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Abstract—For videos to be streamed, they have to be coded and
sent to users as signals that are decoded back to be reproduced.
This coding-decoding process may result in distortion that can
bring differences in the quality perception of the content, con-
sequently, influencing user experience. The approach proposed
by Bosse et al. [1] suggests an Image Quality Assessment (IQA)
method using an automated process. They use image datasets pre-
labeled with quality scores to perform a Convolutional Neural
Network (CNN) training. Then, based on the CNN models, they
are able to perform predictions of image quality using both Full-
Reference (FR) and No-Reference (NR) evaluation. In this paper,
we explore these methods exposing the CNN quality prediction to
images extracted from actual videos. Various quality compression
levels were applied to them as well as two different video codecs.
We also evaluated how their models perform while predicting
human visual perception of quality in scenarios where there is no
human pre-evaluation, observing its behavior along with metrics
such as SSIM and PSNR. We observe that FR model is able to
better infer human perception of quality for compressed videos.
Differently, NR model does not show the same behaviour for
most of the evaluated videos.

Index Terms—Convolutional Neural Network, Digital Video
Streaming, Quality Analysis.

I. INTRODUCTION

The consume of digital contents is increasingly becoming
part of our everyday lives, especially regarding digital video.
Video streaming is widely transmitted nowadays not only for
high definition television, but also for video chats, conferences
and internet streaming [1].

For video contents to be transmitted to users, some im-
portant processes must be done. First, the video content has
to be coded and transformed in signals that will be sent as
packages to the final user [2]. Next, this signals are decoded
and remounted as video content to be reproduced on the
user side. The problem is that this coding-decoding process

may result in distortions which may lead to differences in
the quality perception. Therefore, the received video, when
reproduced to the audience, may not show the exact quality
as the original source file [2].

Depending on the context of video reproduction, quality
assessment can be a crucial aspect. Usually, the quality of a
video is related to the quality of the images or frames that
compose it. The human perception of the quality of a visual
content can be hard to quantify as it is a subjective matter
and may vary from person to person. Thus, being able to
assess quality is an important task but, definitely not a trivial
one [3]. One of the ways to perform Image Quality Assessment
(IQA) is to make a classification depending on the amount of
information from the original reference image present in the
distorted one [1]. When the access to the full reference image
is available, the IQA approach is called Full-Reference (FR),
and, when it is not available, the IQA is called No-Reference
(NR) approach [1].

Some state-of-the-art techniques evaluate quality of images
and videos purely based on human opinion. Basically, various
samples of images with different levels and types of compres-
sion are shown to human subjects that, based on their visual
perception, classify the samples with scores of quality [4].

Recently, other approaches have been proposed to perform
IQA using automated methods. For example, in the work of
Bosse et al. [1], the authors use datasets of images already
classified according to their quality to train a Convolutional
Neural Network (CNN). Classification was performed with
traditional human review and used as training and validation
samples to the CNN. Then, the CNN models were used to
perform predictions of Image Quality Assessment.

Convolutional neural networks, in recent years, have shown
great relevance among the traditional approaches related to



computer vision. This technique has been widely used due to
the quality and amount of data available, and the computing
power that has been growing significantly through the years.
Furthermore, CNNs allow researchers to provide joint learning
of resources and regression based on raw input data with very
little manual interference needed [5].

These networks receive labeled samples as inputs. As these
samples pass through the network layers by the epochs,
features are extracted and the network learns, more generally,
which features best represent each label [6]. Different types
of layers can be used to build the network structure. Some
of the most commonly used are the convolutional layer, the
pooling layer and the fully connected layer. The convolutional
layer is responsible for applying convolutions using activation
filter masks responsible for extracting the features of the
image samples. The use of this type of layer is the reason
for the name “convolutional neural network”. The filters are
initially defined in a random way and have their values
adjusted gradually at each iteration of the samples in the neural
network [6]. The pooling layer is responsible for receiving
samples and, based on some parameters, producing smaller
samples which occupy less disk space. This fact is important
since neural networks usually demand a large amount of input
samples. Besides this advantage, this layer is intended to
generate more robust features by reducing the sensitivity of the
network to distortions. This way, a greater variety of images
can be associated with the generated features, thus enhancing
the classification [6]. Finally, the fully connected layer is
responsible for performing regression and weight adjustments.
The samples used as inputs to the neural network are initially
divided into training and validation sets. Then, the validation
set is compared with the training set in order to identify
necessary weight adjustments for next iterations [6].

In their work, Bosse et al. [1] use TID2013 [7] and
LIVE [8] datasets of images already classified according to
their quality. The quality labels previously defined by human
subjects are used as classes to train a CNN using 3000 epochs,
10 convolutional layers, 5 pooling layers, as well as 2 fully
connected layers for regression. After the training process, the
CNN models are used to perform predictions of Image Quality
Assessment. Also, it is worth mentioning that, although the
aim of their work was to propose methods for assessment
of image quality in video streaming, all images used in the
training process were single pictures and not extractions of
compressed videos. Thus, we can consider that compression
methods covered by the training process only exploit spatial
redundancies to reduce the size of pictures. Another approach
could also exploit temporal redundancies when considering
a sequence of pictures as frames that compose the video.
Besides, the tests provided by their original article only states
the use of images as tests to the CNN, in order to obtain quality
prediction and compare that result to the quality evaluation
provided by the human subjects in the dataset.

In this paper, we explore the methods created by Bosse et
al. [1] exposing the CNN quality prediction to frames extracted
from real compressed videos. Two different video codecs using

various quality compression levels were applied to them. We
also evaluate how their methods perform while predicting
human visual perception of quality in scenarios where there is
no human pre-evaluation, observing its behaviour along with
metrics such as SSIM and PSNR.

The remainder of this paper is organised as follows. In
Section II we describe the process of acquisition, compression
and extraction of frames used in the test process, as well
as the basic application of these test samples in the CNN
using models previously trained. Section III describes the
experiments and we report the results achieved by this work.
Conclusions and future work are presented in Section IV.

II. METHODS

In this section we introduce our methods used to investigate
whether the CNN models proposed in [1] infer correctly
the perceptual quality of actual compressed videos. First, in
Section II-A we present the raw videos used for compression.
Then, in Sections II-B and II-C we describe the steps to
compress and extract frames from the raw videos. Finally,
in Section II-D we detail the process of evaluation using the
inference models. A flow chart of all the steps can be observed
in Figure 1. Also, the overall configurations of our methods
for this paper is presented at Table I.

Fig. 1. Flow chart showing the main steps of this project.

A. Video Acquisition

First, we collected videos stored in raw formats that rep-
resent diverse scenarios. This diversity is important because
different characteristics can introduce different challenges for
video codecs and IQA models. For this paper, we obtained
four 720p videos with 50 frames per second and no chroma
sub sampling. We chose these videos because their quality and
sub sampling level allowed us to do a more detailed evaluation.



As they have high quality we could explore more freely more
levels of compressions. Also, these videos have no copyright
restrictions and are available on https://media.xiph.org/video/
derf/ [9].

In Figure 2, we present the preview for the four videos
we used to compress and evaluate the CNN models proposed
in [1]. Figure 2a, ducks, shows a frame extracted from the
corresponding video that contains ducks swimming in a river.
This scene has slow movements and the colours have low
frequencies. The most challenging part for codecs to handle is
the wave movements created by the ducks. Figure 2b, house,
shows the landscape of a house surrounded by vegetation. This
scene has elements with low frequency – the house – and high
frequency – the vegetation. Trees have borders with irregular
shapes, which will probably affect negatively the compression
in these regions. Figure 2c, park, shows people running with
distinct clothing in a park. The main characteristic of this scene
is the fast movement of the objects. While camera follows
people, trees appear and disappear in the foreground and
background, creating a not straightforward time dependency
among objects. Finally, Figure 2d, town, shows the aerial
view of a town. This scene is very detailed and presents very
high frequencies, a difficult scenario for video codecs.

B. Video Compression

We compressed the raw videos collected in the previous step
using two video codecs provided by the FFmpeg software [10],
namely, h.264 [11] and h.265 [12]. These two video codecs
reduce the size of raw videos by exploiting spatial and
temporal redundancies. First, they convert the image colour
space to YCbCr and apply chroma sub sampling to reduce
the size of each frame by half without perceptual degradation.
This is due to our vision system that do not distinguish subtle
changes of colours. Then, they apply prediction techniques to
infer whole blocks of pixels by using data of other blocks
previously processed. Some techniques predict blocks using
only data contained in the same frame, this is called spa-
tial prediction [13]. Frames, such as those containing blue
skies, can have well defined patterns and algorithms can use
knowledge gathered previously to predict next blocks. Spatial
prediction techniques are also employed by image codecs such
as JPEG [13] and JPEG2000 [14], which are used in the
work of Bosse et al. [1]. Other techniques use data from
other frames in order to predict next blocks, this is called
temporal prediction [12]. For example, in a movie that contains
a ball bouncing on the floor, blocks in the next frame can be
predicted by observing the displacement of objects compared
to their location in previous frames. Therefore, compression
of videos can have different results when compared with
compression of single images due to the addition of temporal
prediction techniques.

Often, h.264 and h.265 codecs are used for lossy com-
pression but can also be used for lossless compression. After
the prediction step, these codecs use the Discrete Cosine
Transform (DCT) to obtain coefficients in frequency domain
and, then, they apply a quantization matrix to reduce data.

The factor of this quantization matrix controls the compression
behaviour. If the quantization factor is zero, then, all prediction
errors are stored without reduction and, at decoding phase,
they are used to reconstruct the video with no loss. If the
quantization factor is greater than zero, then, it is a lossy
compression and, the higher the quantization factor is, the
smaller will be the size and the overall quality of the resulting
video. Therefore, lossy compression increases the pixel-to-
pixel error and can decrease perceptual quality when the
quantization factor is high.

The FFmpeg software provides implementation of many
video codecs and can control the bit rate of compressed videos
using input parameters. In this paper, we chose h.264 and
h.265 codecs because FFmpeg has a uniform parameter, the
Constant Rate Factor CRF, that controls the compression level
of these codecs. The CRF parameter for h.264 and h.265 varies
from 0 to 51, where 0 means the compression is lossless and 51
means the compression has the highest loss. The default value
for CRF is 23 and the documentation says that, in order to
keep visually lossless quality, one should use CRF values near
17 or 18. In this paper, we vary CRF from 1 to 51 using h.264
and h.265 for every video described in Section II-A. Below
is an example of the command line we used to compress the
video ducks.y4m to ducks_h264_1.mp4 using the codec
h.264 with CRF equals to 1.

$ ffmpeg − i ducks . y4m \
−vcodec l i b x 2 6 4 −c r f 1 ducks h264 1 . mp4

C. Frame Extraction

We used the FFmpeg software to extract 10 frames from
each compressed video. First, we queried the duration of the
videos using the ffprobe command, a program included
in the FFmpeg installation. Below is an example of the
command line we used to query the duration of the video
ducks_h264_1.mp4.

$ d u r a t i o n =$ ( f f p r o b e − i ducks h264 1 . mp4 \
−s h o w e n t r i e s f o r m a t = d u r a t i o n \
−v q u i e t −of csv =”p =0”)

Then, we generated 10 time stamps at random ranging from
0 to the duration of each video. Finally, we extracted the next
frame after the generated time stamps in each compressed
video. Note that the time stamps generated for a particular
reference video were used to extract frames from all cor-
responding compressed videos. Below is an example of the
command line we used to extract the first frame after the
second 5 of the compressed video ducks_h264_1.mp4 as
the image ducks_h264_1_5.bmp.

$ ffmpeg − i ducks h264 1 . mp4 \
−s s 5 −vf rames 1 ducks h264 1 5 . bmp

D. Perceptual Quality Inference

After extraction, we evaluated the compressed video frames
using the CNN models proposed by Bosse et al. in [1]. In their

https://media.xiph.org/video/derf/
https://media.xiph.org/video/derf/
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Fig. 2. Preview of the videos obtained for compression, frame extraction, and model evaluation.

work, the authors built models from two datasets, TID2013 [7]
and LIVE [8], using two different approaches, FR and NR, in
which they compare CNNs with two different pooling layers
applying standard mean or weighted mean. In this paper, we
will explore only the FR and NR models built from TID2013
dataset using weighted mean variant of pooling layer.

The original authors have made their code and models
available on https://github.com/dmaniry/deepIQA. In order
to evaluate a compressed frame using the FR approach,
the reference frame needs to be passed to their program.
Differently, for NR approach, only the compressed frame
needs to be passed as input. The output of all executions
were stored in a Comma Separated Values (CSV) file to
run the analysis described in Section III. Below is an ex-
ample of the command line we used to execute the CNN
model fr_tid_weighted.model to predict the perceptual
quality of the compressed frame ducks_h264_1_5.bmp
using the reference ducks_reference_5.bmp for the FR
approach.

r e s u l t =$ ( py thon e v a l u a t e . py \
−−model f r t i d w e i g h t e d . model \
−−t o p w e i g h t e d \
ducks h264 1 5 . bmp d u c k s r e f e r e n c e 5 . bmp )

Additionally, we also computed quality measurements of
the compressed videos using the ImageMagick software [15].
This software is often used to automate image edition but it
also provides the ability to compute quality measurements
of compressed images given the reference picture. In this
paper, we computed Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity (SSIM) for every compressed frame using

TABLE I
EVALUATED PARAMETERS

Data Value
Compression Codecs H.264 and H.265
Quality Loss levels (CRF) 0, 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51
Assessment approaches FR and NR
Videos 4
Frames Extracted per Video 500
CNN Training model TID2013 weighted
Total of Frame Samples 2000

the corresponding frame of the reference video. Below is an
example of the command line we used to compute the PSNR of
the compressed frame ducks_h264_1_5.bmp regarding its
reference frame ducks_reference_5.bmp. The residuals
are stored in the output image residuals.png and can be
ignored.

p s n r =$ ( magick compare −m e t r i c p s n r \
ducks h264 1 5 . bmp d u c k s r e f e r e n c e 5 . bmp \
r e s i d u a l s . png 2>&1)

All scripts for data acquisition, video compression, frame
extraction and evaluation are public available in our repository
on https://bitbucket.org/luizcoro/seminario-multimidia-2019/.

III. RESULTS

In this section, we present and discuss our results. We
gathered outputs of the CNN models proposed by Bosse et al.
in [1] along with the quality measures PSNR and SSIM. PSNR
is based on pixel-to-pixel error of the compressed frames and
SSIM is a measure that treats structural components differently
in order to achieve a quality closer to our visual perception.

https://github.com/dmaniry/deepIQA
https://bitbucket.org/luizcoro/seminario-multimidia-2019/


Therefore, the results of the CNN models should present more
similarities with SSIM than PSNR.

Instead of presenting the results for each extracted frame,
we opted to present in terms of mean and standard deviation.
This aggregation also generalize the experiments and improve
the readability of graphs. Additionally, we inverted the output
v from the CNN models, to analyse quality level instead of
quality loss level, also to be able to compare them with the
other measures in this same behavior. It was accomplished by
using the function vinv = 100 − v. The 100 element in the
function represents the highest possible output value v from
the model and originally meant the highest quality loss, while
0 was the lowest quality loss. After the inversion, at the graphs,
0 represents the lowest quality level, while 100, the highest
quality level.

In Figure 3, we present the results of the models FR and NR,
and the measures PSNR and SSIM, varying values of CRF.
We noted that the FR model describes more accurately the
perceptual quality of the compressed videos than PSNR. In our
experiments, PSNR had approximately a constant decreasing
behaviour for all videos as the CRF increased and, therefore,
does not corresponds well to our visual perception. Differently,
the FR model presents a non-linear descending curve showing
that the perceptual quality of compressed videos does not
decrease at the same rate. This behaviour seems more natural
to our visual perception since small degradations sometimes
are not captured by our visual system. Furthermore, when the
video begins to present distortions, as CRF values increases,
our visual system begins to perceive the decreasing of quality
more clearly, which agrees with the FR model.

Its important to notice that the FR value presents a larger
standard deviation as CRF increases, especially for park and
house videos. These videos present more details and move-
ment, which affect negatively the compression. Differently,
PNSR presents larger standard deviation for smaller values
of CRF, thus corroborating its inability to correctly quantify
the perceptual quality of the video.

Another important aspect is that the results of FR model
have more similarities with SSIM than PSNR, even though
they do not agree precisely. This is expected as the SSIM
measure captures more characteristics of our visual system
than PSNR does.

In contrast, the NR model did not exhibit an accurate
description of our visual perception in most videos. This is due
to the absence of information about reference frames, which
compromises the ability of the method to infer the perceptual
quality. For example, in the video ducks, the NR model
obtained very low fluctuation as the CRF value increased. We
believe that this behaviour happened because the frames were
very similar. As we compress the video, it is expected its
perceptual quality to diminish. Yet, it can be observed that
the curves representing park and town videos, in Figure 3b,
showed an unexpected oscillation (as also a large standard
deviation), with exception of the video town compressed with
h.265. However, in house, the NR model was very close
to the FR model and described the perceptual quality of the

compressed video more accurately. Such result may be due to
the presence of reference in the training process. Therefore,
there are cases in which the NR model can be used to infer
the human perception of quality in compressed videos. Further
investigation is needed to point the cases that the usage of NR
model is appropriate.

According to FFmpeg documentation, CRF values around
17-18 were expected to generate compression without quality
loss perceivable by our visual system. However, as our results
show, this threshold appears to be around 25-26 when using
the FR model, for the videos presented in this paper. Therefore,
more aggressive compressions can be used, saving space and,
consequently, improving transmission.

In this paper, we do not show the sequences of videos
to compare with the results. We suggest running the scripts
publicly available in our repository on https://bitbucket.org/
luizcoro/seminario-multimidia-2019/ to have access and repro-
duce the compressed videos.

IV. CONCLUSIONS

In this work we evaluated the results of the methods created
by Bosse et al. in [1], using various frames as test samples
extracted from several compressed videos. For this work, we
used four raw videos. We generated different quality levels of
compression for each video. We also utilized h.264 and h.265
codec compression in order to explore the effects of the loss
levels in the result of the automatic evaluation.

In terms of NR assessment of images, it can be noticed
that the results is sometimes equivocated, as the methods
suggest that visual perception alternates sometimes between
lower and higher values, even though the quality in our tests
only decreases. Also, as shown in Figure 3b, the algorithm
predicted a kind of uniform level of quality despite the
constant decreasing of compression quality. We believe that
it is due to the fact that that video has very similar frames.

In contrast, results also demonstrated that the proposed
methods of Image Quality Assessment using Deep CNN has
a great effectiveness in most cases when using FR approach.
Despite the CNN models have only been trained with single
pictures, exploiting only spatial redundancies, FR method
was able to infer perceptual quality on compressed video
frames. Indicating that the approach covered in this paper can
be considered a feasible solution for IQA of video frames
specially in FR approach. As future work, we propose to
investigate further the cases in which the usage of NR model
is appropriate.
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Fig. 3. Results for each video using h.264 and h.265 video codecs. In x axis, we vary the values of CRF while, in y axis, we present the results for the FR
model (a), NR model (b), PSNR(c) and SSIM (d). Each line describes the different videos that we previously presented in Figure 2.
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