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Abstract—Over the last decades, biometrics has become an
important way for human identification in many areas, since
it can avoid frauds and increase the security of individuals in
society. Nowadays, most popular biometric systems are based
on fingerprint and face features. Despite the great development
observed in Biometrics, an important challenge lasts, which is the
automatic people identification in low-resolution videos captured
in unconstrained scenarios, at a distance, in a covert and non-
invasive way, with little or none subject cooperation. In these
cases, gait biometrics can be the only choice. The goal of this work
is to propose a new method for gait recognition using information
extracted from 2D poses estimated over video sequences. For
2D pose estimation, our method uses OpenPose, an open-source
robust pose estimator, capable of real-time multi-person detection
and pose estimation with high accuracy and a good computational
performance. In order to assess the new proposed method,
we used two public gait datasets, CASIA Gait Dataset-A and
CASIA Gait Dataset-B. Both datasets have videos of a number
of people walking in different directions and conditions. In our
new method, the classification is carried out by a 1-NN classifier.
The best results were obtained by using the chi-square distance
function, which obtained 95.00% of rank-1 recognition rate on
CASIA Gait Dataset-A and 94.22% of rank-1 recognition rate on
CASIA Gait Dataset-B, which are comparable to state-of-the-art
results.

Index Terms—biometric, gait recognition, pose estimation,
human identification.

I. INTRODUCTION

Over the last decades, Biometrics, that consists in the
statistical study of physical or behavioral characteristics [1],
has become an important tool for human identification in many
areas since it can avoid frauds and increase the security of
individuals in society. The most usual biometrics systems that
have been deployed are based on fingerprint or face traits,
which are biological characteristics, harder to imitate than the
behavioral characteristic like voice and gait.

However, despite the great development observed in Bio-
metrics, an important challenge lasts, which is the automatic
people identification in low-resolution videos captured in
unconstrained scenarios, at a distance, in a covert and non-
invasive way, with little or none subject cooperation. In these
cases, gait biometric characteristics can be the only choice.

Gait can be defined as motor behaviors composed by repet-
itive and integrated movements of the human body that form
a pattern of corporal movements that repeat in each cycle [2].
Researches conducted in the last decades show that each
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individual has a special and distinct way of walking [3]. In that
context, gait recognition gains relevance due to its advantages
in comparison with classical biometrics methods: (i) it can be
executed at a distance; (ii) it presents a good classification
performance even with low-resolution images; (iii) it does
not depend on subject’s cooperation; (iv) occlusions do not
interfere so much on performance [4].

In gait analysis there are two different approaches for
characteristics representation. The first one is based on the
silhouette analysis, working mostly with static aspects. The
second one uses a spatio-temporal model. Despite demanding
more computational effort, the model-based methods present
higher reliability and better classification performance because
they work with dynamic aspects of gait [2]. For a model-
based approach, it is necessary a robust pose estimator that can
be utilized as a part o feature extraction, capable of estimate
the position of the individual’s skeleton joints in video with
a good reliability. For that, one can use the OpenPose [5]
algorithm that utilizes Part Affinity Fields (PAFs) to learn how
to associate parts with individuals that are detected within an
image.

The goal of our work is to propose a new method for
modeling the human gait over the frames of a video, analyzing,
at each frame of the video, the angles and distances of the
individual’s body parts to the neck position and building
a signal that represents how each body part behave during
the gait cycles. For this analysis, we utilize the body parts
extracted from 2D human pose estimated by OpenPose [5].
Experiments were made utilizing the public datasets CASIA
Gait Dataset-A [6] composed by 20 subjects with 12 video
sequences each (4 sequences for each camera position: frontal,
lateral and oblique) and CASIA Gait Dataset-B [7] composed
by 124 subjects walking in three different conditions (normal,
wearing a coat and carrying a bag) with 11 view angles
each. The results obtained showed that the proposed method
is promising since they approached state-of-the-art results.

The rest of this paper is organized as follows: in Section II
some related works are briefly presented. Section III discusses
Human Pose Estimation, focusing on OpenPose. Section IV
gives a brief introduction to gait. Section V describes the pro-
posed approach. Section VI shows the carried out experiments
in detail and Section VII draws some conclusions obtained
from the results.
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Fig. 1: Pipeline of the OpenPose method presented in [5]. The method uses the Part Confidence Maps (b) to detect the joints
of human bodies in the input image and associate them using the Part Affinity Fields (c) by Bipartite Matching (d) forming

poses of each individual in the image (e).

II. RELATED WORKS

In this section, some works that are related to the current
proposition are briefly presented. All of them are focused
on gait recognition and present results obtained on public
available gait datasets.

In Wang et al. [8], the authors utilize a method based
on silhouette analysis. The silhouette of a walking person is
segmented from the video frames by a background subtraction
procedure. Then, the changes of the detected silhouettes over
time are represented using an associated sequence of complex
vector configuration which is analyzed using the Procrustes
shape analysis method in order to obtain a mean shape that
describes all the gait sequence. On CASIA Gait Dataset-A this
method achieved 90% of rank-1 accuracy in the best case and
88.75% in the worst.

In Yu et al. [9], a dynamic time warping (DTW) based
contour similarity measure is proposed to be used in gait
recognition based on silhouette analysis aiming to reduce the
effect of noise on classification. On CASIA Gait Dataset-B
this method achieved 83.5% of rank-1 accuracy.

In Chen et al. [10], the authors propose a dynamic gait
representation scheme called frame difference energy image
(FDED to work with human silhouettes even when they are
incomplete. A gait cycle is divided into clusters. The FDEI of
each frame is constructed using the dominant energy image
(DEI) that represents a cluster. The FDEI representation can
preserve the kinetic and static gait information of each frame
even on incomplete silhouettes. On CASIA Gait Dataset-B the
method achieved 91.1% of rank-1 accuracy.

In Liu et al. [11], the authors propose the use of a memory
mechanism inspired by the mechanism of brain sequence
processing. The 2D position of human joints are extracted
using the migratory articulated human detection. Then, this
information is used as input for the memory-based gait
recognition (MGR) network which achieves the process of
memory and identification of the gait sequence. On CASIA
Gait Dataset-A this method achieved 95% of rank-1 accuracy
in the best case and 85% in the worst.

In De Lima and Schwartz [12], a model-based approach
is used to extract the position of the subject’s joints from

each video frame utilizing a pose estimation algorithm. Then,
this information is transformed into signals and movement
histograms to be used as feature descriptors and the subject is
classified using a 1-NN classifier, with Euclidean distance. On
CASIA Gait Dataset-A this method achieved 97.5% of rank-1
accuracy in the best case and 92.5% in the worst. On CASIA
Gait Dataset-B this method achieved 98% of rank-1 accuracy.

III. HUMAN POSE ESTIMATION

Human pose estimation can be described as the detection
of joint points in the human body in a given image [13].
With this information it is possible to find the human limbs
by connecting the joint points and, after, calculating different
features from the person’s limbs movement over time when
the pose estimation is applied on all frames that compose a
video. In our work the OpenPose [5] method was utilized to
detect 2D poses.

A. OpenPose

OpenPose, proposed in [5], is a real-time method for multi-
person 2D pose detection on images capable of performing
detection with high accuracy and good computational per-
formance. It is the first open-source method for real-time
2D pose detection that includes body, feet, hands and face
key-points. Unlike the most common approaches that detects
each subject in the input image and estimate their poses
individually, OpenPose takes a bottom-up approach that treats
the image globally, detecting all body parts in the input image
and associating them forming each individual’s pose. Figure 1
presents the pipeline of the OpenPose method.

This method gains accuracy and performance using an
approach named Part Affinity Fields (PAF) that maps the
position and orientation of body parts present in the image
domain using 2D vectors set along with the Part Confidence
Maps that represent the probability of the existence of a body
part in a given pixel. By using this encoded global information
it is possible to adopt a greedy approach of detection and
association that allows to reduce the computational complexity
without losing the confidence of the results [5].

In the pose detection process, the PAFs are iteratively
improved together with the confidence maps through two



interconnected convolutional neural networks (CNN), one for
the PAF and other for the confidence maps. Then, the parts
are associated based on the most likely matches, forming the
poses [5]. Figure 2 shows an example of 2D pose estimation
using OpenPose.

(a) Input image (b) Output image

Fig. 2: Example of 2D pose estimation by using the OpenPose
method. (a) Frame image of a video from the CASIA Gait
Dataset-B; (b) 2D pose (each colored line represents a limb
part of the individual in the image).

IV. GAIT RECOGNITION

Early studies in Medicine and Psychology have shown that
human gait has some components that could be used to identify
an individual [4] and indicated that every human being has a
unique muscular and skeletal structure, indicating that human
gait recognition is feasible. According to [4], gait has some
unique properties that other biometric approaches do not have:
(i) it can be captured far away and at low resolution, (ii) it
can be done with simple instrumentation (e.g. a camera or an
accelerometer), (iii) it does not need the subject cooperation,
(iv) it is hard to impersonate; and (v) it works well even with
partial occlusion of parts of the body.

Many studies show that gait is a periodic movement that
repeats a pattern into a cycle. According to [14], a gait cycle
is the time interval between successive instances of initial
foot-to-floor contact and each leg has two periods, a stance
phase, when the foot is in contact with the floor and a swing
phase when the foot is off the ground moving forward to
the next step. Figure 3 shows a gait cycle resumed in four
frames from a CASIA Gair Dataset-A [6] video sequence.
Inside each gait cycle the superior and inferior member of
the human body realize a movement similar to a pendulum,
varying its angulation in relation to the horizontal (or vertical)
axis forming a pattern of angle variation.

The main hypothesis of our work is based on the re-
sults obtained by the works presented in Section II, mainly
in [12], which shows that with the information of how the
body members behave during the gait cycle, it is possible to
determine a gait signature based on the angular variation of
each limb part and this signature would keep sufficient spatio-
temporal information about the gait for performing biometric
identification.

V. PROPOSED METHOD

This work proposes a human identification method based on
gait recognition. First, OpenPose [5] is utilized to extract the

(c) Gait cycle frame 3 (d) Gait cycle frame 4

Fig. 3: Example of the gait cycle in a video sequence taken
from CASIA Gait Dataset-A. The cycle begins and ends when
the right heel touches the ground.

2D poses of individuals in all frames of the input video. After,
for each frame, the coordinates of all joint points are utilized
to calculate the angulation of each limb part in relation to
the horizontal axis and the distance between the line defined
by the two points representing the joints of a given limb part
and the point that represents the neck. After that, these two
information are utilized to build, for each limb part, over all
video frames, two histograms (one for the angles and other for
the distances) that are used as the gait feature vector. Finally,
these feature vectors are used by a 1-NN classifier, with a
predefined distance function, in order to assign the identity to
the individual whose 2D poses were estimated in the input
video. Figure 4 shows the block diagram of our method.

a) Input Video

) Subject's Label

Fig. 4: Block diagram of the proposed method for gait recog-
nition using 2D poses.

A. Pose Estimation

The pose estimation is the first step of the proposed method.
In this step, the OpenPose [5] algorithm extracts, in each frame
in the input video, the joints points of the person walking. The



output of this algorithm is a JSON file that contains the vertical
and horizontal coordinates of each keypoint that composes
the detected skeleton in each video frame. In OpenPose, it
is possible to choose which skeleton type will be used in the
pose estimation process. In our work, we used the BODY_25
format, which has 25 keypoints. Figure 5 shows the output of
the BODY_25 format.

Fig. 5: Pose output format of BODY_25 [5].

B. Feature Extraction

After the pose estimation, we select the most important
keypoints to be used in the feature extraction step, that is,
the keypoints that encode more gait information: 2, 3, 4, 5, 6,
7,9,10, 11, 12, 13 and 14. These keypoints define the left and
right arms, the forearms, the legs and the thighs, according to
the BODY_25 format ( Figure 5).

For each limb part, we build a sequence formed by the
angles of that limb part in relation to the horizontal axis in
each frame of the video sequence. For this calculation, given
two keypoints Py = (xp1,yp1) and P = (zpo,yps) that
form a limb part, we consider the member as a 2D vector
w = (z1,y1) where (z1,11) = (zp1 — Zp2,yp1 — Yyp2) and
find the angle ¢ between it and the vector (z2,y2) = (1,0)
utilizing the Equation 1.

T1* T2+ Y1 * Y2
VT +yi = /ag + 3

Analogously to the angle sequence, the distance sequence
for each limb part is formed by the distance d between the
straight line defined by the two limb part’s keypoints and the
keypoint that represents the neck (keypoint 1 in Figure 5), in
each frame. Considering the vector v = Pj,ecr, — P», in which
Peck s the neck point and P» is a keypoint that forms the
member in question, we can use equations 2 and 3 to do this
calculation:

D

( = arccos

Proj,v = (v : u;) * W 2)
[Jw|
d = ||v — Proj,vl| 3)

C. Gait Histograms

With the sequences of angles and distances for each limb
part in the video sequence, we build two histograms: one
histogram for angles and other for distances. For both his-
tograms, we use 16 bins, a parameter value found empirically.
As our method considers eight limb parts, we have eight angle
histograms and eight distance histograms, with 16 bins each.

The angle histograms are defined in the interval [0, 7],
because the possible angle vary between 0 and 7. The distance
histograms are built applying the base 2 logarithmic function
(logs) in the distances, so the distance histograms are defined
in the interval [0,logz(max_dist)], in which maz_dist is
the longest calculated distance. The use of the logs function
improves the performance of the method, as it maps the
distances so that the difference between shortest distances
(most recurring) is accentuated and the largest are grouped.

Finally, we concatenate all angle histograms forming one
1-dimensional angle feature vector and do the same for the
distance histograms. So, at the end, our gait descriptor is
composed of two histograms (angles and distances) of 128
bins each.

D. Classification

For the classification process we use a 1-NN classifier. In
order to decide which distance function should be used, we
assessed two distance functions, the Euclidean and the chi-
square. Results of these tests are presented in Section VL.

Given a distance function, we calculate the distance d;
between the angle histograms of the probe (query) and gallery
(database) videos. Then, we calculate the distance do between
the distance histograms of the probe and gallery videos. The
final distance between the probe and the gallery videos is
dg = (dy + d2)/2. As both histograms, angles and distances,
are normalized, there is no need to normalize the distances d;
and d».

VI. EXPERIMENTAL RESULTS

In order to assess the proposed new method for gait recogni-
tion, we carried out experiments on two gait datasets, CASIA
Gait Dataset-A [6] and CASIA Gait Dataset-B [7].

The CASIA Gait Dataset-A, created on 2001, includes 20
subjects, each one with 12 video sequences, 4 sequences for
each of the three directions: 90, 45 and 0 degrees to the camera
position, that represents the lateral, oblique and frontal view
of the person walking, respectively.

The CASIA Gait Dataset-B, created in 2005, has 124 indi-
viduals walking in three different conditions: normal, wearing
a coat and carrying a bag. Figure 6 shows an example of these
variations. For each walking sequence there are 11 view angles
varying from O to 180 degrees.

In our first experiment, utilizing the CASIA Gait Dataset-
A, we applied our method of gait recognition with the Eu-
clidean and chi-square distance functions and compared their
performances using the Cumulative Matching Characteristic
(CMCQC) curve using the mean accuracy obtained for the three
different directions (totaling 240 walking sequences, 80 for



(a) Normal walking

(b) Walking in a coat (c) Carrying a bag

Fig. 6: Example of the walking condition variation on CASIA
Gait Dataset-B [7] video sequences.

each direction). Figure 7 shows the CMC curves obtained in
this experiment. One can observe that the chi-square distance
function obtained a better performance. This result corrobo-
rates other studies that indicate that chi-square function is a
good metric for histogram comparison [15].
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1.000

0.975 4

0.950

0.925

0.900

Recognition Rate

0.875 1

0.850 4

—m— 91.7% rank-1 accuracy with Chi-Square Distance
—&— 87.9% rank-1 accuracy with Euclidean Distance

0.825 1

0.800

2 3 6 8 10

Rank Score
Fig. 7. CMC curves obtained by using the Euclidean and
chi-square distance functions on CASIA Gait Dataset-A. Chi-
square function obtained a better result.

TABLE I: Rank-1 Accuracy - CASIA Gait Dataset-A

Method Lateral Oblique Frontal

Wang et al. [8] 88.75% 87.50% 90.00%

Liu et al. [11] 85.00% 87.50% 95.00%

De Lima and Schwartz [12] 92.50% 96.25% 97.50%
Our method (Euclidean) 80.00% 87.50% 96.25%
Our method (Chi-square) 87.50% 92.50% 95.00%

Table I shows the rank-1 accuracy values obtained by three
methods presented in Section II ( [4], [11], [12]), including
two recent methods that can be considered state-of-the-art
( [11] and [12]), and also by our method (using both distance
functions) for each position of the camera in the CASIA Gait
Dataset-A. One can observe that all methods showed better
results when the person is in the front position to the camera.
This should be because in this angle there is more information
about the gait signature, mainly because there is no limb
occlusions. One can also observe that our method, with the
chi-square distance function, was superior to the method by
Wang et al. [8] and was competitive with the state-of-the-art
methods proposed by Liu at al. [11] and De lima and Schwartz
[12].

In another set of tests, we used the CASIA Gait Dataset-
B, that is significantly bigger than the CASIA Gait Dataset-A

and has walking sequences that presents variation on clothing
and carrying conditions. For the first test with this dataset,
we utilized only the walking sequences in the lateral direction
(90 degrees to the camera position) and in normal walking
condition (totaling 744 walking sequences), and calculated
CMC curves for our method using both distance functions.
The result of this test is presented in Figure 8. It is possible
to notice that, again, the chi-square distance function showed
better results than Euclidean distance function.

CMC Recognition Rate on Dataset-B (Normal)
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Fig. 8: CMC curve obtained by using the Euclidean and chi-
square distance functions on CASIA Gait Dataset-B utilizing
only the lateral view position and normal walking sequences.

Chi-square function obtained a better result.

TABLE II: Rank-1 Accuracy - CASIA Gait Dataset-B (Nor-
mal)

Method Lateral

Yu et al. [9] 83.50%

Chen et al. [10] 91.10%

De Lima and Schwartz [12] 98.00%
Our method (Euclidean) 91.26%
Our method (Chi-square) 94.22%

Table II shows the rank-1 accuracy values obtained by three
methods presented in Section II ( [9], [10], [12]), including
one very recent method that can be considered state-of-the-
art ( [12]), and also by our method (using both distance
functions) for the lateral position of the camera in the CASIA
Gait Dataset-B. Again, although our method did not get the
highest rank-1 accuracy rate, it obtained (with both distance
functions) higher results than the methods proposed by Yu
et al. [9] and Chen at al. [10]. In general, the tests with
CASIA Gait Dataset-B showed better results considering the
lateral view, this probably happens because: (i) the walking
sequences in CASIA Gait Dataset-B are captured in an indoor
environment and CASIA Gait Dataset-A are captured in an
outdoor environment, (ii) the walking sequences in CASIA
Gait Dataset-A have alternated directions in each sequence
and in CASIA Gait Dataset-B all walking sequences are right-
to-left, (iii) the CASIA Gait Dataset-B is significantly bigger
than the CASIA Gait Dataset-A.

The second test utilizing the CASIA Gait Dataset-B was
carried out with the goal of analyzing the influence of clothing



in gait recognition. We used the video sequences in which the
individuals walk in the lateral direction, in normal conditions
and wearing a coat. The rank-1 accuracy rates obtained by
our method (with Euclidean and chi-square distance functions)
and by De Lima and Schwartz’s method [12] are presented in
Table III. One can observe that in this case, the three results
were inferior to the results presented in Table II, indicating that
variations in clothing may interfere in the gait recognition.

TABLE III: Rank-1 Accuracy - CASIA Gait Dataset-B (Nor-
mal+Wearing a Coat)

Method Lateral

De Lima and Schwartz [12] 95.16%
Our method (Euclidean) 86.29%
Our method (Chi-square) 89.72%

We observe that our method share some ideas with the
method proposed by De Lima and Schwartz [12], that obtained
the best results in all carried out experiments. Both methods
utilize 2D poses and histograms as gait descriptors, however
in the best results the method by De Lima and Schwartz [12]
utilizes two histograms for each keypoint of the detected
skeleton (one histogram for the horizontal coordinate and other
for the vertical coordinate) totaling 24 histograms with 85 bins
each (that results in a 2040-dimensional feature vector), while
our method utilizes two histograms for each limb part totaling
16 histograms with 16 bins each (that results in two 128-
dimensional feature vector - one for distances and other for
angles). As the number of limb parts are lower, our method
leads to a significant reduction in the dimensionality of the
feature vectors and, consequently, improves the computational
performance, while keeping comparable accuracy rates.

VII. CONCLUSIONS AND FUTURE WORK

The results obtained by our method are preliminary and
still have room for improvements. They indicate that the
angular variation of the limbs in gait sequence combined
with the distance to the neck point can encode sufficient
information about the gait signature to obtain good results
in gait recognition. The main advantage of our method is
that compared with the method proposed by De Lima and
Schwartz [12], for example, it presents a better computational
performance because it defines a more compact gait signature
information.

In all conducted experiments that confronted the Euclidean
and chi-square distance functions, we could observe that the
use of chi-square distance function improved the method’s
accuracy. This probably happens because chi-square distance
function seems to suit better for histogram comparisons. As
future work, we intend to assess other distance functions, such
as Bhattacharyya and Intersections [15], since the choice of a
good distance functions matters. We also intend to investigate
the best weights to be used for calculating the average distance
between the angle and distance histograms.

From our experimental results we can also infer the impor-
tance of the pose estimation step to the method’s performance,

since we use its output coordinates to map the individual’s
movements during the gait cycle. A pose estimator with less
detection errors is of paramount importance for the robustness
of the method. For future work, we intend to assess other
algorithms for 2D pose estimations, such as PifPaf [16], and
other skeleton formats.

For future work, we also intend to focus on improvements
of the pose estimation step, mainly in error handling and
noise attenuation that, according to the tests, seems to have
the higher impact in the gait recognition performance, mostly
when there are variations in clothing conditions, for instance.
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