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Abstract—Coronavirus Disease 2019 (COVID-19) pandemic
rapidly spread globally, impacting the lives of billions of people.
The effective screening of infected patients is a critical step to
struggle with COVID-19, and treating the patients avoiding this
quickly disease spread. The need for automated and scalable
methods has increased due to the unavailability of accurate
automated toolkits. Recent researches using chest X-ray images
suggest they include relevant information about the COVID-19
virus. Hence, applying machine learning techniques combined
with radiological imaging promises to identify this disease ac-
curately. It is straightforward to collect these images once it is
spreadly shared and analyzed in the world. This paper presents
a method for automatic COVID-19 detection using chest X-
ray images through four convolutional neural networks, namely:
AlexNet, VGG-11, SqueezeNet, and DenseNet-121. This method
had been providing accurate diagnostics for positive or negative
COVID-19 classification. We validate our experiments using a
ten-fold cross-validation procedure over the training and test
sets. Our findings include the shallow fine-tuning and data
augmentation strategies that can assist in dealing with the low
number of positive COVID-19 images publicly available. The
accuracy for all CNNs is higher than 97.00%, and the SqueezeNet
model achieved the best result with 99.20%.

Keywords—COVID-19; coronavirus; chest X-ray; convolutional
neural networks; data augmentation; fine-tuning.

I. INTRODUCTION

Coronavirus Disease 2019 (COVID-19) caused by a novel
coronavirus, officially named Severe Acute Respiratory Syn-
drome Coronavirus 2 (SARS-CoV-2) [1], is a pandemic that
first emerged in the Chinese city of Wuhan, and rapidly spread
to other countries, affecting Italy, Iran, Spain, Brazil, Russia,
India, and United States severely. All countries affected by
COVID-19 imposed a nationwide lockdown in an attempt
to slow the spread of the virus, causing a profound overall
impact on the lives of billions of people from a health, safety,
and economic perspective [2] [3]. The COVID-19 can cause
illness to the respiratory system leading to inflammation of
the lungs and pneumonia [4]. There is no known specific
therapeutic drugs or vaccine for COVID-19, and the impact in
the healthcare system is also high due to the number of people
that needs intensive care unit (ICU) admission and breathing
machine for long periods [5].

The most common test technique currently used for
COVID-19 diagnosis is the reverse transcription-polymerase
chain reaction (RT-PCR). However, considering the difficulties

of distributing the kits and collecting the samples and the
waiting time for results, auxiliary diagnostics methods are
welcome to assist the medical team decision making. In this
context, the development of computer-aided diagnosis systems
based on machine learning is essential and widely applied in
several fields of medicine [6] [7] [8].

Early studies demonstrated that many patients infected with
COVID-19 present abnormalities in chest X-ray images [9]
[10] [11]. These images can be easily collected, shared, and
analyzed around the world. Moreover, the task of COVID-19
identification is not easy, and the specialist reviewing the chest
X-ray needs to look for white patches in the lungs, i.e., air
sacs filled with pus or water. However, these white patches can
also be confused with diseases such as tuberculosis, bronchitis,
and other types of pneumonia caused by different viruses or
bacteria.

In this study, we aim to explore the identification of
COVID-19 using chest X-ray images due to its reduced cost,
fast result, and general availability. Our principal goal is to
reach the best possible identification rate among COVID-
19 and other types of pneumonia. We applied a pure deep
learning approach comparing four Convolutional Neural Net-
works (CNNs): AlexNet, VGG-11, SqueezeNet and DenseNet-
121, and we evaluated the performance using a k-fold cross-
validation procedure over the training and test sets. Moreover,
we carried a confusion matrix analysis to measure accuracy,
precision, recall, and F1-score indices.

Furthermore, the chest X-ray image dataset used in this
work contains a few positive images on the COVID-19. To
deal with this, we applied Shallow Fine-Tuning (SFT) training
and data augmentation based on random rotation and shifting
to balance the class distribution and the performance of the
classification. In addition, our approach is fast and simple pro-
ducing high performing system. As far as we know, our result
is the best obtained for COVID-19 identification in chest X-ray
images. We believe that our proposed method can contribute
to future researches intended to help healthcare workers to
identify COVID-19 and to manage patient’s conditions.

The remaining of this paper is organized as follows: Section
II surveys related work; Section III describes the material and
methods; In Section IV we present and discuss the results
obtained. Finally, conclusions and future work are presented
in Section V.



II. RELATED WORK

The COVID-19 has been attracting much attention from the
image analysis research community due to its severity. In this
sense, Narin et al. [12] compared three different CNN archi-
tectures (ResNet50, Inception-V3, and InceptionResNetV2) to
identify COVID-19 in chest X-ray images. They used a dataset
composed of fifty COVID-19 images taken from the open-
source GitHub repository shared by Dr. Joseph Cohen [13]
and fifty healthy lung images from Kaggle repository “Chest
X-Ray Images (Pneumonia)” [14]. The ResNet-50 obtained the
best result achieving an accuracy of 98%.

Hemdan et al. [15] proposed a COVIDX-Net composed
of seven popular CNN models and used the same dataset
considered by [12] and achieved 90% in terms of accuracy.
However, only 25 samples of COVID-19 positive and 25
samples of negative images were considered.

Sethy and Behera [16] also considered the same dataset of
[15]. Their study states that the ResNet-50 as a feature extrac-
tor and Support Vector Machine (SVM) classifier provided the
best performance obtained an accuracy of 95.38%.

Wang and Wong [17] proposed a COVID-Net architecture,
an open-source CNN created to detect COVID-19 on chest X-
ray images. The authors used a dataset created exclusively to
support COVID-Net experimentation, which obtained 93.3%
accuracy in classifying normal, non-COVID pneumonia, and
COVID-19 classes.

Apostolopoulos and Mpesiana [18] adopted different pre-
trained network architectures to address the task of classifica-
tion of COVID-19 in chest X-ray images and achieved 96.78%
of accuracy with MobileNet v2 model.

Khan et al. [19] proposed the CoroNet deep CNN with 71
layers, inspired by Xception (Extreme Inception) and trained
on the ImageNet dataset [20]. According to the authors, the
CoroNet was evaluated using a dataset not publicly available
for download and achieved an average accuracy of 89.60% for
the COVID-19 identification.

Ozturk et al. [21] proposed an approach for early detection
of COVID-19 cases using the DarkNet model as a classifier
YOLO object detection system and obtained an accuracy
of 98.08% for binary classes and 87.02% for multi-class
cases. Ucar and Korkmaz [22] proposed a method based on
SqueezeNet [23] architecture with Bayes optimization and
achieved 98.30% of accuracy.

Pereira et al. [24] utilized texture descriptors, fusion
techniques and a pre-trained Inception-V3 model to identify
COVID-19 obtained 89.00% in terms of F1-score. However,
the validation methodology used in [22] and [24] is a simple
hold-out technique that has a certain probability of building
biased sets, which may achieve abnormal accuracy results,
mainly in small datasets.

The automated classification of COVID-19 in X-ray images
is a hot topic nowadays due to the growing pandemic, and
new works are emerging every day. In contrast to the previous
works, we explore training based on SFT, data augmentation
strategy, and our approach is a promising alternative by deliv-
ering a simple and efficient that allows achieved better results
with a low computational cost.

III. MATERIAL AND METHODS

The main goal of this paper is to evaluate the performance
of different architectures of CNNs to classify COVID-19 in
chest X-ray images. More precisely, we find the best possible
identification rate among COVID-19 and other types of pneu-
monia. Fig. 1 illustrates the steps of the methodology adopted
here.

Fig. 1. Steps of proposed method.

A. Image dataset

The images used in this work were obtained from two
datasets of chest X-ray images. The first dataset contains 108
images of COVID-19 positive and was taken from the GitHub
repository shared by Dr. Joseph Cohen, at the University of
Montreal [13] (last accessed April 10, 2020). We selected 299
images of COVID-19 negative, corresponding to 20% of viral
pneumonia images selected randomly from the Chest X-Ray
Images (Pneumonia) dataset available in Kaggle repository
[14]. Note that only about 20% of the viral pneumonia was
selected in order to avoid imbalance between the classes or
bias the classification performance.

The information about images is summarized in Table I.
To illustrate the dataset resulting from the combination of the
two datasets previously mentioned, sample images from each
class are presented in Fig. 2.

TABLE I. DISTRIBUTION OF THE CHEST X-RAY IMAGES.

COVID-19 Samples Source

Positive 108
GitHub

(Dr. Joseph Cohen) [13]

Negative 299
Kaggle

(X-ray images of Pneumonia) [14]

Total 407

B. Pre-processing

All images were resized to 224 × 224 pixels based on
bilinear interpolation. The resize allows adapting each image
for the input of the CNN architectures used in this work.



Fig. 2. Examples of image instance for each class.

As one of the main obstacles in this study is the lack
of images, we applied data augmentation strategy to increase
the training data artificially without introducing labeling costs
[25]. All training images were augmented by using vertical
and horizontal flips, and rotating each of the original images
around its center through randomly chosen angles of between
-10◦ and 10◦.

C. Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a multi-stage
image classification technique that incorporates spatial context
and weight sharing between pixels in order to extract high-
level hierarchical representations of the data [26] [27]. Thus,
CNN is able to extract features during training. In this work,
four CNNs architectures are tested: AlexNet [25], VGG-11
[28], SqueezeNet [23], and DenseNet-121 [29]. All CNNs were
selected based on their success in previous image classification
tasks.

The AlexNet was the champion of ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) 2012 [20]. This CNN
consists of five convolutional layers, three max-pooling layers,
two fully connected layers with a final softmax layer. In order
to reduce overfitting, AlexNet uses dropout connections and
REctified Linear Unit (ReLU) activation function [25].

The VGG won the identification and classification tasks in
the ILSVRC 2014. In order to reduce the computational cost,
this CNN adopted sequences of convolutional filters of size
3×3 [28]. In this paper, we use the VGG-11 architecture with
batch normalization, due to its simplicity and robustness. It is
important to note that batch normalization is very effective to
overcome the challenges of deep training [30].

SqueezeNet is a compact CNN with approximately 50
times fewer parameters than AlexNet model. It is composed of
a stand-alone convolution layer followed by eight fire modules
and a final convolution layer [23]. Each fire module contains
only a filter of size 1×1 inputting into an expanded layer
composed by convolutional filters of size 1×1 and 3×3. In
this way, the modules are able to perform the same functions
of fully connected and dense layers.

DenseNet-121 architecture uses dense blocks to concate-
nate a number of convolutional layers reducing the number o
features through average pooling. In the present study, we use

the DenseNet with 121 layers: one initial convolutional layer
followed by max-pooling, 116 convolutional layers followed
by batch normalization, and ReLU functions, interpolated with
three transition blocks, and a last average pooling before the
start of fully connected layers [29].

D. Shallow Fine-Tuning

The Shallow Fine-Tuning (SFT) [31] [32] is a training
strategy based on the concept of transfer learning and is
suitable for small data sets. This approach is used to train
deep learning models in which the network is pre-trained for
a classification task using a huge dataset such as ImageNet
[20].

The weights in all convolutional layers are initialized with
the corresponding values from the pre-trained model. These
layers are considered more general and retain information
about texture, color, and shape. SFT performs fine-tuning only
in the last fully connected layer, which is more specialized.
Usually, this strategy is the most common allowing weights of
the last layers to adapt to the classification problem.

E. Training strategy

The training of the CNNs models is defined as an optimiza-
tion problem in order to optimize the quality of the prediction.
In this work, we considered the objective function as the cross-
entropy defined by L(W ). Equation 1 show that L(W ) is
computed over a set of training samples Xj considering the
tuned weights W , parameters f(xj), and the known classes
yj , where j represents the classes COVID-19 positive and
negative.

L(W ) =
1

n

N∑
j=1

`(yj , f(xj ;W )) (1)

In this way, to minimize L(W ), we applied the Stochastic
Gradient Descent (SGD) [33] optimization algorithm with
momentum of 0.9, learning rate of 0.001, and batch size of
eight. All CNNs were trained for 30 epochs.

F. Evaluation methodology

Due to the very small number of positive images of
COVID-19 available, we have decided not to perform hyperpa-
rameter optimization nor early stop strategy. These procedures
require a validation set, which further reduces the number
of images available for testing the models. For this reason,
all CNN models were trained and tested using the stratified
k-fold cross-validation method [34]. All chest X-ray images
were randomly partitioned into ten folds. Then, the model is
trained with k− 1 folds and tested on the remaining fold. The
training and testing procedures are repeated k times, alternating
the testing folds. Thus, we guarantee that each image will
participate in the training process (k − 1 times) and will also
be part of the test group (1 time). Finally, the results from the
k testing sets are averaged to produce a single and trustworthy
estimation.

The metrics used to assess the classification performance
include accuracy, precision, recall, and F1-score indices. All



indices are based on the number of true positives (TP), true
negatives (TN), false positives (FP), and false-negative (FN)
classifications obtained from the confusion matrix [35]. Also,
we measure the standard deviation in order to assess the
confidence of results, where smaller values represent high-
reliability.

• Accuracy: is the ratio between the correct classifica-
tions and total samples (Eq.2).

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

• Precision: is the ratio between TP and the total of
positives classification (Eq. 3)

Precision =
TP

TP + FP
(3)

• Recall: is the harmonic average of recall and precision
(Eq. 4).

Recall =
TP

TP + FN
(4)

• F1-Score: is the weighted average of the precision and
recall (Eq. 5)

F1−Score = 2× Precision×Recall

Precision+Recall
(5)

Also, we used the Receiver Operating Characteristic
(ROC), and the Area Under ROC (AUC) as a reliable clas-
sification performance measure of all possible classification
thresholds.

IV. RESULTS AND DISCUSSION

All experiments were programmed using Python (version
3.6) and PyTorch (version 1.4) deep learning framework [36].
This study investigated the performance of four CNNs archi-
tectures to classify chest X-ray images on COVID-19 positive
and COVID-19 negative (pneumonia) classes.

A. Comparison of architectures

One of the most challenges in training CNNs architectures
for classification tasks is the lack of large enough datasets
for adjust a large number of model parameters. We adopted
SFT fine-tuning training strategy to overcome this problem,
instead of training the models from scratch (as described in
Section III-D). Thus, the weights in the initial layers of CNN
(simpler features) were kept, but the weights of the deeper
layers (more specialized features) were adapted to the problem
of classifying X-ray images generating greater specialization
in the deep layers. It is important to mention that number of
positive COVID-19 images in the public repository is very
small. To overcome this issue, we applied data augmentation
strategies aim to increase the size of the training set.

Table II presents the average classification performance
considering the results of accuracy, precision, recall and F1-
score indices concerning each CNN evaluated. The chart
in Fig. 3 illustrate the variation of each performance val-
ues based on the results presented in Table II. Interest-
ingly, SqueezeNet achieved the best performance, followed by

AlexNet, DenseNet-121, and VGG-11. Also, SqueezeNet is
recognized as having a low computational cost and designed
for embedded systems. Therefore, the result suggested that
our proposed could be used to evaluate chest X-ray images
using mobile devices. Moreover, the standard deviation value
obtained for each CNN was small and indicates that our results
are reliable.

Fig. 3. 10-fold average values of the performance measures for each CNN
model. 1) AlexNet; 2) VGG-11; 3) SqueezeNet; and 4) DenseNet-121.

As in each fold the images in the testing sets do not
repeat, we consolidate the confusion matrices from each fold
by adding the values from each confusion matrix. Therefore,
the confusion matrix presented in Table III summarizes results
for all ten folds, and presents the prediction for all images in
the dataset.

The confusion matrices of each CNN model allow observ-
ing several aspects of the classification problem investigated in
this work. Note that for all CNNs, the COVID-19 positive and
COVID-19 negative is well identified. In particular, AlexNet
and SqueezeNet models were able to classify the most positive
cases of COVID-19 correctly. The results suggest that models
have been able to preserve in the feature maps important
information about visual patterns of diagnostic positive. It
is important to mention that number of positive COVID-19
images in the public repository is very small. In this study, to
compare the performance of different CNN architectures, we
focused to obtain reliable and trustfully results.

With the lack of data, we still cannot recommend these
methods as a diagnostic aid system, but our results support
that the use of CNN models is a promising technique to assist
the early diagnosis of COVID-19 in conjugation with other
standard tests. However, the number of available images tends
to grow as studies advance, and with more accurate researches,
it will be possible to understand the capability of CNNs in
helping detecting COVID-19.

B. Comparison with literature

The best result achieved in this study in terms of accuracy
and F1-score is compared with other state-of-art work in the
literature. The best result in our work was obtained with
SqueezeNet, trained with SFT using augmented data, which
scored 99.20% of accuracy and 99.10% of F1-score (as shown
in Table II). The best results reported in the literature are



TABLE II. 10-FOLD AVERAGE VALUES AND STANDARD DEVIATION OF THE PERFORMANCE MEASURES FOR EACH CNN MODEL.

CNN AUC (%) Accuracy (%) Precision (%) Recall (%) F1-Score (%)

AlexNet 98.30 ± 0.02 99.00 ± 0.01 98.90 ± 0.02 98.60 ± 0.02 99.00 ± 0.01
VGG-11 96.20 ± 0.04 97.20 ± 0.03 96.30 ± 0.04 98.60 ± 0.04 99.00 ± 0.04
SqueezeNet 98.50 ± 0.02 99.20 ± 0.01 99.40 ± 0.01 98.50 ± 0.02 99.10 ± 0.01
DenseNet-121 96.90 ± 0.03 98.30 ± 0.02 98.50 ± 0.01 96.90 ± 0.03 97.80 ± 0.02

TABLE III. 10-FOLD VALUES OF CONFUSION MATRIX FOR EACH CNN MODEL.

AlexNet VGG-11
Positive Negative Positive Negative

Positive 105 3 Positive 102 6

Negative 1 298 Negative 6 293

SqueezeNet DenseNet-121
Positive Negative Positive Negative

Positive 105 3 Positive 102 6

Negative 0 299 Negative 1 298

presented in Table IV for the same COVID-19 dataset. It can
be seen that our best score is upper to the best state-of-the-art
technique reported in the literature.

TABLE IV. HIGHEST ACCURACY OF OTHER CLASSIFICATION
METHODS USING THE COVID-19 DATASET FROM GITHUB [13].

Method Accuracy (%)

Narin et al. [12] 98.00
Hemdan et al. [15] 90.00
Sethy and Behera [16] 95.38
Wang and Wong [17] 93.30
Apostopoulos and Mpsiana [18] 96.78
Khan et al. [19] 89.60
Ozturk et al. [21] 98.08
Our work (SqueezeNet + SFT + data aug.) 99.20

F1-Score (%)

Pereira et al. [24] 89.00
Our work (SqueezeNet + SFT + data aug.) 99.10

V. CONCLUSION

The results presented in this paper point to a promising
using of CNN models to classify COVID-19 cases based on
chest X-ray images. We compared the performance of four
CNN architectures to classify X-ray images in COVID-19
positive and negative (pneumonia) classes, and our training
strategy consists of applying transfer learning with SFT and
different data augmentation approaches. Our best result of
99.20% was upper to the highest accuracy score presented in
the literature; this result was obtained with SqueezeNet model.

Although there are few COVID-19 positive chest X-ray
images, we designed our experiments to minimize the effects
of CNN training with small data sets. The training using fine-
tuning and data augmentation aim to increase the classification
rate, while the stratified k-fold cross validation allows more
reliable results than simple hold-out. Now, it is necessary to
wait for more images of positive COVID-19 to be available
in order to train more reliable models that may confirm the
positive perspectives demonstrated by this study.

The presented results open new opportunities towards
better machine learning based on deep CNNs for automated
detection of COVID-19 and developing of new computer-
aided diagnosis applications. Moreover, exciting opportunities
and future works raise such as testing other CNN models,
evaluating more data augmentation strategies, and applying
some hyperparameter optimization and combining classifica-
tions techniques.
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