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Abstract—Despite the recent advancements in deep learning,
sign language recognition persists as a challenge in computer
vision due to its complexity in shape and movement patterns.
Current studies that address sign language recognition treat hand
pose recognition as an image classification problem. Based on this
approach, we introduce HandArch, a novel architecture for real-
time hand pose recognition from video to accelerate the devel-
opment of sign language recognition applications. Furthermore,
we present Libras91, a novel dataset of Brazilian sign language
(LIBRAS) hand configurations containing 91 classes and 108,896
samples. Experimental results show that our approach surpasses
the accuracy of previous studies while working in real-time on
video files. The recognition accuracy of our system is 99% for
the novel dataset and over 95% for other hand pose datasets.

Index Terms—Sign Language Recognition, LIBRAS, Deep
Learning, Software Architecture, Hand Configurations

I. INTRODUCTION

Sign languages are natural languages and have five main
components: (1) facial expression, (2) hand orientation, (3)
hand movement, (4) gesture localization, and (5) hand configu-
ration [1], [2]. Studies addressing Sign Language Recognition
(SLR) focus on a single component due to the complexity
of this tasks [3]. Different studies approach sign language
recognition as a hand configuration classification problem by
identifying the pose performed in an image or a sequence
of images [3]. However, these studies do not address the
applicability of this knowledge for accessibility applications
because they work with hand images isolated with human
assistance in controlled environments [4], [5]. For instance,
there is no constant illumination or static background in a
real-world scenario, making it difficult to achieve automatic
hand isolation. Moreover, there is no specification on building
SLR applications in the literature, creating a barrier for new
researchers entering the field.

We present HandArch, a novel software architecture for sign
language recognition that considers real-time and real-world
scenarios to solve the aforementioned issues. Our architecture
is modular, reconfigurable, and contains all the components
necessary to build a real-time hand pose recognition system:
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(1) detection, (2) tracking, (3) segmentation, and (4) classifi-
cation. With this design choice, we unify different approaches
under a single software architecture overcoming the aforemen-
tioned limitations. We compare our proposal to past works
using both classical and deep learning methods. Furthermore,
we present Libras91, a novel dataset on Brazilian Sign Lan-
guage (LIBRAS) containing 91 hand configurations [2] in
different orientations and points of view. The dataset contains
108,896 images1, which supports its applicability in deep
learning training. We use different sign languages datasets to
assess the applicability of the proposed architecture. The main
contributions of this study are the following:

1) Modular and reconfigurable architecture for SLR;
2) Novel dataset for LIBRAS with 91 hand configurations;
3) Assessment of the applicability of our architecture.

II. RELATED WORK

There are different taxonomies for the SLR systems in
the survey studies [3]. The main common characteristics
are: (1) the type of sign and (2) sensors used for hand
pose/movement acquisition. The primary types of signs in
literature are static and dynamic, where static signs consider
a hand pose [4], [6]–[8] and dynamic signs consider the se-
quence of movements in combination with the hand poses [9].
For sensors, there are different sensors considered in previous
works, from wearable devices [10] to depth cameras [4], [6]–
[8]. This study considers static signs (poses) as hand configu-
rations in images and videos (frames) from RGB cameras.

Filho et al. [4] present a novel dataset, feature descriptor,
and classifier. The database has 12,200 samples divided in
61 classes of Brazilian sing language (LIBRAS) collected
by ten volunteers. They classify depth masks summarized by
Linear Discriminant Analysis (LDA) and Principal Component
Analysis (PCA) with their novel filter classification and report
an accuracy of 95%.

Bastos et al. [8] propose a hand pose SLR system evaluated
in two different datasets. They present a new hand pose dataset
of 40 classes (26 alphabet letters, numbers, and words). Their
SLR system uses Neural Networks (NN) for pixel-wise skin

1We obtained the dataset from the frames of 50 seconds videos.



segmentation and Histogram of Oriented Gradients (HOG) and
Zernike moments descriptors with NN and reports an accuracy
of 96.77% combining both feature descriptors.

Both Rahman et al. [5] and Sruthi et al. [11] propose a novel
Deep Neural Network (DNN) for SLR. Rahman et al. [5] apply
the DNN in four different American sign language (ASL)
datasets containing 29 classes, and they obtain 100% accuracy.
Sruthi et al. [11] apply the DNN in a new Indian sign language
(ISL) dataset with 4,125 samples divided in 24 classes and
reports an accuracy of 98,64%.

Tolentino et al. [12] propose a novel framework for teaching
ASL through an SLR system. This study used three different
datasets: 26 alphabets, 10 numbers, and 35 static words. They
use a DNN architecture and silhouette segmented hand images
for recognition and obtain a maximum accuracy of 97.52% in
the static word dataset.

Hosoe et al. [13] present a framework for Japanese Sign
Language (JSL) alphabet sign recognition. They created a
dataset with 41 signs with 8,000 samples (expanded using 3D
modeling). For classification, the authors propose the use of
DNN trained from scratch to recognize the sign. The authors
report a maximum accuracy of 98%.

Most of the studies focus on the classification of static signs
in the form of alphabets and numbers. Sign language alphabets
and numbers are present in most datasets but have limited
applicability. In contrast, hand configurations are present in
every sign, thus having broader applicability. Furthermore,
the aforementioned work focuses on image classification in
controlled environments and does not consider realistic usage
scenarios (e.g., complex background, different illumination)
for hand image acquisition.

Our architecture extends the limitations of the aforemen-
tioned work both in terms of applicability and recognition
accuracy. We compare our architecture accuracy with the
aforementioned works that have datasets available. We also
consider datasets from RGBD (color with depth information)
cameras because the final result is a binary mask similar to the
one obtained from an RGB camera after color segmentation.
Thus, they are the same for the classification task.

III. HANDARCH ARCHITECTURE

The SLR studies we discussed in the previous section
do not address the real-world applicability of SLR. They
focus on improving recognition accuracy. Some works like
Tolentino et al. [12] approach that topic by presenting a
semi-supervised dataset creation tool. Carvalho et al. [14]
present a similar approach, but the author’s approach does not
support hand detection, Deep Learning (DL) methods and is
focused on hand pose recognition (not SLR but virtually the
same application). The approaches mentioned earlier are not
enough to realize a real-world capable SLR system. There are
other variables to consider, such as illumination, occlusion,
background, and skin tone differences.

To solve these issues, we present HandArch architecture
that unifies different approaches for SLR by defining a stan-
dard design for an SLR and adding different layers enables

(a) HandArch architecture block diagram.

(b) HandArch Applied to dataset creation tasks.

Fig. 1: HandArch diagram and application example.

the applicability of SLR methods in real-world scenarios. The
additional tasks make the system effective in different scenar-
ios with occlusion, changing lighting conditions, and complex
backgrounds. We design the architecture to be modular and
reconfigurable to support different SLR applications, so it is
possible to combine or remove layers to fit the application’s
requirements.

We derive the architecture blocks, tasks, and methods from
the standard SLR methodology found in other surveys [3],
[15]. The main blocks of the architecture are (1) Detection,
(2) Tracking, (3) Segmentation, (4) Classification. Each block
has standardized inputs and outputs, which enables the usage
of a block on its own or combines any number of blocks to
create a system. Figures 1a, and 1b illustrate two applications
of the architecture: (1) a complete SLR system, and a (2)
semi-automatic dataset collection tool.

We integrate different methods in the architecture, from
more classic (e.g., Viola-jones) methods to more complex
methods, including DL. With these diverse methods, the
architecture supports prototyping different applications, from
embedded applications to more accurate and high-performance
sign language recognition applications.

The hand detection block applies object detection methods
to locate the hand in an image. HandArch currently supports
single-hand detection and tracking, which is a design decision
due to the use case of the architecture for the recognition
of single-hand LIBRAS hand configuration. Therefore, we
can support dual hand tracking by adding this feature to
the detection and tracking methods. HandArch supports both
classical and DL methods. We use Viola-jones [16], hand color
detection (Gaussian Mixture Models — GMM), hand motion
detection (Optical Flow — OF), and DL object detection
(YOLO, SDD, FRCNN) [17] for detection methods. Detection
is the heaviest and slowest task in the system because the
algorithm needs to search for candidates in the whole picture.
Thus we decide to apply object tracking with detection to ease
the computational burden of the system. The hand detection
block outputs a Region of Interest (ROI) around the hand in
the format [x, y, w, h], where x, y are the coordinates of the



top right corner of the ROI and w, h are the width and height
of the ROI rectangle, respectively. Hand tracking continues to
provide this ROI updated in subsequent frames.

The hand tracking block receives an initial ROI and follows
its movement on the subsequent frames. There are different
ways to achieve object tracking, so algorithms use charac-
teristics such as color and movement. For color detection,
our architecture supports CAMshift [16] and Meanshift [16]
algorithms. For movement tracking, we use OF [16]. Fur-
thermore, we apply Bayesian filters to refine the initial esti-
mates for the tracking methods, and the architecture supports
Kalman [18] and particle filters for this task. We also consider
successive detections as a form of object tracking, so it is
possible to bypass the tracking block entirely if we apply
this approach. However, successive detection is usually more
resource-intensive and slower than tracking.

The hand segmentation block isolates the hand region from
the background. This block works on the cropped ROI it
receives from the detection/tracking block and outputs a binary
mask where the white pixels (255) are the hand pose, and black
pixels (0) are the background. We use the same approach as
the previous blocks, i.e., we consider both classic and DL
approaches. We integrate the architecture methods for color
segmentation using a basic threshold in HSV color space
and pixel binary classification supported by machine learning
algorithms (e.g., binary trees — BT, Support Vector Ma-
chines — SVM, GMM) and Simple Linear Iterative Clustering
(SLIC) [19] for speedup. We also consider DL methods for
segmentation by integrating UNET [20] into the architecture.

The hand detection, tracking, and segmentation blocks com-
pose the hand acquisition part of the architecture. The hand
acquisition goal is to isolate the hand image in real-world
and unpredictable scenarios, with complex background and
partial occlusions. This part of the architecture simplifies the
hand pose image by removing the background so that the
classification algorithms can focus only in critical information,
given the similarity between poses.

The last part in the architecture is hand sign classification.
The Machine Learning (ML) methods classify the isolated
hand images in their respective sign meaning in the image clas-
sification block. The classification block receives the output of
the segmentation block (mask or segmented pose with color)
and outputs a class label. In the architecture, we integrate
two types of ML methods: classic and DL. Classic methods
rely on hand-crafted features for training and classification.
These methods require less data for training and can reach a
satisfactory accuracy but have problems in generalizing. For
classic methods, we integrate HOG [21], Hu Moments [21],
Scale Invariant Feature Transform (SIFT) [21], and Speed-
up Robust Features (SURF) [21] for feature descriptors and
shallow multi-layer perceptron (MLP) [17] and SVM [17] for
classification algorithms.

From 2015 to 2021, DL methods have been the standard in
computer vision studies. This approach does not require hand-
crafted features, and it obtains a high-level image description
by a sequence of trainable filters resulting in a better general-

ization capability than the classic methods. However, to reach
this generalization, DL requires a massive quantity of samples.
We integrated different DNN architectures to the HandArch
architecture ranging from LeNet [17] to ResNet [17].

HandArch is modular and reconfigurable. Each block or
task can work independently, so it is possible to apply only
hand detection to images or classification to the hand image
dataset. Each block supports different methods, and all the
methods follow the same input/output standard to change the
methods in each block without any significant repercussions
to the rest of the system. The same goes for adding new
methods and features to the system; as long as it follows the
input-output standards of the architecture, the method should
work fine with the others. Figure 1a contains details of the
input/output standard of the architecture. With this design, we
unify different approaches for SLR present in the literature,
making it easier and faster to prototype and develop new SLR
applications compared to the previous work we discussed in
the last section.

For this study, we consider three possible applications of
the proposed SLR architecture: (1) semi-automatic dataset
creation, (2) benchmark tool, and (3) prototyping tool for
real-world real-time SLR systems. The first application is the
semi-automatic dataset creation, where we apply the blocks of
hand detection, tracking, and segmentation to extract the hand
images from a video (Figure 1b). We use this application to
create our dataset. The second application results from the
reconfigurable design, where we can use the architecture as
a benchmark tool for methods, i.e., we can quickly compare
different methods using the same conditions for the whole
system. For example, we can quickly use the classification
block to compare different SLR classification methods in
a single dataset. The third application is a real-time real-
world SLR system that incorporates all the methods of the
architecture (Figure 1a).

IV. LIBRAS91 DATASET

We propose a new dataset in LIBRAS hands configura-
tions called Libras91 (our novel dataset). Previous datasets
consider 61 hand configurations [4]. Libras91 contains 91
hand configurations [2], and as far as we know, this is the
first dataset that considers this amount of hand configurations.
Furthermore, Libras91 presents different hand orientations for
each configuration,

There are no standard guidelines for collecting sign lan-
guages dataset in the literature, and each work considers
slightly different characteristics, such as pose angle and hand
scale [4], [8]. We follow a similar approach to previous works
by collecting the dataset in a uniform background and a
constant illumination. We consider different hand orientations
and angles for each hand configuration, which is beyond any
condition considered by the previous datasets in LIBRAS. We
had two volunteers collecting the dataset, and each volunteer
performed the hand configuration in a short video of 50 sec-
onds where they change its orientation and angle considerably.
The volunteers were not at a fixed distance from the camera.



(a) Similar hand configurations (configurations 16 to 20).

(b) Different orientations in the same gesture.

Fig. 2: Samples of our dataset (Libras91).

Fig. 3: Example of the tracking dataset in natural light.

Figures 2b present an example of the classes. Our dataset
contains 108,896 samples (approximately 1200 samples per
class), in which we use 76,155 (70%) samples for training
and 32,741 (30%) for validation. This dataset also exceeds
the previous ones in the number of classes and samples, which
describes LIBRAS configurations better and allows application
with deep learning methods.

Libras91 offers several challenges because there are sim-
ilarities between hand configurations, and depending on the
orientation, the hand configurations can also be similar. Fig-
ure 2b presents some similar hand configuration examples.

Furthermore, we also notice a lack of hand tracking datasets
in the literature. Therefore, we create a simple hand tracking
dataset to test our architecture tracking methods. This dataset
has three video scenarios of approximately 5 minutes each
with manual hand ROI annotation. The first scenario is a
garden with natural light and complex background, the second
scenario is a kitchen with uniform background and artificial
light, and the third one is a living room with complex
background and a mix of natural and artificial light. All the
videos contain self-occlusion in hand and require re-tracking
because the hand leaves the frame. Figure 3 shows a frame of
the garden scenario that illustrates the dataset characteristics.

V. EXPERIMENTS

We conduct two experimental studies to validate our archi-
tecture (HandArch): single method experiments (Experiment
1) and architecture experiments (Experiment 2). We evaluate
each block alone on the single method experiments and build
upon the architecture by adding blocks together. Therefore,
we certify that each block of the architecture can properly
work standalone. Finally, we combine the best methods in the
architecture and use them to evaluate the videos we recorded
while collecting our dataset because this presents a more
realistic scenario where the hand location is unknown, and

motion blur can cause errors in classification. We use specific
evaluation metrics for each type of problem so that we can
assess their performance reasonably.

We use the average Intersection Over Union (IOU) eval-
uation metric to compare the hand detection and tracking
methods. To evaluate hand detection, we apply the different
algorithms in two datasets: Egohands [22] and VIVA [23].
There was only one dataset available for hand tracking, a sin-
gle video for the Visual Object Tracking (VOT) challenge [24]
challenge. We also use our tracking dataset to evaluate the
methods in challenging conditions.

Hand segmentation is more straightforward to evaluate. We
use a simple pixel-wise comparison between the resulting
mask of our method and the ground truth mask and run time.
To evaluate segmentation methods, we focus on skin segmen-
tation datasets. We use a Polish Sign Language dataset [25]
with skin region masks, the SFA dataset [26] with facial skin
segmentation masks, and Sttötinger et. al. skin dataset [27],
which has a more generic and challenging skins segmentation
scenario. Both [26], [27] have a wide range of skin tone
samples but are not specialized in hands, where [25] is focused
on hand skin segmentation but has smaller skin tone variation.

For the classification blocks of the architecture, we use
mainly the standard accuracy metric (Correct Predictions

Total Predictions ). We
separate the classic methods from the DL methods in the
evaluation for simplicity. In our search for datasets, we verified
that the datasets created by [5], [11], [12] were not available.
Therefore, we compare our results with previous works in
different sign languages such as Irish Sign Language [28],
JSL [13], and others [4], [8], [29]–[31].

VI. RESULTS

Experiment 1 goal is to validate each block of the hand
Arch architecture individually, so we tested each block in-
dividually (hand detection, tracking, segmentation, and clas-
sification). We evaluated the hand detection in two hand
detection datasets. Table I presents the result of the methods
we integrated on the hand detection task. We noticed that the
CNN-based detectors have the best results in this problem, so
we considered them for experiment 2.

TABLE I: Detection experiments results.

Dataset Method IOU (avg) Time (s)
[22] Cascade 0.013 0.013
[22] GMM 0.9 6.86
[22] SSD 0.82 0.007
[22] YOLO 0.22 0.008
[22] FRCNN 0.34 0.25
[23] Cascade 0.0007 0.016
[23] Color 0.18 7.16
[23] SSD 0.12 0.007
[23] YOLO 0.940 0.013
[23] FRCNN 0.12 0.21

Table II shows that the performance of the tracking al-
gorithms was suboptimal given the complexity of the hand
movements and background. Meanshift method obtained the
best result, so we selected it for experiment 2. Furthermore, for



TABLE II: Tracking experiments results.

VOT [24] Garden Kitchen Living Room
Method IOU(avg) IOU(avg) IOU(avg) IOU(avg)

MeanShift 0.25 0.50 0.24 0.04
CAMSHIFT 0.08 0.14 0.29 0.07

OF 0.19 0.07 0.21 0.14
Kalman Filter 0.07 0.16 0.25 0.05
Particle Filter 0.08 0.13 0.27 0.07

TABLE III: Skin segmentation results.

SFA [26] Polish SL [25] [27]
Method A(%) T(s) A(%) T(s) A(%) T(s)
Static 90.4 0.009 77.9 0.0008 39.9 0.0005
GMM 89.1 1.89 82.1 0.79 50.9 0.62

BT 82.6 0.006 86.3 0.001 62.1 0.003
NB 51.3 0.03 49.2 0.01 26.6 0.01

MLP 86.4 0.87 72.7 0.75 28.9 0.26
SVM 62.4 17.0 93.1 7.2 58.4 8.1

SLIC+NB 55.1 0.83 52.7 0.21 28.3 0.24
SLIC+MLP 61.1 0.87 65.2 0.21 45.4 0.23

UNET 92.3 0.122 84.6 0.106 51.1 0.07

experiment 2, we improve tracking accuracy by periodically
restarting the tracker with a new hand location we obtain by
executing the hand detection block every 3 seconds. With this
approach, we do not sacrifice speed and performance and still
maintain high accuracy.

The segmentation results in Table III were unexpected
because the simple HSV threshold for skin color still ob-
tained better results than more complex methods. However, in
challenging scenarios, such as [27], it fell short. Also, UNET
presented the best results in terms of accuracy, but its run time
is over ten times larger than the run time of the BT and Static
methods. The method that presented the best accuracy and run
time is the Binary Tree (BT) method we trained with samples
from the SFA dataset, so we considered it for experiment 2.

For hand pose/configuration classification, we considered a
classical approach with feature descriptors and classification
algorithms and the CNN approach. We obtained satisfactory
results on the datasets we analyzed, surpassing previous work’s
accuracy on the same datasets. We performed hyperparameter
optimization on both SVM and MLP parameters (e.g., Kernel,
hidden layers) to achieve this result. Tables IV presents the
results for the SVM and MLP. We obtained better results
using the HOG feature descriptor combined with SVM on the
dataset but had difficulty generalizing. At the same time, MLP
performed better in a real-world scenario.

We performed tests in two steps to evaluate CNN ar-
chitectures: (1) we assessed different architectures without
hyperparameter optimization or data augmentation, (2) we
selected the best architecture for the datasets we have and then
execute hyperparameter optimization and data augmentation
to improve the results. Initially, the datasets got unsatisfactory
results in some architectures due to the relationship between
the number of samples and the CNN size. However, after hy-
perparameter optimization and data augmentation, the results
improved due to increasing the number of samples and sample

TABLE IV: Accuracy results for SVM and MLP.

HOG HOG+PCA Hu SIFT SURF
Dataset SVM MLP SVM MLP SVM MLP SVM MLP SVM MLP

[8] 100 100 100 100 28 36 98 98 100 100
[30] 71 70 71 70 57 50 74 75 73 73
[13] 99 98 99 97 26 32 95 93 97 95
[31] 100 100 100 100 70 69 100 99 100 100
[28] 95 94 95 96 12 15 89 85 88 83
[29] 91 90 91 88 - - 51 36 61 40
[4] 99 97 99 96 15 24 34 34 46 44

Libras91 97 94 97 95 10 24 81 70 89 81

TABLE V: Classification results for CNN architectures.

Dataset LeNet Alexnet VGG16 Inception Resnet Alexnet
[8] 2.44% 99.9% 2.52% 37.6% 43.15% 99%
[4] 1.6% 91.78% 1.63% 2.11% 9.09% 99.8%
[13] 3.19% 98.40% 2.56% 20.46% 16.29% 96%
[30] 13.75% 61.38% 4.25% 28.37% 17.25% 84%
[29] 9.55% 84.8% 9.6% 65.1% 54.4% 94%
[28] 78.11% 85% 4% 10% 10.29% 100%
[31] 15.55% 98.72% 12.02% 32.88% 27.52% 96%

Libras91 72.95% 80.27% 1.28% 1.48% 5% 99%

variability in the datasets. Table V contains the summary of
this experiment, where in the last column, we have the Alexnet
results after optimizations.

In experiment 2, we combined all the blocks in the Han-
dArch and used the videos we recorded to generate the dataset.
We evaluate the HandArch in 182 videos of 50 seconds.
We tested the HandArch in a Core i7-7500U (dual-core)
2.7 GHz computer with a discrete graphics card and 16GB
RAM. We compare the classic classification approach with
the CNN classification. Both used the same hand acquisition
blocks (SDD, Meanshift, BT segmentation). The architecture
processed the video in 10 Frames Per Second (FPS)(10 FPS
using the classical approach and 4 FPS using CNN). For
classification, we applied the system on both subject videos
while measuring the final accuracy on the classified frames,
which resulted in a mean accuracy of 81.5% for SVM and
86.5% for CNN. Our architecture (HandArch) is available
online at [32].

Finally, we compared the current study with related previous
studies in Table VI. Most of the previous studies used 61 hand
configurations [4], [6] or other approaches with less number of
classes (alphabet) [7], [8]. The present study considers 91 hand
configurations, which makes classification more challenging.
However, even with increased complexity, this study achieved
better accuracy than the previous works, outperforming studies
that use RGB and RGBD data.

TABLE VI: Comparison with previous work.

Study # Classes # Samples Acc. (Orig) Acc. (Our)
[4] 61 12,200 95% 99.8%
[8] 40 9,600 96.77% 99%

[13] 41 5,000 98% 96%
[28] 26 50,000 99% 100%

Libras91 91 108,896 - 99%



VII. FINAL CONSIDERATIONS

This study presents the HandArch software architecture
with multiple possible applications from data acquisition to
SLR prototyping. We also present Libras91, which consists
of 91 hand configurations and enough samples to apply in
CNN efficiently. We believe this architecture and dataset can
contribute to developing accessibility applications for sign
language translation. We make both architecture and dataset
freely available [32].

We also perform thorough testing to evaluate the applica-
bility of the architecture in different scenarios. We compare
classic methods with state-of-the-art methods (until September
2021) in challenging scenarios. The objective of this compar-
ison is that the architecture can fulfill different application
requirements (e.g., background, illumination, occlusion). By
comparing the architecture with previous studies, we prove
that it is flexible enough to work with different datasets (a
different model for each dataset) and surpass previous work
accuracy by using DNN.

The results in the final test present a similar accuracy in
both classification methods, but CNN was able to generalize
better than SVM with HOG. The videos contain samples that
were not used for training since we used only 25% of the
samples for training and contained blurred images and noisy
images. Therefore, we consider this last test a challenging
test for the classifiers, and we consider the accuracy above
80% satisfactory due to the considerable variation in the test
data. For future works, we aim at expanding the architecture
beyond poses and consider dynamic gesture modeling with
subunits [15].
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avatares expressivos,” in I encontro do Centro de ensino, pesquisa e
extensão sobre educação de surdos e Libras (Ceslibras), 2015.

[3] M. J. Cheok, Z. Omar, and M. H. Jaward, “A review of hand gesture and
sign language recognition techniques,” International Journal of Machine
Learning and Cybernetics, Aug 2017.

[4] C. F. F. C. Filho, R. S. de Souza, J. R. dos Santos, B. L. dos Santos,
and M. G. F. Costa, “A fully automatic method for recognizing hand
configurations of brazilian sign language,” Research on Biomedical
Engineering, vol. 33, no. 1, pp. 78–89, mar 2017.

[5] M. M. Rahman, M. S. Islam, M. H. Rahman, R. Sassi, M. W. Rivolta,
and M. Aktaruzzaman, “A new benchmark on american sign language
recognition using convolutional neural network,” in 2019 International
Conference on Sustainable Technologies for Industry 4.0 (STI), 2019.

[6] A. J. Porfirio, K. L. Wiggers, L. E. Oliveira, and D. Weingaertner,
“LIBRAS sign language hand configuration recognition based on 3d
meshes,” in 2013 IEEE International Conference on Systems, Man, and
Cybernetics. IEEE, oct 2013.

[7] R. Hartanto and A. Kartikasari, “Android based real-time static in-
donesian sign language recognition system prototype,” in 2016 8th
International Conference on Information Technology and Electrical
Engineering (ICITEE). IEEE, oct 2016.

[8] I. L. Bastos, M. F. Angelo, and A. C. Loula, “Recognition of static
gestures applied to brazilian sign language (libras),” in 2015 28th
SIBGRAPI Conference on Graphics, Patterns and Images, 2015.
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