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Abstract—Convolutional Neural Network is an important deep
learning architecture for computer vision. Alongside with its varia-
tions, it brought image analysis applications to a new performance
level. However, despite its undoubted quality, the evaluation of
the performance presented in the literature is mostly restricted
to accuracy measurements. So, considering the stochastic char-
acteristics of neural networks training and the impact of the
architectures configuration, research is still needed to affirm if
such architectures reached the optimal configuration for their
focused problems. Statistical significance is a powerful tool for
a more accurate experimental evaluation of stochastic processes.
This paper is dedicated to perform a thorough evaluation of kernel
order influence over convolutional neural networks in the context
of traffic signs recognition. Experiments for distinct kernels sizes
were performed using the most well accepted database, the so-
called German Traffic Sign Recognition Benchmark.
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I. INTRODUCTION

Autonomous vehicles is a major trend that will change the
paradigm of goods and people transport [1]. Currently, one
of the main technological challenges related to autonomous
vehicles is the correct perception of external environment [2].
Computer vision is a powerful tool that allows the autonomous
system to “understand” the world around. One of the most
popular machine learning techniques is Neural Networks [3].
Recently, deep networks have experimented a fast evolvolution
and specialization in complex problem-specific designs. In the
case of image classification, a particularly effective architecture
is the Convolutional Neural Network (CNN) [4].

A problem of particular interest for the autonomous vehi-
cles application in the area of computer vision is classifying
traffic signs. We reviewed a wide bibliography on this topic
(section II), and found a variety of solutions and architectures
proposed for this application. However, very few papers seek to
present general conclusions about the best configuration of the
proposed neural networks architectures (e.g. amount of filters,
number of layers and filter order) for the specific application.
Even those who focus on doing multiple tests varying particular
architecture have little or no statistical analysis to substantiate
the results. For instance, [5] compares the performance of
five distinct architectures for traffic signs detection without
tuning networks configuration. Authors, indeed, combine any
features extractors with distinct base architectures, nevertheless,
all components are treated as closed modules without revealing
the examination of such “black-boxes”. Another example is
[6], which employs genetic algorithms just in the context of

obtaining the optimal learning ratio and number of epochs to
be used for training a CNN.

One exception is [7], that analyses the outcomes of distinct
kernel sizes in a CNN model in the context of traffic sign
recognition. However, little or no discussion is made about the
character intrinsically stochastic of the learning process and the
randomness of the neural network parameters initialization. As
usual, comparisons are restricted to the model’s accuracy and
lack the statistical significance evaluation of results.

This work proposed a review of Sichkar and Kolyubin paper
[7] in the direction of finding the best kernel size in a traffic
signs recognition application using a CNN architecture. It aims
at validating the results presented by the original paper, while
proposing a more in-depth statistical analysis underlain by a
broader set of experimental results. The objective of this work
is not to advance the state of the art in terms of classification
accuracy in the benchmark used, but to point out the need for
more robust statistical analysis to reach general conclusions.
The results presented here invalidate the conclusions in their
original article. This may be explained by an inadequate exper-
imental design.

This paper is organized as follows. In Section 2, a detailed
theoretical review of the application of neural networks to the
problem of interest is presented. In Section 3, the techniques
used and the way the results were produced will be presented.
In Section 4, experimental results are evaluated. And finally,
section 5 analyses conclusions and perspectives for future
work.

II. PREVIOUS WORKS

Traffic sign detection, tracking and recognition are important
issues concerning autonomous and assisted driving, signaling
inventory and quality control. This section brings a review
of traffic sign detection and recognition approaches as well
the most used public benchmarks. Similarly to other computer
vision applications, a number of recent researches in these fields
are based on deep learning architectures.

In therms of public databases, the most remarkable one is
The German Traffic Sign Recognition Benchmark (GTSRB)
[8] which contains 51,839 images and 43 classes. GTSRB has
a compatriot dedicated to sign detection [9], the German traffic
sign detection benchmark (GTSDB), containing 900 images
with the corresponding signaling bounding boxes annotations.
A more recent database, the The European traffic sign dataset
(ETSD) assembles several European public available datasets:
from Belgium, the KUL Belgium Traffic Signs dataset [10];



from Croatia, the MASTIF datasets [11]; from France, the
Stereopolis dataset [12]; from Germany, the above mentioned
GTSRB [8]; from Netherlands, the RUG Traffic Sign Image-
Database [13]; and from Sweden, the Swedish Traffic Signs
Dataset [14]. ETSD amounts 82,476 images of 164 classes.

A. Detection

An example of direct detection traffic sign detection is pre-
sented in [15]. This approach relies on the Single Shot Detector
(SSD) architecture [16], basically, a feed forward CNN, which
produces predictions on the position and class of target objects.
The predicted bounding box position is then submitted to 2D
Pose Prediction which fits the box to the quadrilateral which
best adjusts to the traffic sing. The method ends up with a
boundary corner estimation process that produces based on the
sign class shape an accurate boundary for such occurrence. The
presented experiments, in terms of SSD architecture adaptation,
is limited to reducing computational complexity in order to
accomplish processing time requirements for the application,
permitting a low-power mobile platform to reach 7 FPS. Song et
al. [17] proposed an efficient CNN which remarkably minimize
the redundancy, downsize the parameters set and speed up the
networks. So, it reduces its computational cost, achieving 833
ms per frame on a 2048 × 2048 px image.

An region proposal approach is presented in [18]. The
proposed deep detection network is composed of four modules.
Firstly, CNN layers that compute features. In parallel, the so-
called attention network, which makes a rough detection, is a
color segmentation module, exploiting intrinsic properties of
signs. The third module employs a fully convolutional network
to produce the final regions proposals. The last module is an
improved Fast Region-based Convolutional Network (Fast R-
CNN), functioning as a detector (classifier and regressor) and
synthesizing information from the remaining modules. In the
experiments, the method is compared with other approaches,
without concerning optimizing the internal architecture. In the
most successful experiments using a GPU equipped computer,
produced a 7.8 FPS for input frames of 1024 × 800 px.

A combination of image analysis and pattern recognition
techniques for traffic sign detection dedicated to mobile systems
is presented in [19]. The method is based on complementary
interest regions extraction approaches relying on color and
shape which follow a preprocessing stage which enhance traf-
fic sign regions and fade background. The candidate regions
provided by the interest region detectors are then classified as
either traffic sign or background by a Support Vector Machine
(SVM) using Histograms of Oriented Gradient (HOG) features.
Regions claimed as signs are then filtered in order to eliminate
false positives.

An adaptive color method for sign detection method based
on adaptive color threshold is presented [20]. First an adap-
tive segmentation threshold is calculated using the cumulative
distribution function of the image histogram. Afterwards, an
approximate maximum and minimum normalization method
is used to suppress the interference of high brightness and
background areas. Results are submitted to a shape symmetry

detection algorithm based on statistical hypothesis testing. The
experimental evaluation on the GTSDB obtained an accuracy
which exceeded 94%.

A method for detection and classification of traffic sign is
presented in [21]. Roughly speaking, the method can be split
up into color based ROIs segmentation and shape classification.
While K-means and an area-based filter are exploited for
ROIs extraction, shape classification extract pyramids of HOGs
which are discriminated by a SVM.

B. Traffic Signs Recognition

A number of scientific studies in the literature are dedicated
to traffic signs recognition. Their performance comparison is
easier when they use the GTSRB, the widest spreading traffic
signs recognition benchmark. [22] present and evaluate the
use of Spatial Transform Network (STN) and CNN. The most
successful assemblage was STN-CNN-STN-CNN-STN-CNN
consisting of more than 14 million of parameters which achieve
an accuracy 99.71%. The deep learning architecture that won
the contest in the IJCNN 2011 [23] is presented in [24]. It con-
sists of a committee of 25 CNNs, encompassing approximately
38.5 million of parameters and achieving 99.46% accuracy.
Each one of the 25 CNNs parameters are initialized randomly,
five well-known image enhancement techniques are presented
to the input of five specialized CNNs. Outputs of each CNN
relative to each class are democratically averaged producing the
outcome of the so-called Multi-Column Deep Neural Network.
The use of Multiscale-CNNs was proposed in [25], concerning
on a two stages CNNs in which the output of the first stage
is also presented, after an additional pooling, to the fully
connected layer, conveying a multi-scale feature representation.
Authors present some variations of architectures, the most
successful consisting in receiving only a gray level image as
input which obtained 99.17% accuracy on GTSRB while having
1,437,791 parameters to be trained.

A traffic sign recognition approach based on a combination
of complementary and discriminant feature sets containing
HOG, Gabor features and Compound local binary pattern is
proposed in [26]. The method used a extreme learning machine
(ELM) network as classifier. The results of the experimental
work concerning the GTSRB reached 99.10% of accuracy. A
similar approach using SVM [27] achieved 97.04%. An ap-
proach based on robust traffic sign image descriptor, consisting
on a variant of HOG, and sparse classifiers is presented in [28].
The method provided 98.17% of accuracy on GTSRB.

III. METHODOLOGY

As previously introduced, in this work will be made a review
of [7], so we implement the same architecture of CNN, but
we plan our experiments to enable a more thorough statistical
analysis of the outcomes.

A. Convolutional neural network architecture

The herein presented CNN is composed of a convolutional
layer, a layer of dimensionality reduction (pooling), one hidden
layer and the output layer. A 3× 3× 3 version of the standard



Fig. 1. CNN architecture example with a 3x3 kernels’ size.

TABLE I
CNN SPECIFICATIONS

Parameters Description
Weights Initialization HE Normal

Weights Update Policy Adam
Activation Function ReLU

Pooling 2 x 2 Max
Loss Function Negative log-likelihood
Cost Function Average of Loss Functions

Stride for Convolution Layer 1
Stride for Pooling Layer 2

convolutional neural network applied for the problem of traffic
signs recognition is presented in Fig. 1. The architecture
receives a 32 × 32 RGB input image which is submitted to
by 32 N ×N × 3 filters, where distinct values for N are to be
evaluated in the experiments. Filtered maps are, then, processed
by a rectified linear unity activation function followed by a
2 × 2 max pooling. Remaining maps are fully connected to a
hidden layer with 500 neurons which in turn are connected to
the 43 neurons on the output layer, accordingly to the number
of classes in the dataset. Table I presents the functions and some
other specific characteristics used in such CNN implementation.

B. Statistical analysis

In order to compare multiple models in machine learning
Pizarro [29] proposes two approaches: Parametric Analysis
and non-parametric analysis. However, as [30] points out,
parametric analyzes (e.g. ANOVA) is based on assumptions
that the samples are drawn from normal distributions and, in
general, there is no guarantee for normality of classification
accuracy distributions across a set of problems. Therefore, in
this work, a non-parametric analysis of the accuracy of the
models will be made.

Dietterich [31] proposes tests based on 5×2 cross validation
as a strategy that counterbalances the need for multiple runs,
while avoiding overlapping test sets for each round (which in-
flates the hypothesis of independence between runs). Otherwise
[29] proposes thirty rounds of execution with re-shredding of

the data, however with multiple executions every time to deal
with outliers.

The nonparametric approach consists of transforming each
round of execution, in relatively ranked results. So the best
result (highest accuracy and / or lowest error rate) is ”the first”,
that is, receive rank 1. Similarly, rank two, three, four, etc. and
so on to the other results are assigned for each of the thirty
repetitions.

Initially we tested the hypothesis that all the algorithms were
equivalent and that the difference between results in each round
is due to nothing more than luck. If this is true, no algorithm
should perform better than another consistently, that is, if this
hypothesis is true, even if in some cycle, one of the algorithms
is better than another, in general, the average rank of all of
them must be the same. For this we use the Friedman’s [32]
test.

In Equation 1, be rij the rank of the j-th of k algorithms on
the i-th of N data sets. The Friedman test compares the average
ranks of algorithms 1

n

∑
rij , about the null hypothesis, which

states that all the algorithms are equivalent and so their average
ranks should be equal. Being k the number of models and n
the total number of rounds of execution of the models.

χ2
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12n

k(k + 1)

 k∑
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)2
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If it is possible to falsify the hypothesis that all algorithms
have an equivalent accuracy, the question arises which algo-
rithm is better and how they can be compared with each other.
In this problem [30] proposes the use of tests that avoid two-by-
two comparisons, for this purpose we use the Nemenyi Test [33]
to calculate the difference between the averages of rank and
compare them with a “critical difference” (CD). The CD tests if
there is statistical significance to affirm that there is a difference
between the accuracy of the methods. Equation 2 presents the
calculation of the critical difference by the Nemenyi method:

CDF = zadj

√
nk(k + 1)

6
, (2)



where n and k are the same as in Eq. 1 and the value of zadj
is obtained from the table of the Normal Distribution [34] and
will be a function of Type I error rate that will be tolerated by
researches.

IV. EXPERIMENTS

A. Experiments design

The dataset used for training and evaluating the CNN per-
formance in this work is [35] which is the same employed
in [7]. Broadly speaking, it is a pre-processed derivation of
the GTSRB [8], with insertion of artificially generated data
to balance the number of available elements of all classes. In
the following experiments, the dataset was divided between
training, validation and test data, being respectively 86,989,
4,410 and 12,630, as in the reference article. However, differ-
ently from [7], each network configuration was trained from
the scratch for 30 times.

The purpose of the experiments is evaluating the influence
of a specific CNN parameter value (in this case, the kernel size
of the convolutional layer) on the accuracy of the network.
The choice of accuracy as an analysis parameter was to allow
comparisons with the reference article [7]. The analyzed models
have kernel sizes 3×3, 5×5, 9×9, 13×13, 15×15, 19×19,
23×23, 25×25 and 31×31. As the database images are RGB
32 × 32 px, these kernel sizes were varied from the smallest
possible 3× 3 to close to the maximum possible 31× 31 and
are in accordance with the reference article.

B. Results and Analysis

Fig. 2 shows the results of the thirty executions’ accuracy for
each model. The boxplot show the mean, standard deviation,
minimum and maximum acuracy.

Fig. 2. BoxPlot of Model’s Accuracy.

Is already possible to notice that there is a great variation
between the results of the models. Models with better kernel
size obtain better results, especially models with kernel size
3×3 and 5×5, with the latter having the highest mean accuracy.

TABLE II
AVERAGE ACCURACY TABLE

Average Accuracy
3X3 5X5 9X9 13X13 15X15

0.886685 0.888390 0.878694 0.866030 0.856490

Average Accuracy
19X19 23X23 25X25 31X31

0.847786 0.840878 0.839751 0.839692

Table II shows the average accuracy in each model. Compar-
ing these results with those presented in the reference paper [7]
it is possible to notice that, with the exception of the accuracy
for 3x3 and 5x5, the average accuracy presented by Sichkar
and Kolyubin paper fit inside of the distance of two standard
deviations from the mean accuracy obtained in our experiments.

To perform the non-parametric test of the null-hypothesis
that all the models are equivalent, we must rewrite the results
in terms of the relative rank they obtained in each round [36].
In this way, the best result (the most accurate) receives rank 1,
the second highest accuracy receives rank 2 and so on until all
methods are ranked in each round for all rounds. For all of the
thirty rounds, each method will receive a rank between 1 and
9.

Fig. 3 presents the histogram of the ranking results as
discussed previously.

Fig. 3. Histogram of Rank of Models.

It is possible to notice that some methods were ranked with
non-integer values. This occurs when two methods achieved
exactly the same result in one run, so they were given the
average between the ranks (e.g., instead of both being classified
as seventh place, or both being classified as eighth place, the
two received rank “7.5” and the other methods are classified
regardless of what happened).

When comparing the results of the ranks’ histograms with
the boxplot, it is noteworthy that the model with a 3×3 kernel
seems to have better rank results than the 5 × 5 model, even
though the second has a higher average and a smaller variance



TABLE III
AVERAGE RANK

Average Rank
3X3 5X5 9X9 13X13 15X15
1.7 1.7 2.3 4.27 5.47

Average Rank
19X19 23X23 25X25 31X31
6.57 7.35 7.43 7.55

around the average. This can be explained because the rankings
depend not only on the accuracy of the model in each round,
but also on how this accuracy is compared to the other models
in the same round. So, when we represent the results in terms of
rank, part of the correlation between the accuracy of the models
becomes explicit, which is not possible to notice when we look
only at the accuracy distribution of each model individually.

Table III shows the average rank of each model.
From the ranks averages we can have a good understanding

of how the models perform in relation to others.
To test the null hypothesis (what explains the variation

between the data is luck) we will use the chi-square [34] (Table
A4). Table of the Chi-Square Distribution for p-value of 0.99
(with 8 grades of freedom) we have χ2

0.99 = 20.09. Equation 1
presents the chi-square estimation for our problem. Calculating
for n = 30 and k = 9 we get χ2

F = 187.49, that is, the result
of this calculation shows us that the null hypothesis can be
rejected.

At that point we initiate the post hoc analysis. Equation 2
presents the calculation of the critical difference by Nemenyi’s
test [33]. Using values proposed by [34], assuming the per
comparison Type I error rate (αPC) of 0.05, we will use a
zadj = 2.39. The Equation 2 result CD = 50.7. If we normalize
the CD by the number of replications we can directly compare
the value with the average rank of each model [30]. So our
normalized critical difference is CD/n = CDn = 1.69.

The idea behind Neyemin’s test is that when performing
multiple independent 2-by-2 tests the probability that at last
one of them, by chance, results in a false positive increases ex-
ponentially with the number of models. The critical difference
is a factor that already considers the number of models to be
compared and, instead of conducting all paired t-tests (e.g., in
our case 9 × 8/2 = 36 comparisons), we can compare all the
differences between ranks models with CD to determine if the
difference between models’ results has statistical significance.

Fig. 4 presents the critical difference as a distance, placing
all average ranks in a “ruler” for comparison. If the size of the
difference between the average rank of two models is greater
than CD, then the hypothesis that they are equivalent can be
rejected, otherwise, there is no statistical significance in the
difference between the results, so this test says nothing about
these models.

The image shows a spatial perspective about the relationship
between the average rank of models and the calculated CD.

Finally, a Table IV with the final results of the comparisons

Fig. 4. Average Ranks dispose in a ruler, cooperation with CD.

between the models. We can see that the statistical analysis
indicates which are the best models with 3×3, 5×5 and 9×9
kernel sizes and that we cannot show that there is a statistical
difference between them. Our conclusions differ from the
reference article [7] since our results indicates smaller kernels
provides a greater accuracy for a CNN with this architecture.

V. CONCLUSION

This paper has presented the use of standard convolutional
neural networks for the problem of traffic signs recognition.
The architecture recieves a 32 × 32 RGB input image which
is convolved by 32 N ×N × 3 filters. Filtered maps are, then,
submitted to a rectified linear unity activation function followed
by a 2×2 max pooling. Remaining maps are fully connected to
a hidden layer with 500 neurons which in turn are connected to
the 43 neurons on the output layer, accordingly to the number
of classes in the dataset, which was derived from the German
traffic sign recognition benchmark. Nine distinct values for the
N parameters were evaluated, each of them was trained from
the scratch for 30 times.

The statistical analysis herein presented indicates that the
best results where provided by convolutional layers of 3 × 3,
5 × 5 and 9 × 9 which did not produced significant statistic
difference. This conclusion is somehow different to the one
presented by Sichkar and Kolyubin in [7] which pointed out 9×
9 and 19× 19 as the ones which produced the best accuracies.
The reason for that discrepancy is probably due to the stochastic
characteristic of the network training that was not so carefully
taken into consideration in [7].

Future work could explore statistic analysis with multiple
CNN architectures and multiple data sets of traffic sign. At
same time, focus in more robust indices to determine the quality
of neural networks than accuracy (ROC, AUC, ...).
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