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Abstract—Rumination may reveal important behavioral as-
pects of livestock animals and has been increasingly studied
using new sensors technologies. In this work a new device was
developed to collect close-up videos from the animal mouth
during the rumination period. Using shallow and deep machine
learning techniques, a software that classifies the basic mouth
movements from these images has also been developed. A baseline
performance for this equipment has been established using the F-
score metric. SVM achieved the highest F-score of 79.3% for the
shallow learning approach. The best F-score using deep learning
was 75% using VGG16.

I. INTRODUCTION

More efficient production methods are constantly being
sought to cope with the population growth and increasingly
scarce areas for agriculture. Therefore, the precision livestock
farming has been inserted into the daily life on-farm as a
support tool for the cattle rancher, allowing the producer to
identify needs and obtain individualized information of cattle.
Precision livestock farming is also proving to be an important
tool to mitigate the pressure over the environment as the
need for food and other livestock derived products increase
worldwide [1].

In addition, [2] points out that precision farming supported
by information and communication is a practical approach to
cattle management that enables the use of best practices and
ensures high-quality meat. In today’s world connected to the
network, information is passed on a scale never seen in the
history of humanity. In this perspective, the precision livestock
industry gains new impulses and can favor technological
innovation in a constant way. This managerial approach has
been increasingly used in the field, in order to diagnose

failures in the strategic planning of cattle ranch. Furthermore,
computer management aims to maximize production, reduce
productive inputs, aiming for differentiation in the market. In
view of this, precision livestock farming is essential to obtain a
competitive advantage, since markets are increasingly dynamic
and globalized, which do not allow errors at the primary
production points.

Several recent works report promising results regarding the
automation of animal behaviour data gathering for precision
livestock, using different kinds of sensors, like microphones,
accelerometers, pressure sensors and video cameras [3], [4].
Among the many different behaviours of interest, those related
to cattle rumination are one of the most important for nutrition
and health analysis [5]. The process of feeding and rumination
of the animals, as well as their implications on the vitality of
the herd is observed over time by cattle ranchers. In agreement,
[6] state that cattle producers can estimate the number of chew-
ing done by animals during rumination. However, for a better
efficacy in the productive processes it would be impracticable
to observe bovine rumination, tacitly by cattle ranchers, given
the time required for observation and inaccurate diagnosis.

Currently the pressure sensor is one of the most used
methods for capturing animal rumination. [6] and [7] used
this resource in their research on bovine rumination. In [6] a
halter-mounted pressure sensor was used to capture chewing
and rumination cycles in 300 healthy cows of three distinct
lactating breeds for a period of 24 hours. The mapping of
chewing and rumination cycles of these animals allowed to
identify intervals that can be used as references for further
studies and make it possible to point out sick animals from that



country. [7] conducted an experiment on 60 cows to verify the
effectiveness of the Swiss-developed device, the RumiWatch,
a sensor for capturing jaw movements.

In our work we propose a different approach based on a
new low-cost camera device that is attached to the animal
and can provide a very close look at the cow mouth. This
device, named Rumicam, is an adaptation of an old common
accessory used in many rural areas in Brazil, called canga.
This accessory is placed over the cow’s neck to avoid that it
enter pastures outside the ones that are destined for grazing
and so has the additional advantage of being easily mounted on
the animal. Figure 1 shows a cow using the Rumicam device.

Fig. 1. Picture of a cow using the device called Rumicam

A dataset of images captured by the Rumicam was created
and used to train and test several machine learning classifiers.
In order to give a first baseline performance for this new
equipment, we tackled the problem of detecting if the cow’s
mouth is opened or closed. Details about this new device, the
dataset, the experiments, results and discussion are presented
in the next sections.

II. MATERIALS AND METHODS

The Rumicam is composed of a structural backbone that
follows the same design as the traditional canga as seen in
Figure 2 but carrying two portable cameras (Fig. 2a) positioned
to capture frontal videos during grazing behavior and lateral
videos for observing the passage of the food bolus through
the esophagus. The size of the rods that carry the cameras
can be adjusted through several sliding mechanisms (Fig. 2b)
in order to be used by different size and breed animals. The
upper parts of the rods are covered with leather (Fig. 2c) to
turn the device more comfortable for the animal, as these are
the parts that have the greatest contact with the animal body. A
durable storage box (Fig. 2d) allows the inclusion of additional
electronics, like programmable circuit boards and extra battery
source and data storage. The two cameras are Spy-pens with

Fig. 2. Components of the Rumicam: (a) two cameras, (b) five handles for
size and angles adjustments, (c) leather-coated aluminum rods and (d) durable
electronics storage box

8 Gb of internal memory and record videos at 1280 X 960
pixels of spatial resolution at 30 frames per second.

For the experiments, three videos, around 30 minutes each,
were recorded using the Rumicam, both in the same farm from
the Brazilian city of Rio Verde de Mato Grosso (18º73’35”S,
55º12’77”W) using only the camera with the frontal view. The
videos were recorded on 3 different days using 3 different
cows: September 10, 2017 (late afternoon), November 5, 2017
(early morning) and January 20, 2018 (noon). Two of the cows
are hybrids from Nelore (Bos taurus indicus) and Caracu (Bos
taurus taurus) breeds. The third one, imaged on November, is
a Nelore. Figure 3 shows one frame from each of the 3 videos
and illustrates the background variability.

Two different experiments have been conducted to evaluate
the performance of the equipment in the problem of detecting
if the cow’s mouth is opened or closed in each video frame.
The first experiment used shallow learning techniques and
frames extracted from the third video, capture in January 2018.
The second experiment used deep learning techniques and
frames extracted from the first and second videos captured
on 2017. In the following, details for each experiment are
presented.



(a) September 2017 (b) November 2017

(c) January 2018

Fig. 3. Pictures of the three cows captured with the Rumicam on (a)
September 10, 2017 (a Nelore and Caracu Hybrid), November 5, 2017 (a
Nelore) and January 20, 2018 (another Nelore and Caracu Hybrid).

(a) Opened (b) Closed

(c) Intermediate

Fig. 4. One sample for each of the classes used in the first experiment: (a)
cow with the mouth opened, (b) closed and (c) in a intermediate state

A. Experiment I: Three Classes and Shallow Learning

For the first experiment, 439 frames from the January’s
video have been extracted, one per second, and discarding
some frames were it was not possible to see the mouth, due to
the head position. The frames were divided into three classes
(groups): 74 opened mouths (Fig. 4a), 170 closed mouths
(Fig. 4b) and 195 images with the mouths in an intermedi-
ate position (Fig. 4c). This third class, called intermediate,
represents the frames where it is not yet clear if the mouth
was closed or opened.

(a) Opened Caracu Hybrid (b) Opened Nelore

(c) Closed Caracu Hybrid (d) Closed Nelore

Fig. 5. Two samples for each of the classes used in the second experiment,
one for each different day of data collection (a) Caracu hybrid with the mouth
opened, (b) Nelore with the mouth opened, (c) Caracu hybrid with the mouth
closed, (d) Nelore with the mouth closed

Four supervised machine learning algorithms have been
tested for the F-Score performance using a stratified 10-fold
cross-validation as the sampling strategy: KNN [8], SVM [9],
Adaboost [10] and Random Forest [10]. All algorithms have
been configured using the default parameters values from
Weka software version 3.9.1. The ANOVA hypothesis test has
also been applied and the resulting p-value reported.

B. Experiment II: Two Classes and Deep Learning

The second experiment used the other two videos, captured
in 2017. The dataset has 886 frames from these videos and
is separated in only two classes: opened and (n=411) closed
mouth (n=475). Figure 5 shows 4 sample frames from this
dataset with two different cows with mouths opened ( 5a and
5b) and closed ( 5c and 5d).

Five deep learning architectures have been used in this
second experiment: VGG16 [11], VGG19 [11], ResNet50 [12],
InceptionV3 [13] and Xception [14]. All the five models
were initialized with the Keras default hyper-parameters and
pretrained (transfer learning) using the ImageNet weights
and subsequently fine tuned. The dataset has been randomly
divided to have 64% images for training, 16% for validation
and 20% for testing. The following metrics have been used to
measure the deep learning performance for each architecture
and each class (opened and closed mouth): precision, recall
and F-Score. The ANOVA hypothesis test has also been used
in this experiment.

III. RESULTS AND DISCUSSION

Regarding the first experiment, Table I shows the F-Scores
for each class and classifier together with their weighted
average. The SVM presented the highest mean F-Score of
79.3% and also the highest F-Score for the classes closed



Fig. 6. Normalized confusion matrix for the SVM classifier (percentage values
over the predicted values)

and intermediate, 81.3% and 77.9% respectively. Regarding
the opened mouth class, the Random Forest algorithm stood
out with a F-Score of 80.3%. The better results for SVM is
consistent with [15] that used SVM to classify opened and
closed mouths in humans and with [16] that used SVM to
detected closed eyes in humans. We could not find any work
directly related to the classification of opened and closed
mouth in cattle, so this results can also serve as a baseline
for future work.

TABLE I
F-SCORE FOR EACH CLASS AND CLASSIFIER TESTED - EXPERIMENT I

(PERCENTAGE VALUES)

Class SVM KNN Adaboost Random
Forests

Opened 78.2 76.6 58.3 80.3
Closed 81.3 72.0 24.7 78.8

Intermediate 77.9 69.6 55.1 76.8
Mean 79.3 71.7 43.5 78.2

The ANOVA test produced a p-value equal to 0.0163,
indicating a statistically significant difference between the
mean F-Score of the classifiers at a 5% significant level.
The SVM has been chosen for a further analysis using the
normalized confusion matrix shown in Figure 6. The matrix
shows that just in 2% of the cases a closed mouth has been
incorrectly classified as an opened mouth and in 5% the reverse
happened. Most of the classification errors are related to the
intermediate class. This may be linked to the difficult, even for
humans, to correctly classify the mouth in this intermediate
state and suggests that in the future we could rely on a
different way to classify the mouth state, maybe concentrating
on identifying only when the mouth is opened or closed.

Table II shows the overall results for the deep learning tech-
niques related to the second experiment. VVG16 achieved the
highest F-Score of 62.5%. Despite having a higher precision of
69%, ResNet50 presented a much lower recall rate, indicating

Fig. 7. Normalized confusion matrix for the VGG16 classifier (percentage
values over the predicted values)

that the model may be overfitting the training data. The
ANOVA test, however, resulted on a p-value equal to 0.0512
which cannot be used to infer any statistically significant
difference between the mean F-Score of the classifiers at a
5% significant level.

TABLE II
PERFORMANCE FOR EACH DEEP LEARNING ARCHITECTURE USING 4

DIFFERENT METRICS - EXPERIMENT II (PERCENTAGE VALUES)

Arquit. Precision Recall F-Score
VGG19 57 52 54.4
VGG16 62 63 62.5

InceptionV3 59 51 54.7
Xception 60 43 50.1
ResNet50 69 32 43.7

The VVG16 has been chosen for a further analysis using the
normalized confusion matrix shown in Figure 7. The matrix
shows that most of the confusions are related to opened mouths
being classified as closed (68%). Deep convolutional networks,
like those used in this experiment, are known to not perform
so well in small datasets [17] and this may be happened in this
case. Further studies using data augmentation on the training
set may be a future path for exploration.

Figure 8 shows examples of misclassified opened mouth. In
the first example (Fig. 8a) we have a high contrast image due
to the clear sky and the angle of the camera, turning the mouth
very dark and hard to see. The second example (Fig. 8b) shows
how close the camera can be when the mouth is opened and
showing some feature from bovine papillae.

Figure 9 shows examples of misclassified closed mouth.
High contrast and difficult angles are also a problem in these
cases. These problems suggest that a more representative
dataset should be provided in the future to better train the
machine learning algorithms. Another types of cameras and
angles should also be tried in future experiments. This baseline
experiments used only one of the two cameras and it is



(a) Error Example 1 (b) Error Example 2

Fig. 8. Two opened mouths that have been misclassified as closed

(a) Error Example 3 (b) Error Example 4

Fig. 9. Two closed mouths that have been misclassified as opened

expected that the combination of images from different angles
would further improve this first results.

The equipment production cost, considering only the ma-
terials used, like the rods, leather covers, connectors, pen-
cameras, has been approximately $75.72 (American dollars
converted from Brazilian currency on May 2020). The most
expensive part being the two pen-cameras, $15.60 each, and
the leather-covered rods, $35.96. The costs of the competing
devices that use other kind of sensors are not reported in the
papers reviewed.

IV. CONCLUSION

This paper presented a new device to collect videos of
animals ruminating at an angle previously considered unprece-
dented, and that can contribute to identify hidden patterns in
animal behavior. The experiments shows a baseline perfor-
mance that can be improved in the future but already presented
some initial results using machine learning techniques that
are encouraging, although not optimum, with best F-Score of
79.3% achieved by SVM on a mouth state classification prob-
lem. In the future, this device and the information regarding
the state of the mouth through time during a longer observa-
tion period could be used to estimate rumination parameters
important to infer health conditions or to perform experiments
with different feeding systems.
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