especially where the incidence of this disease is high
[1] [2] [3].

Computer-aided diagnosis has been used for decades to
identify patterns in medical images. The improvements in the
hardware of computers are allowing us to train even more
complex models to identify, classify and quantify anomalies
in biomedical images [4] [5].

Recent advances in deep learning techniques, in particu-
lar Convolutional Neural Networks (CNNs), demonstrate that
this approach learns complex structures from the data itself,
without requiring handcrafted feature extraction [6]. Solutions
based on CNNs have a low cost and can help healthcare
workers diagnose several diseases, such as sickle cell disease.
Also, the data and results may be shared and processed around
the world [7].

Several studies have been proposed for classifying sickle
cell using manually feature extraction [8] [9] [10] [11]. How-
ever, solutions based on CNNs are advantageous and allowing
automatized the steps of feature extraction and require minimal
preprocessing [12].

Although CNN appears to be a promising approach, data
augmentation strategies may be necessary to deal with small
datasets and overfitting issues. In this way, the choice of best
data augmentation strategies is crucial to the classification per-
formance. Usually, this choice is carried manually by testing
different strategies based on random transformations until the
model gives a “satisfactory” performance. Since the optimal
data augmentation strategies are unknown, any definition of a
level of satisfaction using this methodology is subjective and
time-consuming [13].

In this work, we aim to automate the process of finding an
effective data augmentation policy for cell classification tasks.
We define each policy as a possible choice of augmentation
(e.g., rotations, flips, color adjustments) and the magnitudes
for each transformation. Furthermore, the contribution of this
paper is an assessment of the data augmentation policies as
an optimization problem, where the policies are considered
decision variables and the accuracy of the trained model is the
objective function to be maximized. We applied a Bayesian
search algorithm [14] to identify data augmentation strategies
according to the data. These operations are evaluated using
three different CNNs architectures: AlexNet [15], LeNet-5
[16], and our custom architecture named Model A. As far as we
know, our work is the first to introduce the optimization of data
augmentation policies for biomedical image classification. Our
results suggest that optimization improving the performance of
all CNNs evaluated.

The remaining of this paper is organized as follows: Section
II presents the related work. Section III describes the material
and methods. Section IV presents and discusses the results.



Section V presents conclusions and future work.

II. RELATED WORK

The state-of-the-art presents multiple systems dedicated
to erythrocyte classification, involving machine learning with
handcrafted feature extraction to differentiate among the dif-
ferent types of cells [17] [10] [11].

Recently, approaches using deep learning have been pro-
posed. Xu et al. [18] proposed a 10-layer CNN to classify
erythrocytes using 7,000 images categorized into five and eight
classes. They considered k-fold cross-validation to validate
the experiments and obtained for five and eight categories an
average accuracy of 89.28% and 87.50%.

Qiu et al. [19] presented a structure to extract regions
from the images containing the cells using a Region-based
Convolutional Network (RCNN). They performed a multi-
label classification using a pre-trained ResNet-50 architecture
and a binary classification using Gradient Boosting Classifier.
Finally, the method proposed by [19] obtained an overall
accuracy of 72.2%.

Alzubaidi et al. [20] utilized a CNN architecture composed
of 18 layers, ReLu as the activation function, and batch
normalization. The Error-Correcting Output Codes (ECOC)
were used to solve the classification problem using the SVM
classifier, achieving 92.06% in terms of accuracy.

Most recently, Alzubaidi et al. [21] applied the same
domain transfer learning in conjunction with SVM and data
augmentation techniques to minimize the overfitting. They
evaluated three datasets (main dataset, training with transfer
learning, and testing) and developed three architectures with
40, 35, and 29 layers. The result obtained was of 99.98%,
which is the best state-of-the-art score reported in the litera-
ture. However, for applications in a real-world scenario, it is
impracticable to train a CNN with a dataset from the same
domain.

The main difference between previous work to our work
is the analysis of the data augmentation impact on the per-
formance of a number of CNN architectures. We selected data
augmentation policies automatically through a Bayesian search
algorithm. We believe that our approach can contribute to
identifying sickle cell disease, overcoming the costs of more
data acquisition, and avoiding overfitting. Also, our method
allows for finding the best augmentation operations to increase
accuracy and is suitable to deal with the issue of the lack of
training data for CNN architectures.

III. MATERIAL AND METHODS

As presented before, the main goal of this work is to
automatically find the best data augmentation policies for
training CNNs using the Bayesian optimization strategy. The
proposed method was programmed using Python 3.6, the Keras
2.2.41 framework with TensorFlow 1.12.0, CUDA version 9.0
and cuDNN 7.1. The data augmentation optimization was
drawn from the deepaugment2 library. Also, we used Numpy,

1https://keras.io/
2https://pypi.org/project/deepaugment/

OpenCV, Scikit-learn, and imgaug3 libraries. The workflow of
the proposed method is summarized in Fig 1.

Fig. 1. Steps of the proposed method.

A. Image Dataset

The images used was taken from the erythrocytesIDB4

dataset. It contains 626 images of erythrocytes, each with a
single, centered cell in evidence, categorized as healthy (202
images), sickle cell (211 images), and with other deformation
(213 images) [22].

When considering the erythrocytes classification based on
CNNs, previous studies used images without any prepro-
cessing [20] [21]. However, we performed some preliminary
experiments considering the original dataset, and the results
demonstrate that training from scratch with original images
hurts the results, as the models reached an accuracy of less
than 60%. Thus, all images were preprocessed using a simple
segmentation procedure proposed by Rodrigues et al. [10]. In
this approach, we segment each image using the global Otsu’s
threshold and morphological operations. Fig. 2 illustrates one
image from each class resulting from preprocessing.

Fig. 2. Examples of image instances resulting from preprocessing for each
class of erythrocytesIDB dataset: (a) healthy; (b) sickle cell; and (c) other
deformation.

B. Augmentation policies

The proposal presented in this paper is inspired by [23],
which is a framework to search for the best data augmentation
policies automatically. These policies are composed of pro-
cessing functions that will provide a training solution for a
child CNN architecture. The term child CNN is the reference
to CNN approved in the optimization tests, which uses the
accuracy generated in the training step as feedback for the
search algorithm.

The augmentation policies were adapted from the deep-
augment library and are composed of two image processing
operations and their respective magnitudes, A and B. The

3https://imgaug.readthedocs.io/en/latest/
4Available in: http://erythrocytesidb.uib.es/



magnitude is an optimizable parameter that passed for a
discretization process [24], with real values between 0 and 1.
In this study, we consider optimizing twenty image processing
operations available in the imgaug library.

C. CNN Model A

We designed a lightweight convolutional neural network
with custom architecture, called Model A. As demonstrated
by [25], lightweight models trained from scratch can achieve
better results in medical images without the transfer learning
technique, especially when the dataset is too small to train a
deep network. In this way, when the transfer learning technique
is not applied, data augmentation strategies are essential in the
training step. Also, our architecture has a lower computational
cost when compared to other architectures such as [26] and
[27].

Our Model A is composed of six convolutional layers, three
pooling layers, and one fully connected layer. Besides, this
architecture adopts dropout connections to reduce overfitting
and REctified Linear Unit (ReLU) activation to accelerate the
training. Fig. 3 illustrates the Model A.

Fig. 3. Model A architecture.

The details of each layer are described below [12].

a) Convolutional layer: The convolutional layers per-
form the convolution operation in each previous layer to extract
relevant features from the images, e.g., color and border. Eq. 1
summarizes the convolution operation.

Zl
j =

I∑
i=1

W l
i ∗Al−1

i +Bl
j (1)

Where Zl
j is the output volume that contains the feature

maps, W l
i is a tensor containing the filters Al−1

i . The Z is the
previous layer. Lastly, is added the bias Bl

j and each layer Z
has a ReLU activation function.

b) Pooling layer: The pooling layer reduces the size of
the feature map. In this study, we apply the maximum-pooling
technique. This operation calculates the maximum value of a
region of the feature map to improve the generalization and the
convergence speed of the model [28]. In our network Model A,
we adopted max-pooling of size 2 × 2, reducing the number
of pixels in half.

c) Fully connected layer: The last layer consists of
a classic neural network that computes the scalar product
between the input vector 1D and the weight vector and adds
a bias. The input vector is the result of the 2D feature map

converting [16]. Finally, the softmax activation function is
applied in the last layer of the network to transform the units
into probabilities [15].

d) Dropout: Dropout connections are applied to reduce
overfitting In order to reduce overfitting, the dropout method
is generally used in literature during training. This connection
allows excluding some units and their respective connections
avoiding an excessive adaptation of neurons [29].

The training step defines a loss function to calculate the
model error and an optimizer for the optimization process that
will update the weights using the back-propagation algorithm
[30]. In this work, we chose to apply Adam [31] optimizer
in conjunction with the Categorical Cross-Entropy (CCE) loss
function, defined in Eq. 2.

CCE = − 1

N

N∑
i=0

J∑
j=0

yj log(ŷj) + (1− yj)log(1− ŷj) (2)

Where ŷ is the prediction of the model and the respective label
is represented by y. For all three CNN architectures evaluated
in this paper, the learning rate was set to 0.001 [32].

D. Classical CNN architectures

We selected two classical architectures for experimental
comparison: LeNet-5 and AlexNet, both of which were trained
from scratch and initializing the weights randomly.

a) LeNet-5: Was the first case of success of CNNs and
was proposed by LeCun et al. [16] for character recognition.
It is composed of seven layers: three convolutional layers, two
pooling layers with average pooling, and two fully connected
layers.

b) AlexNet: Proposed by Krizhevsky et al. [15] and
won the ILSVRC 2012 [33]. It is composed of ten layers:
five convolutional layers, three pooling layers, and two fully
connected layers.

E. Controller

In this study, the controller uses the Bayesian algorithm
instead of Reinforcement Learning applied by [23]. The
Bayesian approach finds the best possible parameter setup
faster than other strategies and presents a lower computational
cost [34]. Initially is carried a priori sampling of the augmen-
tation policies. These policies should maximize an objective
function O to found the best parameters at each interaction
based on a surrogate model built from the objective function
O. Updating the magnitudes is performed according to the
accuracy feedback obtained from the child CNN.

F. Configuration and Training

All images were randomly partitioned into a training set
and testing set with the proportions 80% and 20%, respectively.
After, we considered 20% of the training set as a validation set
to search for the best augmentation policies. In the two stages,
we used the same CNN: search space (with child CNN); and
classification.



a) Search space: To find an optimized solution, we
defined 300 interactions. In each iteration, the child CNNs
are trained with three different samples with a N number of
epochs and batch size of 64. The controller uses as feedback
the accuracy provided by CNN to search the best possible
augmentation policies from the dataset. Accuracy is a metric
derived from the confusion matrix used to measure the perfor-
mance of a model [35], as defined in Eq. 3.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

where TP is the True Positives, TN True Negatives, FP False
Positives and FN False Negatives.

b) Classification: This step performs the classification
of the cells applying the data augmentation policies according
to the optimization defined in the previous step. The training
set is used according to the first partitioning, i.e., 80% of the
dataset. We adopted a k-fold cross-validation strategy [36], and
the dataset was randomly partitioned into five stratified folds
which are iteratively selected as training and test sets. Finally,
we measured the averaged accuracy of five sets to produce a
single estimation.

IV. RESULTS AND DISCUSSION

The data augmentation optimization was performed on a
machine with a GPU NVIDIA Titan XP with CUDA version
9.0, an Intel processor i5 3.00GHz, and 32 GB RAM. In order
to accelerate the experiments, the classification steps were car-
ried out in parallel in a machine with a GPU NVIDIA GeForce
GTX 1080 TI under CUDA version 9.0, an Intel processor i5
3.00GHz, and 32 GB RAM. The random processes are locked
using a fixed seed value to ensure the reproducibility of the
experiments.

All images were resized to 80 × 80 pixels for Model
A; 32 × 32 pixels for LeNet-5; and 224 × 224 pixels for
AlexNet. Then, we performed the data augmentation policies
using Bayesian optimization for each CNN evaluated.

We represent the choice of data augmentation operations
as a hyperparameter optimization problem, where we extracted
the optimized solution from the dataset for each CNN architec-
ture. Table I presents the augment policies and their respective
magnitudes for each CNN found through the Bayesian search
optimization approach. It is important to note that for twenty
operations available, only ten operations were selected since
each policy is composed by two image processing operations
and its respective magnitudes, there are five data augmentation
policies in this study. During training, each image has 50%
chance to be augmented by a policy and one of the five policies
is selected randomly to augment the image.

The high computational cost is one of the biggest chal-
lenges when working with the optimization approach explored
in this study because as the number of CNN parameters
increases, the time required for training also increases sig-
nificantly. However, our approach allows for better results in
fewer evaluations than a grid search or random search [37].
The training of LeNet-5 was carried out in two hours and seven
minutes, defining in 50 epochs of child CNN. The Model A,
it took two hours with six epochs of child CNN. AlexNet,

the most complex CNN, needed seven hours and fifty-four
minutes for total training, with the number of epochs set at
six. We defined the number of child CNN epochs empirically,
and 100 epochs for the classification step.

Our results demonstrate that optimized data augmentation
operations reduce the overfitting and do not require other
regularization techniques. In order to assess the values of loss
and accuracy during training and validation, the average values
are shown graphically in Fig 4. The charts show each CNN’s
behavior in the training step, in which training losses and
validation losses decrease with each iteration. This behavior
suggests that the training did not overfit the data, thus evi-
dencing the importance of cross-validation in our experiments
allowing results less subject to randomness.

After defining the best data augmentation policies using
Bayesian optimization, we test the trained models generated
by each fold. Table II shows the test result obtained for each
fold and the average result. These results demonstrate that
our Model custom design achieved an average accuracy of
92.54%, and in some folds, obtained an accuracy above 96%,
which is very close to the current state of the art [21] that
did not consider k-fold cross-validation. Finally, the networks
AlexNet and LeNet-5 obtained an average accuracy of 90.00%
and 87.93%, respectively.

In addition, we compared our proposed approach with other
three strategies: i): without data augmentation; ii) different
operations (such as flips, rotations, zoom, whitening trans-
formation, and others.); and iii) random rotations with angles
steps of 10◦.

To evaluate the impact of each strategy on the accuracy
of the CNNs, they were all trained from scratch. To evaluate
the impact of these strategies on the accuracy of the CNNs,
they were all trained from scratch. As shown in Table III,
optimized data augmentation improved the accuracy of all
CNN models. Our results demonstrate that only applying sev-
eral data augmentation strategies without considering Bayesian
optimization reduces classification performance. In particular,
the accuracy of Model A (with different operations) decreased
by 49.21 percentage points compared with optimized data
augmentation. It is worth noticing that optimized data augmen-
tation is the best strategy, but in scenarios where only a short
time is available for training, only random rotations should be
considered as a data augmentation strategy.

V. CONCLUSION

This paper presents and evaluates an approach to search
for the best data augmentation policies using Bayesian opti-
mization. As far we know, our method is the first to introduce
optimizing data augmentation policies for biomedical image
classification, and the experimental results were very close to
the state-of-the-art, reaching an accuracy of 92.54%.

We compared the data augmentation optimized using the
Bayesian method with three other training strategies (without
data augmentation, different data augmentation operations,
and random rotations). Our results point out that Bayesian
optimization overcomes the traditional empirically defined data
augmentation methods. We also proposed a lightweight CNN
architecture we called Model A. Our experimental results



TABLE I. THE BEST DATA AUGMENTATION POLICIES FOUND BY THE BAYESIAN OPTIMIZATION.

Model A AlexNet LeNet-5

Augmentation Strategy Magnitude Augmentation Strategy Magnitude Augmentation Strategy Magnitude

Policy A
brighten 0.18 invert 0.352 clouds 0.522

gamma-contrast 0.665 brighten 0.566 vertical-flip 0.949

Policy B
clouds 0.18 dropout 0.15 gaussian-blur 0.785

brighten 0.708 translate-y 0.054 rotate 0.928

Policy C
shear 0.027 vertical-flip 0.555 translate-y 0.146

rotate 0.503 dropout 0.092 dropout 0.379

Policy D
clouds 0.266 emboss 0.857 clouds 0.814

invert 0.891 rotate 0.626 add-to-hue-and-saturation 0.035

Policy E
brighten 0.726 additive-gaussian-noise 0.047 horizontal-flip 0.389

gamma-contrast 0.611 dropout 0.571 vertical-flip 0.947

Fig. 4. Charts showing the average evolution of accuracy and loss values for the training and validation set.

TABLE II. 5-FOLD TEST AND AVERAGE ACCURACY FOR EACH CNN
MODEL, USING THE BEST DATA AUGMENTATION POLICIES.

Fold Model A (%) AlexNet (%) LeNet-5 (%)

1 94.44 91.27 86.51

2 96.03 90.48 88.89

3 95.24 88.89 89.68

4 91.27 89.68 86.51

5 85.71 89.68 88.10

Average 92.54 90.00 87.93

TABLE III. AVERAGE ACCURACY FOR EACH CNN EVALUATED
CONSIDERING DIFFERENT DATA AUGMENTATION STRATEGIES.

Data Augmentation Strategy

CNN Optimized Without Different Operations Random Rotations

Model A 92.54% 89.68% 43.33% 90.48%

AlexNet 90.00% 87.14% 46.98% 88.10%

LeNet-5 87.93% 87.62% 63.33% 89.68%

demonstrate that combining optimized data augmentation poli-
cies and the custom-designed CNN architecture has signif-
icantly improved the performance of the sickle cell disease
classification. Moreover, the Bayesian search speeds the train-
ing process when compared to grid and random search, while
it reduces the number of trials.

As future work, we plan to test our proposed method for
other biomedical images in order to verify that our findings
hold for similar datasets. Moreover, we intend to perform
benchmarking with the training technique based on transfer
learning and evaluating further optimization algorithms.
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