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Abstract—Currently, the use of unmanned aerial vehicles
(UAVs) is becoming ever more common for acquiring images in
precision agriculture, either to identify characteristics of interest
or to estimate plantations. However, despite this growth, their
processing usually requires specialized techniques and software.
During flight, UAVs may undergo some variations, such as
wind interference and small altitude variations, which directly
influence the captured images. In order to address this problem,
we proposed a Convolutional Neural Network (CNN) architecture
for the classification of three linear distortions common in UAV
flight: rotation, translation and perspective transformations. To
train and test our CNN, we used two mosaics that were divided
into smaller individual images and then artificially distorted.
Results demonstrate the potential of CNNs for solving possible
distortions caused in the images during UAV flight. Therefore
this becomes a promising area of exploration.

Index Terms—Convolutional Neural Networks, Precision Agri-
culture, Unmanned Aerial Vehicle, Linear Distortions, Image
Processing

I. INTRODUCTION

At the end of the 19th century, studies already indicated
concern about the growth of the world population and the
capacity of the planet to produce food to feed it [1]. At the
time it was feared that the population would grow in geometric
progression, while food production would grow in arithmetic
progression. In the end, this would lead to a drastic food
shortage and, as a consequence, hunger. Therefore, inevitably
population growth should be controlled.

These predictions were not confirmed, largely due to the
significant technological advances that occurred in the agri-
cultural area between 1950 and the late 1960s [2], a set of
research technology transfer initiatives that increased agri-
cultural production worldwide, particularly in the developing
world, beginning most markedly in the late 1960s. The initia-
tives resulted in the adoption of new technologies, including
high-yielding varieties (HYVs) of cereals, especially dwarf
wheats and rices, in association with chemical fertilizers
and agro-chemicals, and with controlled water-supply (usually
involving irrigation) and new methods of cultivation, including
mechanization. All of these aspects mentioned were seen as a
kind of “practice package” to replace “traditional” technology
and thus being used as a whole [3].

Nowadays, we are seeing a new evolutionary phase in
the field of agriculture researches. The main component of
this phase is Precision Agriculture (PA), which is nothing

more than a farming management concept based on observing,
measuring and responding to inter and intra-field variability in
crops. The goal of precision agriculture research is to define
a decision support system (DSS) for whole-farm management
with the goal of optimizing returns on inputs while preserving
resources [4].

Dealing specifically with problems involving the PA area,
it has shown itself to be heavily dependent on imaging
and mapping technologies e.g. for estimating growth [5], or
identifying other important agronomic characteristics [6] such
as nitrogen stress. Advances in Unmanned Aerial Vehicles
- UAV - technology led to its widespread popularization.
With the corresponding drop in operational costs even smaller
plantations are now able to afford the usage of imaging aided
technologies. The latest economic report by the Association
of Unmanned Aerial Vehicle International [7] points out the
agricultural market is by far the largest segment for UAVs.
In the United States alone is forecast to create thousands of
new jobs and considerable revenue and taxes. With the growth
of this market production costs are expected to drop. It, in
turn, will allow smaller enterprises such as family and small
agricultural cooperatives [8] to benefit from the diminished
operational costs to also make use of precision agriculture
aided by UAVs. Other countries like Japan are also making
extensive use of UAVs in agriculture and in Brazil there
is a growing number of startup companies producing and
commercializing UAVs.

Different from all other aerial image acquisition devices,
such as satellites and large aircraft, UAV’s allow images to be
captured at low and medium altitudes (50 to 400 m), providing
a more detailed view of the region to be observed. Another im-
portant element for the effectiveness of the analysis performed
with this equipment is the used sensors. There is a wide range
of devices used in the process: RGB cameras; heat capture
sensors, multi and hyperspectral cameras, among others. Each
device, with its characteristics, produces information that leads
to different types of analysis. However, the process of data
acquisition, in general, is the same independent of the sensor
used: the equipment is coupled to the aircraft and the images
are sequentially captured during the flight. After finishing the
process, with the aircraft already on the ground, these images
are organized into a mosaic to represent the entire area.

As the images are taken during the flight, UAVs may



undergo some variations, such as wind interference and small
altitude variations, which directly influence the captured im-
ages, causing a natural misalignment among the imagens that
comprise the mosaic and, more often, among the different
spectra witch form a specific frame. Usually, the distortion
generated in this process are classified as linear distortion and
can affect significantly the success of specific software used
in agriculture images. Thus, in order to address this problem,
the present work proposes a Convolutional Neural Network
(CNN) trained for the classification of three linear distortions
common in UAV flight: rotation, translation and perspective
transformations.

The remainder of this paper is organized as follows. Section
II shows some recent papers published in the area. In Section
III we detail the problem and their implications. In Section
IV, we present an overview of the CNN and how it was
used to deal with our problem. Section V presents the image
dataset used in the experiments. Sections VI and VII present
the experiments and a discussion of the results. Section VIII
presents the conclusions and future work.

II. RELATED WORK

In [9] the authors evaluated different techniques for obtain-
ing control points in multispectral images of soy plantations
obtained by UAVs. The authors also investigated whether the
combination of characteristics derived from different tech-
niques generates better results than when those techniques
are used individually. The paper evaluated three detection
algorithms with different characteristics (KAZE, MEF, and
BRISK) and their combinations. Results show that KAZE
techniques have the best results.

In [10] the authors presented a convolutional neural network
to estimate homography from a pair of images. The network
in question has 10 layers with feed-forward architecture and
receives a pair of grayscale images. Subsequently, it produces
a homography with 8 degrees of freedom, which can be used
to map the pixels from the first to the second image.

The work in [11] introduces a hierarchical approach based
on Siamese convolutional neural networks to estimate ho-
mography between two images. The networks are stacked
sequentially to estimate of error limits. In each convolutional
network module, the resources of each image are extracted
independently, generating a shared set of kernels, which is
known as the Siamese model. Subsequently, the image pairs
are merged to estimate the homography. With this approach,
the results show that through deep learning it is possible to
estimate homography from an image pair.

III. PROBLEM DEFINITION

Due to the inherent aspects of UAV flight, image capture is
subject to distortion that needs to be dealt with and corrected.
These distortions may be linear or nonlinear. In this paper, we
will consider only three linear distortions that may occur dur-
ing flight: translation, rotation and perspective transformation.

In a translation operation all points are moved in a straight
line in the same direction. In summary, a conversion operator

will perform a geometric transformation that maps the position
of each element of the image in an input image to a new
position in the output image [12].

Rotation transformation is defined as a rotary movement
on a fixed axis. According to Gonzalez (2002) [12], three
transformations are needed to rotate a point relative to another
arbitrary point in space: the first will translate the arbitrary
point to the origin, the second will rotate, and finally the third
will translate the point back to its original position.

A perspective transformation in general takes place with the
conversion of the 3D world into a 2D image. This is the same
principle that human vision works on and the same principle
that the camera works on. In perspective projections, parallel
lines converge (in 1, 2, or 3 axes) for a given point. This way,
objects that are farther away are smaller than closer objects.

Perspective transformation will project three-dimensional
points onto a plane. Such transformations play a fundamental
role in image processing, as they offer a way of approximating
the way in which the image is formed by looking at the
three-dimensional world [12]. In general, these projective
transformations allow us to capture natural motion dynamics
through a mathematical mechanism. These transformations do
not preserve size or angle but preserve incidence and cross-
ratio.

IV. CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Networks (CNN) are a category of
deep learning algorithms capable to mimic the human learning
process. These networks are based on the concept of the recep-
tive field from biological systems, which gives these networks
the ability to learn different filters and characteristics from
an image. This way, CNN can explore the spatial correlations
among pixels in an image in order to extract image attributes
that are relevant for different tasks, such as image classification
and segmentation [13]–[15]. Most CNN models available in
the literature are defined in terms of three types of layers,
which are differently combined to improve image classification
or segmentation: convolutional, pooling and fully connected
layer. In the sequence, we present a brief description of each
layer.

The convolutional layer is responsible for extracting mean-
ingful attributes from an image. To accomplish that, it applies
a series of convolution operations to the input data, which acts
as receptive filters that highlight different attributes of a local
region of the image. In general, theses filters are defined as
kernels size 3×3 or 5×5. Additionally, the activation function
ReLU (REctified Linear Unit) and a Batch Normalization
operation are applied to the result of the convolutional layer.
This helps to speed up the training of the network and to
improve its results [16].

The convolutional layer is usually followed by a pooling
layer. The main purpose of this layer is to reduce the feature
maps computed by the previous layers, thus reducing the net-
work sensitivity to distortions in the image and data shifting.
In general, it is used a pooling mask of size 2×2, thus reducing



a 4 pixels region to a single value according to some criteria
(e.g., maximum or the average pixel of the region) [17].

At the end of the CNN, we find the fully connected (or
dense) layer. About 90% of the parameters of a CNN are found
in these layers. This layer receives as input data the 2D features
maps obtained from previous layers and its main goal is to
learn a 1D feature vector capable to discriminate the input
image. This feature vector is used as the input of a softmax
classifier, which returns the most probable class for a given
input image.

V. IMAGE DATASET

A. Selected Images

For our experiments, we considered two mosaics of images
acquired using an unmanned aerial vehicle (UAVs) to create
the datasets of images used in the experiments. These mosaics
have 18543×2635 and 8449×11180 pixels size, respectively.

For each dataset, we selected grayscale patches of 150×150
pixels size. Subsequently, we discard patches that have little
(or any) significant visual information. This was determined
by the number of pixels (n) with a value of 0 in the patch.
Thus, if n < 20, the patch is considered for the composition
of the dataset; otherwise, the patch is discarded. Therefore, we
built two datasets, which we will call DS1 and DS2 and which
have, respectively, 3218 and 1586 images. Figure 1 illustrates
two examples of images patches generated for each dataset.

Fig. 1. Example of images that make up both datasets: (a) an image of DS1;
(b) an image of DS2.

B. Dataset images distortions

For both datasets, DS1 and DS2, we artificially distorted
the images using two affine (rotation and translation) and
one projective (perspective) transformation. It is important to
mention that, as a result of the transformation method, the
transformed images have black areas, especially at the limits
of the image area, which can directly influence the neural
network training and testing (see in Figure 2). To avoid these
black areas, we cropped a 64× 64 pixels region aligned with
the center of the image, thus removing any artifact added to
the image by the selected transformation method.

In order to apply the transformation over the images, the
following set of parameters were used:

• Rotation: we used θ = {0◦, 5◦, 10◦, 15◦}, thus generat-
ing 4 classes of rotated patterns.

Fig. 2. (a) Image after a 15-degree rotation transformation. Notice that this
image presents black areas which can directly influence the neural network
training and testing; (b) Cropped region with 64× 64 pixels size.

Fig. 3. Perspective transformation in UAV up and down simulations.

• Translation: images were translated by 25 pixels in 4
possible directions: right and top; right and down; left
and top; and left and down, thus generating 5 equivalence
classes (the original image is also included).

• Perspective: To simulate UAV up and down possibilities
in moments of image capture, we also deal with per-
spective transformation. The Figure 3 illustrates the UAV
up and down simulations and the respective distortions
caused by pitch variations. For this transformation, we
generated two variations for each of the two possibilities
mentioned above, thus totaling 5 equivalence classes
(the original image is also included). In this way, we
choose four control points in a source image to map it
to a destination image. Perspective transformation works
with the row and column relationship. As we are only
simulating the UAV up and down possibilities, we keep
the proportion of lines identical to the original image.
For the columns, the proportions in each of the distorted
classes created were: (0.05, 0.66); (0.05, 0.77); (0.02,
0.66); (0.02, 0.77).

It is also necessary to define a mathematical operation that
relates the distorted image to the base image, otherwise it
is impossible to state that an image is distorted. Thus, all
artificially distorted images underwent a subtraction operation
from the original image. Let A be the distortion-free image
and B the distorted image relative to A, we define X as
the image resulting from the subtraction operation and to be
processed by the CNN. The operation performed between A



and B is defined pixel by pixel. We must also consider that
the subtraction operation may result in negative values and an
image is expected to have only positive values. To avoid that,
we normalized the computed xij values as follows:

xij = max(bij − aij , 0) (1)

where aij ∈ A represents a pixel of image A, bij ∈ B
represents a pixel of image B and xij ∈ X represents a
pixel of image X . Figure 4 illustrates a subtraction between
an artificially distorted image (rotation) and a distortion-free
image.

Fig. 4. Example of subtraction operation between two images: (a) Artificially
distorted image (rotation); (b) Corresponding distortion-free image; (c) Result
from the subtraction operation ((c) = (a)− (b)).

VI. EXPERIMENTS

We also carried out a data augmentation to reduce the
possibility of overfitting in our experiments. In addition to the
traditional CNNs, we proposed an alternative architecture that
will be presented as follows. Our architecture is motivated by
[18], [19], where simpler CNNs and sets of filters were used
to solve less complex classification problems.

In order to address our image analysis problem, we pro-
posed a network structure. Due to the reduced size of our
samples (64× 64 pixels size), our CNN presents fewer layers
than conventional CNNs. To properly process our images we
used a CNN with 5 convolutional layers. Each convolutional
layer presents, respectively, 32, 64, 64, 128 and 256 filters. To
improve the network performance and to speed up its training,
we apply non-linearity ReLU activation function after each
convolutional layer. We also apply a batch normalization after
the ReLU filter, which is followed by a 2 × 2 max-pooling
layer.

After the convolutional layers, we use the resulting volume
(2 × 2 × 256 output shape and 1024 features) as input for
the dense layers. The first and second dense layers have 128
neurons and the activation function ReLU. After each dense
layer we applied dropout of 20%. Finally, the output layer
has 4 or 5 neurons (4 for rotation; otherwise, 5 neurons) that
determined the class, as we expound in subsection V-B.

To implement the convolutional neural networks used in
this work we used the Python version of Tensorflow, an open-
source library developed by Google [20] for efficient building,
training and use of deep neural network models. TensorFlow
is based on tensors and dataflow graphs. Tensors are numerical
multidimensional arrays that represent the data. Dataflow
graphs nodes represent operations while edges describe the

flow of data throughout the processing steps. TensorFlow
dataflow graphs are very modular and allow building complex
models directly. These models can be trained and run in a myr-
iad of environments taking advantage of the high parallelism
of modern GPUs [21]–[23].

We evaluated our CNN model using both datasets, as
defined in Section V. For each dataset we selected 75% of
the samples to compose the training set, while the remaning
images were used for validation. Motivated by work [24], we
chose not to perform cross-validation for this purpose. The
work [24] demonstrates that in problems in this context, the
use of cross-validation does not generate much difference in
the final results, except that it increases the computational cost
considerably. Both datasets will be available for replication and
other experiments as request.

Experiments were conducted on a Personal Computer with
Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz, 32GB RAM,
64-bit Windows OS and GPU NVIDIA GeForce GTX 1050
Ti, 4GB GDDR5. We also used Python 3.6 and Keras 2.1.6-tf
with TensorFlow 1.10.0 and CUDA Toolkit 9.0 to implement
and test the experiments.

VII. RESULTS

First, for each dataset (DS1 and DS2) we generated a new
dataset with one of the specified distortions. Then, this new
dataset was split between training and validation samples and
used to train our CNN model for 20 epochs. After this, we
are able to analyze the accuracy of our model for detecting
the distortions analyzed.

We notice that the best performance is obtained when
dealing with the problem of image rotation, as illustrated in
Figure 5(a). For the rotation problem, our CNN model is
capable to classify the rotation distortion with 99.85% and
99.18% accuracy in the DS1 and DS2 datasets, respectively.
Moreover, the CNN presents a good ability to generalize the
features learned in the training set to the test set. This may be
explained by the fact that the rotation operation results in a less
distorted image in comparison to other image transformations,
i.e., an easier classification problem.

Figure 5(c) shows the performance for perspective trans-
formation. For this transformation, our CNN model achieves
high accuracy, especially for DS1, which reached 95.50%. For
the same problem, however, we obtained only 91.47% for DS2
accuracy. Notice that this accuracy is substantially lower when
compared to the rotation experiment. One explanation for this
behavior is that this kind of transformation affects differently
the regions of the sample, while rotation affects all points of
the sample equally. Moreover, although both datasets present
a lower result, we notice that dataset DS1 presents a superior
result when compared to dataset DS2. It may be the case that
the number of samples in the training set, which is larger in
DS1, contributes positively to learn this transformation.

For the translation transformation, we noticed a considerable
drop in the accuracy of the network when evaluating the DS2
dataset (70.24%), as shown in Figure 5(b). Even though the
dataset DS1 (Figure 5(b)) also present an inferior performance



when compared to the rotation transformation, its result is su-
perior to the ones obtained for the perspective transformation.
This result observed in the DS2 dataset is probably explained
by the lack of details in their original images, as illustrated
in Figure 1. Since crop lines and land regions present similar
gray-level distributions, the result of the subtraction operation
between the original and the translated image results in a
mostly black image, i.e., an image without enough attributes
for our CNN to learn.

In order to improve the evaluation of our CNN model we
compared its results with the ones obtained by 4 traditional
CNN models: InceptionV3 [25], ResNet [26], SqueezeNet [27]
and VGG-16 [28]. For this comparison we used pre-trained
networks on the 2012 ImageNet dataset and fine-tuned the
whole CNN to our classification problem for 20 epochs. We
must emphasize that these networks have a input size larger
than the samples in our datasets so that all images have been
scaled up to fit the input size of the respective network.

Table I summarizes the results of all CNN models. As
we can see, our CNN surpasses the results of all compared
ones, indicating that its architecture, although simpler than
the compared ones (see Table II), is more effective to classify
images obtained from the difference of intensities between two
images and, therefore, presenting a small variation of gray
levels.

TABLE I
ACCURACY (%) OBTAINED FOR OUR CNN AND THE COMPARED ONES.

Translation Rotation Perspective
CNN model DS1 DS2 DS1 DS2 DS1 DS2
ResNet 91.83 48.13 95.00 96.84 59.55 62.63
InceptionV3 20.00 60.10 98.48 98.23 20.00 65.96
VGG-16 94.76 65.15 98.63 98.74 84.89 75.20
SqueezeNet 90.51 40.40 91.77 96.15 55.68 55.20
Proposed 96.92 70.24 99.85 99.18 95.50 91.47

TABLE II
NUMBER OF PARAMETERS OF EACH CNN MODEL.

CNN model # of parameters
ResNet 23,595,908
InceptionV3 22,082,084
VGG-16 14,797,380
SqueezeNet 725,061
Proposed 477,573

VIII. CONCLUSION

In this paper, we addressed the problem of classifying dif-
ferent types of distortions in images acquired using unmanned
aerial vehicles (UAVs). To accomplish that we proposed and
trained a Convolutional Neural Network (CNN) model to learn
the subtleties that distinguish each transformation studied:
translation, rotation and perspective transformation.

Results showed that our CNN model is capable to correctly
classify the different transformations, especially the rotation
transformation. However, the performance of the CNN is de-
pendent on the image resolution and gray-levels distributions

present in the sample image evaluated so that datasets contain-
ing blurry images affects negatively the performance of our
network. Also, our architecture, due to its low computational
cost, can inspire embedded systems to UAVs in the context
of precision agriculture, reducing financial costs inherent to
the process. As future work, we intend to expand the dataset
used in the experiments and to include images containing real
distortions produced during a UAV flight and to explore other
models of CNN.
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