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Abstract—This paper aims to study and to evaluate two
distinct approaches for detecting water tanks and swimming
pools in satellite images, which can be useful to monitor water-
related diseases. The first approach, shallow, consists of using
a Support Vector Machine in order to classify into positive and
negative a discretized color histogram of a given segment of the
original image. The second method employs the Faster R-CNN
framework for detecting those objects. We built up swimming
pools and water tanks datasets over the city of Belo Horizonte
to support our experimental analysis. Our results show that the
deep learning method greatly outperforms the shallow strategy,
achieving an average precision at 0.5 IoU of over 93% on the
swimming pool detection task, and over 73% on the water tank
one. All the code and datasets are publicly available.

Index Terms—Remote Sensing, Swimming Pool, Water Tank,
Detection, Deep-Learning, SVM

I. INTRODUCTION

Remote sensing is of great importance for vector-borne dis-
ease control, since, through unmanned aerial vehicles (UAV)
and satellite imagery, it can provide fast, precise, and large-
scale surveillance of areas infected by the vector. This in-
formation can, then, be used by health officers to locate the
agent’s breeding sites and determine where it should act to
best combat the infection [1].

When it comes to mosquitoes, responsible for transmitting
a variety of deadly and expanding diseases across the world
with millions of cases registered every year, the main breeding
spots are containers and debris holding still water pools, such
as tires, plant vases, bottles, water tanks and poorly maintained
swimming pools [2] [3]. More specifically, the last two are
usually large enough to be spotted in satellite images, making
them possible objects of interest when applying remote sensing
techniques to detect the breeding sites of such species. On this
subject, with the advent of Deep Learning (DL) techniques for
image segmentation and object detection, heavily dependent
on GPUs usage, Shallow Learning (SL) methods, mostly
CPU demanding, are becoming more obsolete every day for
said problems. A big advantage of the former method is the
automation of the feature extraction step when attempting to
classify an image or detect an entity in it, whereas, in the
latter, it is the data scientist responsibility to identify and

design visual feature extraction strategies to better represent
the image for the task [4]. Moreover, in recent years, DL
methods have been outperforming SL ones in several computer
vision problems in terms of accuracy, leading to a major shift
in approaches used for solving such tasks.

With water tanks and swimming pools as targets, this paper
aims to compare the performance of SL and DL approaches
for object detection. Such analysis is of great importance
in this scenario, since such mosquito-borne diseases are a
life threatening problem in least developed and developing
countries, where the choice for a computational application
can be heavily influenced by the available budget for hardware
expenses. Accordingly, two new datasets were assembled,
containing thousands of annotated swimming pools and water
tanks in high resolution satellite images. Our datasets and
analysis of two well-established approaches aim to serve as
a new starting point for works related to the detection of
mosquitoes breeding spots [2], [3], focusing on the trade-off
between computational complexity and performance, and all
the code has been made publicly available 1.

II. RELATED WORK

Literature contains a variety of papers related to both the
topic of detecting swimming pools in satellite images and
comparing SL and DL methods in several different tasks.
Specifically in the former problem, some papers stand out for
the use of shallow methods to try and solve the task and the
motivations that led them to do so.

Tien, Rudra & Hope employed a support vector machine
(SVM) [5] to detect swimming pools in satellite imagery, by
calculating the difference between the blue-red and blue-green
combinations of all pixels and feeding this information to the
machine. The goal of this work was to locate water bodies in
Australia and help in bushfire fights in the country [6].

In [7], McFeeters proposes the Normalized Difference Water
Index (NDWI) [7] to delineate open water features in aerial
imagery, by making use of the near-infrared and green bands of
the given image, and in [8], Kim, Holt, Eisen, Padgett, Reisen,

1https://github.com/EduardoFernandes1410/PATREO-Dengue
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& Crof integrate the index with the rectangular fit space metric
[9], proposing to delineate water features in aerial images in
order to identify pools and aiming to assist in the control of the
Culex mosquito population, vector of the West Nile Virus, in
the United States of America. The method achieved a user’s
accuracy of 92.8% in pool negative samples and 80.1% in
pool positive ones. Moreover, Alonso and Rodríguez-Cuenca
described and used the Normalized Difference Swimming
Pools Index (NDSPI) to semi-autonomously detect swimming
pools, alongside with region adjacency graph (RAG) and
principal component analysis (PCA) [10], scoring an overall
accuracy of 99.86% according to the authors [11].

When it comes to comparing shallow and deep learning
methods in tasks from different areas of study, Pasupa &
Sunhem tested the performance of a convolutional neural
network (CNN) [4] and a SVM in a classification problem
with a small dataset, and found that, without applying data-
augmentation techniques, the latter performed better then the
former. However, when making use of such techniques to
improve the dataset, the CNN method presented results that
were competitive to the shallow method [12].

In [13], Koutsoukas, Monaghan, Li & Huan compare the
performance of a deep neural network (DNN) [4], Naïve Bayes
[14], K-nearest neighbours [15], random forest [16] and SVM
methods for the problem of modeling bio-activity data, and
conclude that DNNs, with optimal hyper-parameters and low
noise levels, outperforms every other method applied.

Finally, Liu, Abd-Elrahman, Morton, & Wilhelm compared
CNNs, random forest and SVM in a remote sensing task to
map wetlands from a object-based level [17]. In agreement
to [12], the authors found that the shallow learning methods
performed better than the deep learning ones when the training
dataset was small, but once more training samples were used,
the latter obtained the superior results.

III. ASSEMBLY OF THE DATASET

Two separate datasets were assembled in this work: BH-
Pools and BH-WaterTanks, with annotated swimming pools
and water tanks respectively, and can be freely downloaded
in this link 2. Both datasets consist of imagery from several
neighbourhoods in the city of Belo Horizonte, Minas Gerais,
Brazil. The data was acquired through the Google Earth Pro
tool. The images were exported from an eye altitude of 330
meters with a resolution of 3840x2160 (4K), and the image
bands are the three visible ones: red, green and blue. For each
occurrence of the target objects found on the images, a polygon
was drawn in order to generate the segmentation masks of the
instance. For the detection problem, a bounding box for each
of the annotated objects was calculated through said masks.
Fig. 1 and Fig. 2 show a few examples of the images and
ground-truths in BH-Pools and BH-WaterTanks, respectively,
and Table I summarizes the datasets specifications.

2http://www.patreo.dcc.ufmg.br/bh-pools-watertanks-datasets/

Fig. 1: Example crops from BH-Pools

Fig. 2: Example crops from BH-WaterTanks

A. Data Preparation

Each 4K image was cropped into 6 smaller ones of size
1280x1080, without overlap, and then the ones without anno-
tations were removed. Afterwards, 80% of the images from
each neighbourhood were used as a training dataset, as the
other 20% were used as a test dataset. The same preparation
was made for the images of BH-Pools and BH-WaterTanks.
These prepared datasets were used for both the SL and DL
methods.

B. BH-Pools

The BH-Pools dataset consists of 200 4K images of 8 dif-
ferent neighbourhoods (25 images for each one) and contains
3980 annotated pools. The data preparation step resulted in
655 images designated for training and 160 for testing.

C. BH-WaterTanks

The BH-WaterTanks dataset is made up of 150 4K images
of 6 neighbourhoods (25 images for each one) and contains
16216 annotated water tanks. The data preparation step re-
sulted in 608 cropped images designated for training and 148
for testing.

IV. SHALLOW-BASED APPROACH

A. Methodology

The shallow-learning-based method consists of several dif-
ferent steps, ranging from feature extraction processes to
learning and prediction ones, as illustrated in Fig. 3. In contrast
to the deep-learning method, the feature extraction strategies
had to be selected and designed manually for this approached,

http://www.patreo.dcc.ufmg.br/bh-pools-watertanks-datasets/
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Fig. 3: Diagram illustrating the shallow learning method

TABLE I: BH-Pools and BH-WaterTanks specifications

BH-Pools BH-WaterTanks

Source Google Earth Pro Google Earth Pro
Image resolution 3840x2160 3840x2160

Eye altitude (meters) 330 330
Image bands RGB RGB

Number of images 200 150
Number of annotated objects 3980 16216

focusing on what visual features of any given image would
better represent the target objects, whereas, in the other, this
process is completely automated.

1) SLIC: The first step of the object detection process is to
divide the original image into superpixels through the SLIC
algorithm [18]. Due to the resolution of the images in the two
datasets and the average size of the target objects in each of
them, the parameters chosen were: 2,000 desirable labels for
BH-Pools images and 10,000 ones for BH-WaterTanks. For
both datasets, the sigma value was set to 5. The implemen-
tation used was the one available in the scikit-image toolkit
[19].

2) Color Histogram: Moving forward, to each pixel of the
image it was attributed an integer number between 0 and 63,
accordingly to (1), so that pixels with similar RGB values
are allocated in the same group. This way, the number of
values describing a given pixel is reduced from three to one,
simplifying the classification process down the pipeline.

ν =
ρ

64
+ 4× γ

64
+ 16× β

64
(1)

where ν = number attributed to pixel
ρ = value of the red channel
γ = value of the green channel
β = value of the blue channel

Afterwards, the histogram of each segment generated by
the SLIC algorithm was obtained, based on the new number
calculated for every individual pixel, containing 64 bins repre-
sentative of the color distribution of the given superpixel. This
information is stored in a matrix, where the rows represent
an individual segment and the columns 0 to 63 contain the
number of pixels with that value on the segment.

3) Support-vector Classifier: In the next step, a Linear
Support-vector Classifier (SVC) was used to classify the
segments of the input image into positive or negative, using
the color histogram obtained in the previous step. The im-

plementation of the SVC used was the one available in the
scikit-learn [20] toolkit.

Therefore, the batch of images designated for training in
each dataset was used for fitting the classifier. It was decided
that a given segment is representative of a target object if
50% or more of it is annotated as positive. Moreover, a
standardization of the data was performed, in order to center
the features around 0 and make them have unit-variance.

Lastly, the trained classifier was applied on the testing batch,
in order to perform the semantic segmentation of the target
objects in the images. The SVC outputs a confidence score for
each given segment, which represents the signed distance of
that sample to the hyperplane that separates the two classes. In
this case, if said distance is greater than zero, than the segment
belongs to the positive class.

4) Bounding Boxes: Once the semantic segmentation is
completed, another operation is performed in order to obtain
the bounding boxes of the detected objects, alongside with
their confidence scores. For that, the Multi-dimensional Image
Processing packet from the SciPy ecosystem was used to
aggregate individual positive segments which are next to each
other and that, combined, represent a full object. The bounding
box coordinates would then be calculated over such objects.
Finally, the confidence score of each bounding box was defined
as the average of the confidence scores of the segments that
compose it.

B. Hardware and Software Setup

This method was implemented using the Python (version
3.6) programming language. The experiment was performed
on a Intel i7-5930X machine with 3.50GHz of clock and 64GB
of RAM.

V. DEEP-BASED APPROACH

A. Framework

The deep learning method for water tanks and swimming
pools detection is based on the Faster R-CNN framework [21].
For that, it was used the implementation from the TorchVision
package.

Faster R-CNN unifies in one architecture the module con-
sisting of a Region Proposal Network (RPN) and the module
responsible for object detection (Fast-RCNN [22]), as illus-
trated in Fig. 4. In simple terms, a CNN receives the input
image and then provides a feature map, which is used by the
RPN to indicate to the Fast-RCNN where to look for objects.
From this information, a series of Fully Connected layers make
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Fig. 4: Simplified diagram illustrating the Faster R-CNN architecture

predictions of the location of bounding boxes in the image and
their respective labels.

B. Methodology

The feature extraction network utilized as backbone was
the MobileNetV2 [23], pre-trained on the COCO dataset [24].
By using pre-trained weights of a CNN, this DL method
performs a fine tuning to improve the training process speed.
The MobileNetV2 is a light weight model with improvements
suitable for the use of on-device computer vision deep ap-
plications, like in mobile devices or any device with low
computational power. This choice of backbone helps possible
future applications with this deep learning method to not be
compromised by a low-budget hardware.

For the training step, it was used the Adam optimizer and
a learning rate of 0.0001, chosen empirically. The model was
trained for 50 epochs with a batch size of 4 and a random
horizontal flip (0.5) transform in the data loader.

Lastly, the testing step was performed on both a GPU-
available environment and a CPU-only one. This way, it would
be possible to evaluate the possibility of training the network
on a high-end device to reduce its training time, but deploying
it on inexpensive machines to reduce its cost in regions with
budget limitations.

C. Hardware and Software Setup

This method was implemented using Python (version 3.6)
with the Pytorch library. The experiment was performed on the
Google Colaboratory (Colab) platform, with a configuration
composed of an Intel Xeon processor (not specified) with 2.3
GHz of clock, 13 GB RAM and a Tesla T4 GPU.

VI. RESULTS AND DISCUSSION

In order to best evaluate the performance of both methods
on the proposed datasets, two standard metrics were chosen to
be calculated: Average Precision (AP) at an IoU of 0.5, used
in the PASCAL VOC challenge, and AP averaged over 10 IoU
values, ranging from 0.5 to 0.95 with a step of 0.05, adopted
by the COCO challenge [24].

AP takes into account the true predicted positives / total
predicted positives (precision) and true predicted positives /
total real positives (recall) ratios. An intersection over union
(IoU) threshold is defined to determine if a prediction is a

true positive or a false positive one. The IoU measures how
much the predicted bounding box overlaps with the ground
truth bounding box annotation.

The AP with IoU of 0.5 would indicate if the method
applied is simply able to correctly detect the target objects
in an image, whereas the AP with IoU of 0.5:0.05:95 (the
average AP for IoU threshold from 0.5 to 0.95 with a step size
of 0.05) would measure how precisely the technique is able
to draw the bounding boxes around such objects. Alongside
with these metrics, the training and testing times were also
measured for each approach, so that it would be possible to
compare their usability in real-case scenarios.

All the obtained results of the evaluated methods are pre-
sented in Table II. Moreover, Fig. 5 and Fig. 6 show qualitative
results for each technique, illustrating the differences between
them.

The deep learning method performed significantly better in
both datasets compared to the shallow learning one according
to the metrics used. On the BH-Pools dataset, the latter was
able to detect many of the swimming pools present, but usually
only their brightest parts, leading to low IoU values, and also
made a lot of False Positive predictions. Conversely, the deep
method achieved very high results, scoring an AP at IoU=0.50
equal to 2.27x the one achieved by the other, and an AP at
IoU=0.50:0.05:0.95 3.06x the one scored by its opponent, indi-
cating that it not only detected more swimming pools, but also
drew more precise bounding boxes around them. Meanwhile,
the shallow method obtained extremely poor results on BH-
WaterTanks, failing to detect almost every single water tank in
it, in contrast to the deep method, which presented satisfactory
results. However, the AP at IoU=0.50:0.05:0.95 scored by the
deep-learning approach was still lower than half of its score
with an IoU=0.50, indicating a greater difficulty in precisely
delineating those objects.

Finally, the DL techniques were able to perform the training
and testing steps many times faster than the SL ones, including
completing the test phase in a matter of minutes, even on CPU-
only machines, as opposed to the several hours needed for the
others.

VII. CONCLUSION

In this work, we evaluated and compared two approaches for
swimming pool and water tanks detection. The shallow method



TABLE II: Results obtained on the proposed datasets using different object-detection approaches

(a) BH-Pools dataset

Method
AP at

IoU=0.50 (%)
AP at

IoU=0.50:0.05:0.95 (%)
Training Time

(Hours)
Testing Time

(Hours) (CPU)
Testing Time

(Hours) (GPU)

Shallow learning 40.97 15.96 8.02 1.10 -
Deep learning 93.13 64.79 2.70 0.08 0.01

(b) BH-WaterTanks dataset

Method
AP at

IoU=0.50 (%)
AP at

IoU=0.50:0.05:0.95 (%)
Training Time

(Hours)
Testing Time

(Hours) (CPU)
Testing Time

(Hours) (GPU)

Shallow learning 0.13 0.03 19.00 4.20 -
Deep learning 73.43 32.99 4.63 0.09 0.02

(a) Ground Truth (b) Shallow Method (c) Deep Method

Fig. 5: Example comparing swimming pools detection by the
shallow and deep learning methods

(a) Ground Truth (b) Shallow Method (c) Deep Method

Fig. 6: Example comparing water tanks detection by the
shallow and deep learning methods

consists of a segmentation using SLIC [18] followed by a clas-
sification with SVM [5]. The deep-based approach consists of
a Faster-RCNN framework [21] with MobileNetV2 backbone
[23]. The methods were trained and then evaluated with our
two proposed datasets: BH-Pools and BH-WaterTanks. Both
metrics and visual results were compared for a final analysis.

It was clear that the shallow method did not work well for
the water tanks detection. Residential water tanks are relatively

small objects in satellite images and they could not get a
precise segmentation with SLIC, compromising the rest of
this approach. On the other hand, the shallow-based approach
performed well with the swimming pools detection. Swimming
pools are considerably larger and could get a more precise
segmentation. However, unusual pools formats, shady areas
and blue geometric terrain (e.g. sports courts) were easily
misclassified.

The deep learning method worked really well with the water
tanks detection, despite their small size. Moreover, it increased
the precision of the swimming pool detection. For this reason,
we can infer that the deep method used the spatial context
more wisely. This method performed better, faster and has
been shown of great potential for the task of water tanks
and swimming pools detection in high resolution satellite
images in practical applications, being a great option even
on environments where a GPU is not available to perform
the prediction step, given that the network has been trained
previously.

Finally, when it comes to the detection of swimming pools,
the shallow-learning method can still be a reasonable option
if a powerful enough GPU is not available to train the deep-
learning network. The method is able to detect many of the
swimming pools presented to it in a fraction of the time it
would take for a human operator to do so, and does not require
a highly computationally complex machine, demonstrating its
usefulness in this remote sensing task. Unfortunately, the same
cannot be said about residential water tanks detection, due to
their smaller size in satellite images.
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