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Abstract—Yeast counting is an important step in monitoring
the fermentation process in sugarcane mills to optimize ethanol
production. There is a need for a faster method to count viable
cells in place of the fastidious and operator-dependent traditional
method. In this paper, the application of a slightly modified
version of the standard Circular Hough Transforms to automate
the inoculated fermentation process of Saccharomyces cerevisae
is reported. The results of several experiments with different
preprocessing algorithms and parameter adjustments are pre-
sented. The resulting system will be part of a microbiological
control procedure that is being developed to respond to Brazilian
ethanol sugarcane mill’s demands.

Index Terms—Yeast detection. Hough transform. Machine
Vision. Object Counting.

I. INTRODUCTION

The scarcity of fossil fuels and climate changes caused by
the burning of these fuels is on the agenda of discussions
worldwide and renewable energy sources, like bio-energy, are
of increasing importance on the global stage [1]. Brazil has one
of the cleanest energy matrices, sugar cane culture to produce
alcohol representing 14% of the primary energy generated in
the country [2].

The alcoholic fermentation is due to the action of the
Saccharomyces cerevisiae yeast, which ferments sugars of
sugarcane juice diluted with water for their growth and ethanol
production. As industrial fermentation is done without asepsis,
secondary contamination occurs by bacteria that consume
sugar without producing ethanol. This contamination can hurt
the yeast’s performance. The number of viable yeasts is also
essential to increase the yield and make the fermentation
time shorter. Thereby controlling the number of viable yeasts
is essential. In sugarcane mills, this control can be made
by sampling and manual counting yeasts using a Neubauer
chamber, which consists of a microscope slide divided into
squares with an established volume, used to facilitate cell
counting [3]. In this paper, some results on the automation
of this time-consuming and tedious method, using computer
vision techniques, are presented.
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The method presented is part of a software that performs
tests of the viability of yeast samples [3], performing the
screening of microorganisms and calculating its area, which
is found through the value of its radius, for the subsequent
classification.

The main contribution is an extensive experimental investi-
gation on the use of several preprocessing steps coupled with
a Hough transform-based template matching strategy to auto-
matically count the number of yeasts in microscopic images. In
the preprocessing step, different smoothing and edge detection
algorithms have been tested. A slightly modified version of the
standard Circular Hough Transform has been used to detect
yeast cells. It has been also found that, for this problem, the
enhancement of the color saturation (in HSB space), before
grayscale conversion, improves the efficiency of the Hough
Transform. The results of the proposed method are compared,
using precision, recall, and f-score metrics, to ground-truth
images where yeast cells have been manually counted by a
specialist.

In the next section, related works are presented and the pro-
posed approach is discussed in Section III. The experimental
setup, results and analysis are exposed in Section IV, V and
VI. The last section presents conclusions and future works.

II. RELATED WORK

Milka [4] used a newly synthesized DNA fluorescent along
with an Easycounter YC instrument to determine the viability
of Saccharomyces carlsbergensis yeast cells in beer produc-
tion. The counting is done after the samples incubation, which
is loaded into the apparatus chip, then imaged and counted
using a cytometer. The procedure achieved theoretical viability
R2 of 0.9988, which is a much better result in comparison
with the manual method using methylene blue, however, it is
still a manual method that requires a specific machine, the
Easycounter.

In contrast to manual yeast counting procedures, Nicholas
[5] applied an automated image analysis using the ImageJ
software. This work did not obtain a statistically higher
counting result if compared with the manual counts at 95%
of confidence. On the other hand, it requires much less time



since as high as 400 Colony Forming Unit (CFUs) quickly
counting was done, abruptly reducing the analysis time.

One new example of the Hough transform is the recognition
of angle aided circles and the welding spot detection on
the automobile body. The method proposed in [6] utilized a
novel algorithm to reduce the computational complexity of the
traditional Randomized Hough transform, and reached more
than 98% accuracy on a dataset of 37 welding spot test images.

Hough transforms are also being applied to the problem of
fruit detection. Guichao et. al. [7] proposed a novel technique
to detect fruit using partial shape matching with the Hough
transform. The authors used 7 different datasets, each one
respective to a different fruit, containing no balanced images.
The method reported achieving, for citrus, tomato, pumpkin,
bitter gourd, towel gourd, and mango, the precision of 0.783,
0.848, 0.745, 0.762, 0.807, and 0.919, respectively.

The literature also presents a work about the Hough trans-
form voting process to detect multiple circles to avoid false
positives even with a large number of circles [8]. A set of 17
coins of varying sizes and colors were used, and the standard
approach was used to be compared. The number of false
positives is impressive 99% lower on the presented work.

Another interesting example was developed by Halil et.
al. [9], where their studies were directed to the Optic Disk
Localization detection. The team used the Hough Transform to
detect optic disk (OD) in retinal images for diagnosis diseases,
such as diabetic retinopathy, papilledema, and glaucoma.
According to the authors, the methods were able to detect
with 100%, 96.92%, and 98.88% accuracy for the DRIVE,
DIARETDB0, and DIARETDB1 public datasets, respectively.

Automation in the radiography field was also the subject of
the work of Lena et. al. [10], who developed approaches on
13 clinical radiography images. The manual results achieved
96.46%, which was almost surpassed by the 96.24% HT with
edge detection.

None of the interesting techniques above mentioned can be
used to find the viability of yeast by color since the first two
examples are not targeted for detection and classification of the
yeast Saccharomyces cerevisiae, and the third example above,
can only be used in the counting of yeast grown in a Petri
dish [11].

III. PROPOSED METHODS

The Hough Transform is a very well-known template match-
ing strategy [12], [13] highly dependent on some preprocessing
stages, like smoothing and edge detection. To find the best
combination of smoothing and edge detection algorithms and
also the best parameters values for the specific problem
handled in this paper, several experiments have been conducted
and led to the choice of a Gaussian smoothing filter combined
with a Canny Edge detector.

Using context information, the usual sizes, and agglomer-
ation properties of yeast cells, the standard Circular Hough
Transform has been slightly adapted to work with ranges of
circle radii and to discard circles whose Euclidean centers
distances fall below a parameter’s value. The yeast cells

present a bi-modal radius distribution and working with two
ranges of radii during the calculation of the 3D Hough space
helped to lower the processing time without compromising the
detection performance. Another preprocessing step proposed
in this work was to enhance image color saturation in HSB
space before grayscale conversion. Hence, the steps of the
proposed method are:

• Enhance Color Saturation
• Smooth using a Gaussian Filter
• Convert to grayscale
• Detect edges using the Canny Filter
• Identify yeast cells using the modified Circular Hough

Transform

IV. EXPERIMENTAL SETUP

The experiments were performed on a set of 144 images
captured in laboratory through the optical microscope Eclipse,
from Nikon, and digitized using the CB25 CCD camera.

The yeast cell counting is made with the help of a Neubauer
chamber, which presents a grid as seen in Figure 1 (a, b and
c) that is used to guide the technician during the counting
process. Also, there is a methylene pigment process that
causes a blue color on nonviable cells, which results in its
differentiation from viable cells.

The chamber used in this experiment, presented in Fig-
ure 1(a), is organized in outer and inner squares. There are 20
outer squares. Figure 1(b) presents a region of the chamber
containing 4 complete inner squares. Each outer square is
formed by 16 inner small squares, organized in a 4 x 4 grid.
A detailed view of 4 inner squares (2x2), which were used
as the input images for the algorithms tested in this paper is
presented.

(a) (b)

(c)

Fig. 1. Neubauer chamber and grids used for cell counting: (a) Neubauer
Chamber. (b) Four complete outer squares. (c) Example of the 2x2 inner
squares images used in the experiments. In addition, a blue cell in the 1st
square, which represents an nonviable yeast.

From each 144 2x2 inner squares images, the number
and position of yeast cells, identified by a technician, were
available. These 144 images are grouped into 6 datasets, rep-
resenting images captured in different fermentation moments.
The names of the datasets refer to the Brix (Bn), which is
related to the number of soluble solids in a fruit juice [14].



Table I describes each of the six datasets used in this work.
Note that not all outer and inner squares are used in the
manual counting process. The exact number and position of
the squares that are counted are part of a standard laboratory
procedure used to statistically infer some quality parameters
of the fermentation process from the number of viable and
non-viable yeast cells. Therefore, the number of viable cells
per liter is counted throughout a formula, which subsequently
allows determining the fermentation process period.

TABLE I
DESCRIPTION OF THE 6 DATASETS USED IN THE EXPERIMENTS

Dataset Description
R1-B3 first repetition with Brix 3
R1-B6 first repetition with Brix 6
R2-B3 second repetition with Brix 3
R2-B6 second repetition with Brix 6
R3-B3 third repetition with Brix 3
R3-B6 third repetition with Brix 6

Four experiments are reported in this paper. The first one
intended to find the best values for the Canny edge detector.
The second experiment determined the threshold that should
be used by the Hough transform algorithm to find the peaks
in the Hough space (accumulator) that correspond to actual
circles in the original image. The third evaluates a smoothing
parameter. Finally, the last experiment was conducted to find
the best set of parameters for the preprocessing, segmentation,
and smoothing, along with some changes in the saturation of
images to highlight the edges.

To evaluate the performance of the proposed method, three
metrics were used: Recall, Precision, and the F-score [15]. The
metrics are presented in equations 1, 2 and 3, where hy is the
number of yeast cells that have been correctly detected as a
circle by the Hough transform, ty is the total number of yeast
cells present in the ground truth image and hc is the number
of circles detected by the Hough transform.

recall =
hy

ty
(1)

precision =
hy

hc
(2)

F = 2 ∗ precision ∗ recall
precision+ recall

(3)

All metrics vary from 0 to 1, with 0 associated with the
worst and 1 with the best performance. Recall and precision
give complementary information regarding the classification
performance of the algorithm and the F-score combines recall
and precision in just one metric.

V. RESULTS

The first experiment tested the α parameter of the Canny
filter. This parameter controls the strength of edge suppression:
the higher the value of α the more the strength (gradient
magnitude) of an edge surrounded by other edges is reduced
[16]. The range of α reported here varies from 0.8 to 1.3

because preliminary exploratory experiments showed that the
performance outside this range is very poor. For this exper-
iment, the parameters σ and the Hough space threshold of
the Hough transform, determined experimentally in previous
experiments, were set to 1.6 and 16, respectively. The results
are presented in Table II.

In other words, the Petri dish counting method was used
to find the real number of viable cells on blue and colorless
images. Further, it was compared with an evaluation method
used by sugar cane mills. The resulting values for the used
metrics correspond to the mean value from the application of
the method to all images of the dataset TF-R2-B3 and the
greater values are shown in bold case.

TABLE II
RESULTS RELATED TO THE VARIATION OF THE α PARAMETER

Dataset α Recall Precision F
R2-B3 0.8 0.9804 0.7235 0.8221
R2-B3 0.9 0.9830 0.7388 0.8335
R2-B3 1.0 0.9778 0.8104 0.8795
R2-B3 1.1 0.9727 0.8546 0.9058
R2-B3 1.2 0.9552 0.8899 0.9174
R2-B3 1.3 0.9247 0.9170 0.9170

The second test was conducted to find the threshold used
to determine the peaks in the Hough space that correspond
to circles. Threshold values from 15 to 18, determined in
previous exploratory experimentation, were tested. The smooth
parameter σ was fixed at 1.6 and the best three α values,
regarding the F-score, found in the first experiment, were used.
The results are presented in Table III.

TABLE III
RESULTS RELATED TO THE HOUGH SPACE THRESHOLD EXPERIMENT

Dataset α Threshold Recall Precision F
R2-B3 1.3 15 0.9440 0.8545 0.8933
R2-B3 1.3 16 0.9248 0.9170 0.9170
R2-B3 1.3 17 0.8737 0.9399 0.9020
R2-B3 1.3 18 0.8272 0.9553 0.8834
R2-B3 1.2 15 0.9718 0.8158 0.8817
R2-B3 1.2 16 0.9552 0.8899 0.9174
R2-B3 1.2 17 0.9132 0.9323 0.9190
R2-B3 1.2 18 0.8624 0.9485 0.9006
R2-B3 1.1 15 0.9800 0.7546 0.8457
R2-B3 1.1 16 0.9727 0.8546 0.9058
R2-B3 1.1 17 0.9303 0.8974 0.9098
R2-B3 1.1 18 0.8946 0.9280 0.9094

In the experiment to determine the best σ value for the
smoothing parameter, a variation from 1.4 to 1.8 was used.
The value adopted for α was 1.2 (best F-score), and the
Hough space threshold used was 16 and 17 (best F-score in
experiment 1). The results are presented in Table IV.

In all experiments, the radii ranges used by the Hough
transform search were determined visually, based on the usual
size of the yeast cells. Table V summarizes the results of the
application of the proposed method on each of the six datasets.

Figure 2 shows examples of the resulting images obtained
during the experiments. Figure 2.(a) is the original image and



TABLE IV
RESULTS RELATED TO THE σ PARAMETER VALUE DETERMINATION

Dataset σ Threshold Recall Precision F
R2-B3 1.4 16 0.9237 0.9056 0.9105
R2-B3 1.6 16 0.9552 0.8899 0.9174
R2-B3 1.7 16 0.9507 0.9004 0.9217
R2-B3 1.8 16 0.9504 0.9017 0.9222
R2-B3 1.4 17 0.9677 0.8661 0.9098
R2-B3 1.6 17 0.9132 0.9323 0.9190
R2-B3 1.7 17 0.9045 0.9317 0.9148
R2-B3 1.8 17 0.8919 0.9264 0.9056

TABLE V
RESULTS FROM THE APPLICATION OF THE PROPOSED METHOD

Dataset Recall Precision F
R1-B3 0.908 0.970 0.936
R1-B6 0.815 0.950 0.874
R2-B3 0.952 0.900 0.922
R2-B6 0.888 0.859 0.868
R3-B3 0.888 0.957 0.917
R3-B6 0.902 0.838 0.861

from Figure 2.(b) to Figure 2, examples of the following proce-
dures are shown: (b) saturation reinforcement, (c) smoothing,
(d) gray-scale conversion, (e) edge detection and (f) circles
detected by the Hough transform.

VI. DISCUSSION

Table V shows that the performance of the proposed method
presents important variation between the datasets. It can be
seen that the best F-Score and Precision were achieved in the
dataset, TF-R1-B3, which has not been used for parameter
tuning. However, the Recall is significantly higher in the TF-
R2-B3 dataset, used for tuning. The minimum F-score was
86%, in the TF-R3-B6, and the maximum was 93%, which
seems to be an encouraging result.

The proposed method has minor failures to detect yeast
cells (false negatives) or to mistakenly identify as a yeast the
circles that do not correspond to yeasts (false positives). As
an example, a false positive should be a blue cell counted as a
white cell, since the blue coloring corresponds to the nonviable
yeast and the viable ones are presented in white color. To
identify what might be causing this problem, all images where
the failures occurred were visually analyzed with the help of
an expert in the field.

Two main categories of mistakes were identified and are
presented here. The most common failure is due to a lack of
focus in some of the yeasts because of its rounded surface. The
microscope focus is adjusted according to the trained human
vision at the time that the images are captured. Sometimes,
a satisfactory image for a specialist may have a poor yeast
border demarcation, resulting in poor edge detection. The edge
pixels of these out-of-focus yeasts have a color value that is
very similar to the background and are not correctly detected
by the Canny algorithm. This problem results in some false-
negative errors, as illustrated in Figure 3.

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Resulting images obtained during the experiments: (a) Original
image. (b) Saturation enhancement. (c) Gaussian smoothing. (d) Grayscale
conversion. (e) Canny filter. (f)Circles detected using the Hough transform.

The second cause of errors can be attributed to the presence
of impurities in the liquid samples, which are unexceptional on
sugarcane. Some of these impurities have well-marked borders
that result in many undesirable edges found by the Canny
algorithm that further disrupt the accumulation of evidence
in the Hough Circles transformed space. Additionally, the
possibility of chamber traces interference may occur. Two
examples of images that exhibit this problem are shown in
Figure 4, along with images of the CHT results.

It is worth mentioning the quick method used by sugar cane
mills only evaluates the quality of ethanol cells. In addition, the
Petri dish method is a unique counting procedure that results in
the real number of viable cells. However, visual perceptiveness
mistakes are present through the technician analysis, and the
proposed method addresses a solution to this issue.

VII. CONCLUSION

The experiments indicate that the proposed method can
achieve good precision (above 95%) and recall rates (above
98%) in some of the datasets tested and serve as baseline
performance for further tests using this kind of image. Also,
it is important to notice the precision of the sugarcane mill’s
measures is unspecified.



(a) (b)

(c) (d)

Fig. 3. Examples of images containing out of focus yeast cells: (a) Original
image. (b) Circles detected by the proposed method. (c) Original Image. (d)
Circles detected by the proposed method.

(a) (b)

(c) (d)

Fig. 4. Examples of highly compacted clusters of dust that impair the
proposed method performance: (a) Original image. (b) Circles detected by the
proposed method. (c) Original Image. (d) Circles detected by the proposed
method.

A few other works are dealing with Saccharomyces cere-
visiae cells counting however not use the same type of dye
and control procedure studied in this paper. This is, the used
method requires 24 hours to considerable analysis and the fer-
mentation ends after 10 hours as well. Thus, the presentation
of a new solution is also a contribution of this paper. The
mean running time of the proposed approach has also been
calculated, for further comparisons, and was 270.1806ms with
a standard deviation of 30.032ms over 144 repetitions.

In the final system, the Hough transform yeast cell iden-
tification module is planned to serve as a preprocessing step
to another, distance-based template matching module, that will
refine this search and also separate viable from nonviable cells.
So, high recall rates are more important, in this project, than
precision, as this other module will have the opportunity to
discard the regions detected by the Hough transform that do
not correspond to yeast cells.

For future works, comparisons with other approaches are
being planned. The running time may also be further reduced
using the Random or the Segment Hough transforms, which
are reported to significantly improve the processing time in
other application domains.
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