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Abstract—In the last decades, for reasons of safety or con-
venience, biometric characteristics are increasingly being used
to identify individuals who wish to have access to systems or
places, and facial features are one of the most used characteristics
for this purpose. For biometric identification to be effective, the
recognition accuracy rates must be high. However, these rates can
be very low depending on the difference (displacement) between
the domain of the images stored in the database of the biometric
system (source images) and the images used at the moment of
identification (target images). In this work, we evaluated the
performance of a domain adaptation method called Transfer
Kernel Learning (TKL) in the face recognition problem. Results
obtained in our experiments on two face datasets, ARFace and
FRGC, corroborates that TKL is suitable for domain adaptation
and that it is capable of improving significantly the accuracy rates
of face recognition, even when considering facial images with
occlusions, variations in illumination and complex backgrounds.

Index Terms—biometrics, face recognition, domain adaptation,
transfer kernel learning.

I. INTRODUCTION

Recently, either for security or convenience reasons, bio-
metric recognition is gaining popularity among applications
that aim to provide access to a particular system or place.
Since facial features can be extracted from most people in our
society, they end up being one of the most used features for
these kinds of applications [1], [2].

Even though facial features are widely used, a few factors
can decrease the system’s performance in facial recognition
tasks. Among these, we can cite the differences among the
capture sensors, illumination changes, age disparity, and oc-
clusion of the facial region [3].

An example in which we can see these variations is in
mobile banking, where they need to authenticate users with
their faces, to open accounts, or authorize transactions, usually
from images of distinct origins like IDs and selfies [4], [5].
In Figure 1 we can see those differences, wherein the upper
row we have images from the Brazilian national ID card, with
constant illumination, and without pose variation, whereas in
the lower row we have selfie images with differences in the
capture sensor and variations among illumination and pose.

This disparity between image domains brings up a problem
called domain shift, in which the distribution of the source
classification train data differs from the test data distribution,
decreasing the performance of the classification task [6].
This kind of performance loss is a big problem in biometric

Fig. 1: Examples of face images obtained from four people
on the domain characterized by the Brazilian national ID card
pictures (upper row) and on the domain characterized by selfie
pictures (lower row).

identification systems, in which high accuracy is needed for
the system to work effectively.

A way to deal with the domain shift problem is using
domain adaptation techniques, a subarea of transfer learning
that uses labeled data from a source domain to improve the
classification task in a target domain [7].

In this paper, we approach the face recognition problem
using a domain adaptation technique called Transfer Kernel
Learning [8] to improve the accuracy of the identification task.

II. DOMAIN ADAPTATION

Domain adaptation is a subarea of transfer learning that
aims to learn from a source data distribution a model with
good performance on a distinct target data distribution [9].
Pan and Yang [10] define the following key concepts related
to domain adaptation theory.

Definition 1 (Domain). A domain D is composed of a
feature space F with d dimensions and a marginal probability
function P (x), which means that D = {F , P (x)}, with x ∈ F .

Definition 2 (Task). Given a domain D, a task T consists
of a set of labels Y and a classifier f(x), which means that
T = {Y, f(x)}, with y ∈ Y and f(x) = P (y|x).



Definition 3 (Domain Adaptation). Given a source domainDS
and a target domain DT and assuming that DS 6= DT regard-
ing their marginal probabilities P (XS) 6= P (XT ), and two
tasks TS ≈ TT , with conditional distribution P (Y S |XS) ≈
P (Y T |XT ). The goal of the domain adaptation is to improve
the prediction fT (·) in the target domain DT , using the source
domain DS data.

Essentially, the domain adaptation objective is to improve
the predictive characteristic of a target domain with a different
marginal probability, using data found in the source domain.

A. Transfer Kernel Learning

Transfer Kernel Learning (TKL) [8] is a promising domain
adaptation technique in tasks related to visual recognition. This
technique aims to use source and target data to learn a domain-
invariant kernel that minimizes the domain variance and is
used to feed a kernel machine. Its formal problem is described
in Problem 1.

Problem 1 (Transfer Kernel Learning [8]). Given a labeled
domain Z = {(z1, y1), ..., (zm, ym)} and an unlabeled target
domain X = {x1, . . . , xn}, with FZ = FX , YZ = YX ,
P (z) 6= P (x) and P (y|z) 6= P (y|x), learn a domain-invariant
kernel k(z, x) = 〈φ(z), φ(x)〉, such that P (φ(z)) ≈ P (φ(x)).
Assume P (y|φ(z)) ≈ P (y|φ(x)) so kernel machines trained
on Z can generalize well on X .

The TKL method follows the principle that even though
metrics like the Maximum Mean Discrepancy can find in-
formation about the domain variation, they aren’t explored
properly, being used only as a penalty to standard learning
methods and this will not properly achieve a local minimum
in the variation.

The problem is explored by applying standard eigen decom-
position on the target kernel matrix KX and then evaluating
the eigensystem on the source data, by using the Mercer
Theorem [8], finding the extrapolated eigenvectors of the
source domain data by the equation 1

ΦZ ' KZXΦXΛ−1X (1)

in which Φ refers to the set of eigenvalues of a particular
domain, Λ is set of eigenvectors, and KZX the cross-domain
kernel between Z and X , evaluated using the kernel function
k. The eigenvectors are then used in the Nyström Kernel Ap-
proximation [11] to find a family of kernels KZ , extrapolated
from a target eigensystem but evaluated on source data.

This family preserves the key structures of the target domain
but does not necessarily minimize the domain variance, this is
achieved by relaxing the target domain eigenvalues ΛX to a set
of Λ eigenvalues that can be used in a quadratic minimization
problem involving ΦZ , KZ and a damping factor ζ that can
be tuned.

After finding the optimized Λ eigenvalues, it is possible to
find a domain invariant kernel matrix, KA, described in the
equation 2.

KA =

[
ΦZΛΦZ

T
ΦZΛΦX

T

ΦXΛΦZ
T

ΦXΛΦX
T

]
(2)

By finding the domain invariant kernel matrix, we can use
the source data portion ΦZΛΦZ

T
,or simply KAZZ , to train

a kernel machine, like an SVM and evaluate the performance
on the target data portion KAXZ found in the kernel matrix
as ΦXΛΦZ

T
. We can see the overall procedure of the TKL

method in Figure 2.

Fig. 2: Overall procedure of the Transfer Kernel Learning
(TKL) method [8].

III. FACE RECOGNITION

Face recognition is the most common identification method
used by humans since it has a high acceptance in society
and provides a non-intrusive collaboration with the system,
as opposed to iris or fingerprint recognition, in which an
individual has to directly interact with the system [3].

A face recognition system can operate in two ways, authen-
tication and identification [1]. An authentication system will
match the user face with another face, of who he claims to be,
acquired from a face database, and assert if he is that person.
On the other hand, an identification system will receive a face
as an input and will verify which person he or she is.

Two fundamental phases are required for the proper behav-
ior of a facial recognition system, the detection of the face
region, and the feature extraction of the detected faces.

A. Face Detection

Face detection is an essential phase of face recognition,
responsible for detecting the face region in an image and
enabling proper feature extraction in the posterior phases.

Given the wide range of variations among facial images,
face detection is a challenging task, especially in an uncon-
strained environment, but recently, with the advances in deep
learning, some very effective approaches are appearing. In
our work, face detection is conducted by using a method
named Multi-Task Cascaded Convolutional Neural Network
(MTCNN) [12].

The MTCNN method uses a structure of three cascaded
neural networks for: (i) detecting the faces in different stages,
(ii) filtering the possible face regions, and (iii) refining the final
result. It also returns a relationship between face detection and
face alignment, returning fiducial points of the eyes and mouth,
so proper alignment can be done after the detection.

In the first stage, a CNN P-NET is used to predict the
probable face positions. After that a CNN R-NET is used in
the second stage to filter the face region, removing the non-
candidate faces. In the last stage, the output of the previous



network enters a CNN O-NET and outputs the face region,
and the positions of the eyes, nose, and mouth. The whole
pipeline of the MTCNN can be seen in Figure 3.

Fig. 3: Pipeline of the Multi-Task Cascaded Convolutional
Neural Network face detection [12].

B. Feature Extraction

With the objective of reducing the dimensionality of the
features and improve the data representation for the classi-
fication task, a Feature Extraction stage is needed, to map
each face to a n-dimensional feature space. In our work, the
feature extraction is done with a pre-trained convolutional
neural network named VGG Face [13], whose architecture can
be seen in Figure 4.

Fig. 4: VGG Face architecture [14].

VGG Face architecture is based on the VGG-16 architecture
[15] and was trained in a database with 2.6 million images over
a total of 2622 subjects. The input of the network consists of
a 224×224×3 facial image, and the output is a feature vector
obtained from the fully connected layer fc7.

IV. EXPERIMENTS

During all experiments, the face detection was performed
using the MTCNN method, described in section III-A, after
that, feature extraction was done, by inputting the face regions

in the pre-trained VGG Face network described in section
III-B. All the faces were normalized per channel using the
standard score normalization, which can be seen in equation 3,
with the mean and standard deviation values provided by the
authors.

Xnorm =
X − µ
σ

(3)

After feature extraction, the data was divided into different
domains, according to their respective database. In all cases,
the tests were carried out in the identification variation of
face recognition, with three classifier instances, one K-Nearest
Neighbors, with k = 1, a regular SVM, and the TKL method.

The parameters were also the same among all tests, with the
damping factor ζ = 10.0, the SVM regularization parameter
was set to 1.1 and the kernel used in both the SVM and the
TKL was the Gaussian kernel with σ = 1.0. All the results
were compared through the accuracy metric.

A. Databases

Two databases were used for evaluation in our work, AR-
Face [16], and the Face Recognition Grand Challenge database
[17].

1) ARFace: The ARFace [16] is a database which contains
face images from 126 subjects with 26 images each, all
the images are obtained in a constrained background with
different contexts. In Figure 5 it is possible to see the different
contexts available in the database, involving variations in facial
expression, illumination, ocular region occlusion, and mouth
region occlusion.

Fig. 5: Context differences in the ARFace database, involving
variations in facial expression, illumination, ocular region
occlusion, and mouth region occlusion [16], [18].

For the domain adaptation task, the following domains were
proposed for analysis:

N: Faces with neutral and other expression variations;
O: Faces with occlusion in the ocular region;
C: Faces with occlusion in the mouth region;
I: Faces with illumination variations.



B. Face Recognition Grand Challenge

The Face Recognition Grand Challenge (FRGC) [17] is a
database proposed to advance and develop research in face
recognition.

The database contains colored facial (RGB) images col-
lected on different seasons for three years, captured in a
constrained or unconstrained setting. It also provides three
dimensional face image data for 3D face recognition tasks.
In Figure 6 we can see the differences between the two
settings, in the first two columns we have images obtained
in a constrained environment with face expression variations,
while in the last three columns, we have images obtained in un-
constrained environments, with differences in the background
complexity and the illumination intensity.

Fig. 6: Examples of images of the FRGC database [17].

For the domain adaptation task, the constrained images were
used as the source domain and the unconstrained images were
used as the target domain.

V. RESULTS

In Table I we can see the accuracy rates obtained on
the three classification tasks for the ARFace database in the
identification face recognition. As aforementioned, N refers
to facial images in neutral or with expression variations, I
refers to facial images with changes on illumination, O refers
to facial images with occlusion in the ocular region, and C
refers to facial images with occlusion in the mouth region.
In the notation X→Y, X represents the source domain and Y
represents the target domain. In our experiments, the neutral
setting N was always used as the source domain, while the
other settings were used as target domains.

Method N→O N→C N→I
1-NN 67.29% 95.89% 99.62%
SVM 64.81% 94.52% 100%
TKL 89.73% 97.71% 99.76%

TABLE I: Accuracy rates obtained on ARFace database con-
sidering the identification task (N refers to faces with neutral
or with expression variations, I refers to faces with changes
on illumination, O refers to faces with occlusion in the ocular
region, and C refers to faces with occlusion in the mouth
region).

As we can see, the TKL method performed very well in all
settings. Particularly, when classifying faces with occlusion
in the ocular region, N→O, the domain adaptation provided
by TKL greatly improved the classification results. Another
important result that must be noted is that the feature vector
obtained from the fully connected layer fc7 of VGG-Face
showed to be robust when dealing with changes in illumi-
nation, given that the accuracy rates on the domain adaptation
N→I were very high and they did not change that much for
the three compared methods (SVM obtained 100% of accuracy
rate, TKL obtained 99.76% and 1-NN obtained 99.62%).

The results obtained on the ARFace dataset also tell us about
the importance of the ocular region for face recognition, since
when this area is occluded, the accuracy rates drop signif-
icantly for the three assessed methods. In this case, N→O,
the domain adaptation provided by TKL was of paramount
importance to overcome this problem.

Regarding the experiments carried out on the FRGC dataset,
Figure 7 shows the results obtained. In these experiments, the
constrained images were used as the source domain, while the
unconstrained images were used as the target domain.

We can see in Figure 7 that the TKL method provided,
also for this more challenging dataset and difficult settings,
significant gain in the accuracy rates, showing its suitability
for facial recognition tasks. While TKL obtained an accuracy
rate of 82.63%, the second best result, reached by SVM, was
76.35%, that is a 6.28% lower result.

Fig. 7: Face recognition accuracy rates obtained by 1-NN,
SVM and TKL methods on the FRGC database.

Since the purpose of this paper is to verify the effectiveness
of domain adaptation methods in the facial identification
task, this paper focused on a domain adaptation protocol
for its experiments, therefore it would be unfair to compare
the results with methods that follow different protocols and
approach a different recognition task. That being the case, the
importance of domain adaptation tasks for face recognition can
be verified and even different state of the art methods could
benefit from using them.

VI. CONCLUSIONS

In this work we evaluated the performance of a domain
adaptation method called Transfer Kernel Learning (TKL) in
the face recognition problem. Results obtained in experiments



carried out on two face datasets, ARFace and FRGC, cor-
roborate the results found in literature that TKL is a powerful
method for domain adaptation. Besides, the results showed that
TKL is capable of improving the accuracy rates of face recog-
nition, even when considering challenging scenarios, with face
images presenting occlusions, variations in illumination and
complex backgrounds.
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