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Abstract—Palynology can be applied to different areas, such as
archeology and allergy, where it is constantly growing. However,
no publication comparing human classifications with machine
learning classifications at different optical scales has been found
in the literature. An image dataset with 17 pollen species that
occur in Brazil was created, and machine learning algorithms
were used for their automatic classification and subsequent
comparison with humans. The experiments presented here show
how machine and human classification behave according to
different optical image scales. Satisfactory results were achieved,
with 98.88% average accuracy for the machine and 45.72% for
human classification. The results impact a single scale pattern for
capturing pollen grain images for both future computer vision
experiments and for a faster advance in palynology science.

Index Terms—Machine Learning, Computer Vision, Mi-
croscopy, Palynology, Pollen Grains.

I. INTRODUCTION

The identification of pollen grains is related to the field
of palynology, which is the study of pollen grains, spores,
and some types of diatoms. Palynology can be valuable in
many applications, such as quality control of bee products,
ie honey [1]; collecting evidence at a crime scene to assist
criminal investigations through geographical locations of the
suspects [2], [3]; or in the mapping of past climate through the
reconstruction of past environments [4], for the identification
of fossil pollen. Interestingly, pollen can also help in the oil
exploration industry as they serve to map potential fields [5].

There are several pollen analyses procedures, for example
through human eye recognition using a microscope, electronic
scanning identification, and laser particle detection, being the
human eye analysis is the most popular and broad used, as
there is no need for large equipment tools. It is done with
palynological slides with grain samples, a microscope, and a
specialist in the field. On the other hand, many mistakes are
commonly made, these may be caused by the fatigue exerted
in the accomplishment of this task. Another important point
is the indispensability of a specialist in the field, creating a
dependency because there are few qualified professionals for
this task [6].
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According to [7], grain recognition is done through common
external attributes such as shape, symmetry, size, and texture,
which can sometimes be very subtle and lead to classification
errors by experts in the field. The construction of a computer
system to automate pollen grain classification is of great value,
as the steps taken by palynologists are time-consuming and
could be reduced from months to a few hours by an automated
identification system. Thus, the contribution of this work helps
in three points for the advance of this technology, being:

• Creation of a new pollen grain image dataset;
• Analysis of an ideal optical scale for image capture; and
• Comparison of two computational classification tech-

niques against human classification.
First, a new annotated dataset including 903 images of

17 pollen types were constructed and made openly available
to support the development of new machine vision systems.
Second, the efficiency of machine learning algorithms was
measured in the task of classifying this pollen, thus assisting
in future studies for automation and deep learning techniques
were implemented and explored to build a machine vision
system that can classify images of pollen. Finally, this work
supports a new approach to measure how human vision
classification compares to machine vision. Thus, experiments
were conducted to find the best configuration for this system
and the results are reported.

The next section presents a brief review of the state-of-
the-art regarding the automation of the pollen classification
task and is followed by the materials and methods section.
The results, discussion, and conclusions are then reported, and
future work is later proposed.

II. RELATED WORK

There were found in the literature eight different approaches
to pollen grains classifications (Table I). However, none of
them took care of the optical zoom as well as its distinction
from human classification.

Quinta et al. [8] applied Optimum-Path Forest (OPF) on
honey bee pollen grains. The best result using this technique
was a performance of 75.27% by applying the algorithm C4.5
on 200 pollen grains images divided into six different species.



TABLE I
DIFFERENT APPROACHES ON THE LITERATURE ABOUT POLLEN GRAIN

CLASSIFICATION. AS THEY ARE DIFFERENT WORKS, THE RESULTS
COLUMN HAS NOT THE SAME EVALUATION METRIC.

Author Approach No. of
images

No. of
classes

Results
(%)

1 [8] Optimum-Path Forest 200 6 75
2 [9] Watershed 333 4 98
3 [10] Shape and texture 291 3 89
4 [11] Bag-of-Words 315 9 71
5 [12] Neural Networks 345 17 92
6 [13] Wavelet Transform 30 7 79
7 [7] CST+BOW 805 23 64
8 [14] DCNN’s 805 23 97

After pattern recognition experiments, Andrade et al. [9] had
the objective of classifying pollen grain images using texture-
based segmentation and Watershed. The following procedures
were used: attribute extraction of texture attributes, followed
by a Gaussian blurring and finally a use of image thresholding
by an interactive selection method. This technique obtained
as a final result a correct classification percentage of 98.93%,
using a dataset containing 333 images from 4 different species
of pollen grains.

To classify Urticaceae species, which can cause respiratory
diseases, analysis of shape and texture characteristics were
used. These species are very common throughout the year so,
according to the researchers, it is very interesting to have a
system that can recognize the pollens of this species. They
obtained an accuracy of 89% using the MDC classifier on
three pollen types, which was higher than that achieved by a
palynologist in routine analysis [10].

Similarly, the use of the Bag-of-Words (BOW) technique
allowed Gonçalves et al. [11] to generate a histogram of
each used image containing their respective characteristics.
Experiments resulted in the generation of a dictionary of 2048
descriptors for each image, followed by classifications with
supervised learning algorithms. As a final result, the best result
was obtained through the SVM algorithm, which obtained 71%
accuracy in the correct classification percentage.

Using a dataset of 345 images from 17 different pollen
species, which involved 17 subgenera of tropical honey plants
in Costa Rica and Central America, the authors [12] were
able to get a 92.81% accuracy using 50 imaging features and
artificial neural networks. Recently, the same authors used the
Bag-of-Visual-Words and reached 95.8%, however they used
only one pollen species, Betula.

From the same point of view, Diogo et al. [13] adopt the
Wavelet Transform, in a dataset with 7 different species. The
main objective was the reduction of unnecessary attributes.
The algorithms used were C4.5 and KNN, obtaining not
very good results, especially for the shape attribute where it
obtained 57% of F-rate with the C4.5 algorithm. However,
when more attributes were combined it obtained a significant
improvement, with a 79% rate in the F-measure.

In contrast, according to Barbosa et al. [7], the best tech-
nique that should be used to automate pollen grain classi-
fication is the combination of attributes with Bag-of-Words.

In this experiment, the CST algorithm was created, its name
is based on the use of color, shape, and texture attributes.
The authors also presented a new pollen grain images dataset
for machine learning experiments, POLEN23e, which is the
biggest one already published, and reached a CCR of 64%
with CST+BOW and the C-SVC classifier.

However, Sevillano and Aznarte [14] improved the machine
classification rate on POLEN23e using deep learning con-
volutional neural networks. The authors implemented three
models of deep learning and used transfer learning for the
classification, achieving 97% of correct classification, being
the dataset split into train-test groups.

III. MATERIAL AND METHODS

A. Image Dataset

An image dataset was created, named Polen40k, containing
38.880 different images. Experiments were conducted with
two machine learning paradigms, shallow and deep, with 40
different configurations in each.

In Figure 1, it is possible to visualize a sample of each
pollen grain species present in the image dataset.

Fig. 1. A sample of each pollen type from our Polen40k dataset. The
dataset consists in 38,880 images of 17 pollen species, captured by the
author in the laboratory. The 17 species are: Azadirachta indica, Banisteria
argyrophylla, Bauhinia, Bixa orellana, Camptostema ellipticum, Casearia
aculeata, Cocos nucifera, Euphorbia pulcherrima, Handroanthus heptaphyl-
lus, Hidrocleys nymphoides, Inga vera, Leucaena leucocephala, Matayba
guianensis, Mitostemma brevifilis, Moringa oleifera, Plinia cauliflora and
Simarouba versicolor.

From pollen grain samples collected in a Cerrado area in
the city of Campo Grande, Mato Grosso do Sul, images at
different optical scales were captured using the Carls Zeiss
model axis-scope A1 microscope. The amount of pollen grain
images captured according to the optical scale is shown in
Table II.



TABLE II
THE NUMBER OF RAW IMAGES OF POLLEN GRAINS CAPTURED IN THE
LABORATORY. THE IMAGES WERE SEPARATED BY SPECIES AND ALSO

ACCORDING TO THEIR CORRESPONDING OPTICAL SCALE.

Quantity by scale
Specie 5x 10x 20x 40x Total

1 Azadirachta indica 9 10 10 10 39
2 Banisteria argyrophylla 10 10 10 14 44
3 Bauhinia 12 10 10 9 41
4 Bixa orellana 11 10 13 9 43
5 Camptostema ellipticum 10 10 10 10 40
6 Casearia aculeata 11 10 10 10 41
7 Cocos nucifera 10 10 10 10 40
8 Euphorbia pulcherrima 11 11 10 10 42
9 Handroanthus heptaphyllus 10 12 9 10 41
10 Hidrocleys nymphoides 10 10 11 10 41
11 Inga vera 10 11 10 12 43
12 Leucaena leucocephala 10 10 11 10 41
13 Matayba guianensis 11 10 13 10 44
14 Mitostemma brevifilis 32 30 32 17 111
15 Moringa oleifera 10 10 10 10 40
16 Plinia cauliflora 11 11 10 11 43
17 Simarouba versicolor 10 9 10 11 40

TOTAL 220 214 218 200 903

As the purpose of this work is the discovery of the best
optical scale for pollen grain imaging, the dataset was orga-
nized to divide the images according to their respective scale.
Therefore, this image dataset is the pioneer to contain images
of pollen grains at different visual scales in Brazil and is called
Polen40k.

B. Data Augmentation

The Polen40k dataset has derived from 903 raw images.
After preprocessing and data augmentation methods, it resulted
in a total of 38.880 images. These images are divided into 17
various pollen species into different optical scales, being 5x,
10x, 20x, and 40x, respectively.

After capturing images in the laboratory, the raw images
were preprocessed generating a new bank containing 1440
images. In this process (step A of Figure 2) the pollen grains
were segmented [15] from the original images and their names
were annotated, afterward, 20 of these cropped images were
randomly selected for each optical scale.

From the segmented 1440-image database, transformations
were performed to increase data, which is necessary because
deep learning techniques have better results according to the
total number of images. The schematic shown in Figure 2
clarifies the sequence of data augmentation steps made here.

Fig. 2. The Polen40k image dataset has 903 raw images and from them,
different image processing was performed in sequence A → E: Grain crop and
noise deletion, 3 rotations, 5 rotations, 8 rotations with vertical rotation and
by finish 8 more rotations with horizontal rotation plus 135 degrees rotation
with both turns. Thus, 37.440 different images of pollen grains were totaled.

In Table III, it is possible to verify what were data augmen-
tation performed in steps B, C, D, and E. A total of 37.440

synthetic images was generated with these transformations.
Therefore, in addition to the original 1440 images, a database
of 38.880 images available to be used in machine vision
experiments for the advancement of science in palynology was
created.

TABLE III
THE DATA AUGMENTATION TRANSFORMATIONS PERFORMED IN EACH OF
THE STEPS (B, C, D E E). LATER, IN THIS STEP, 135 DEGREE ROTATION

WITH BOTH VERTICAL AND HORIZONTAL ROTATION WAS ADDED..

Step Rotation
(degrees)

Vertical
Flip

Horizontal
Flip Generated

B 15, 30 and 45 No No 4320

C 60, 75, 90, 105
and 120 No No 7200

D 15, 30, 45, 60,
75, 90, 105 and 120 Yes No 11520

E 15, 30, 45, 60, 75,
90, 105 and 120 ** No Yes 14400

TOTAL 37440

From the palynological slides, a chemical process of pollen
grains treatment is executed, through the methods of acetolysis
and fixation with glycerine gelatine, where it is possible to fix
them for later image capture. The quality of the samples in
these slides depends on external and biological factors, so each
slide can’t have the same amount of grain per species [16].

C. Human Classification

For human classification, a 68 images dataset was used. For
each of the 17 species, 4 images were chosen randomly, each
image on a different scale. This amount is because visually
pollen classification is an exhausting and monotonous task,
which makes it improbable for a specialist to classify a larger
amount voluntarily.

The used approach on this classification was conducted
using an online environment (Google forms), posted on social
networks, for example, Palynology groups, on Facebook. In
Table IV it is possible to see the palynology groups where the
specialists were invited. Other systems, i.e. Whatsapp, were
used to invite more specialists.

TABLE IV
OUR CLASSIFICATION FORM DESTINED FOR HUMAN CLASSIFICATION WAS
POSTED ON THE BIGGEST PALYNOLOGY GROUPS AT FACEBOOK. THE IDEA

WAS TO FIND VOLUNTEERS FROM THIS AREA TO CARRY OUT THIS
CLASSIFICATION STEP.

Name No.
Members Country

Palinologia 639 BR
NEPAL 230 BR
Asociación Latinoamericana
de Paleobotánica y Palinologı́a 372 ARG

Palynology and Biostratigraphy 242 USA

Before-mentioned, the classification was made online,
through two online Google forms. As the classification consists
of 68 images, each form had 34 images, and they could
be found at https://forms.gle/UFcxSApVtmQHHhmV8 and
https://forms.gle/jtQmpMx86RcGues19.

It is worth mentioning that, this classification is due to the
human eye, so this process is susceptible to several errors since



the activity is monotonous and exhausting. For example, the
process follows for experts in the field to view grain by grain
from different points of view over a computer screen during
hours and hours. These palynology experts use additional
material, which is known as Rede de Catálogos Polı́nicos,
Pollen Catalog Network. This material helps to find pollen
information, for example, those shown in Table V.

TABLE V
THE POLYNICAL DESCRIPTION THAT IS PRESENTED OVER THE POLLEN

CATALOG NETWORK MATERIAL, USED FOR EXPERTS TO DO THE
CLASSIFICATION.

Exine ornamentation Pore feature Type of pollen aperture
Number of apertures Pollen polarity Pollen size
Pollen amb Pollen shape Colpo feature
Pollen dispersal unit Pollen symmetry Location

In addition to their regular use of this material, we provided
train images as extra material. For each species, 4 images
withdrawal from each zoom were randomly chosen, consti-
tuting a training dataset for those who wanted to memorize
some visual information on their mind. This material could be
found at https://forms.gle/EeDCxr7XWJLjwuA76.

Twenty experts initialized the process. The group was
composed of various areas that could be applied in palynology.
They were: biology, ecology, forestry engineering, and com-
puter engineering undergraduate students. Also, agriculture
masters and biology, ecology, geology, and palynology doctors
participated. Unfortunately, from this group, just four experts
had finished the classification.

D. Machine Classification

Two phases of experiments were performed, the first con-
sisting of using five shallow learning methods [17] and the
second five deep learning methods [18], as shown in Table
VI.

TABLE VI
METHODS USED IN THE EXPERIMENTS.

Shallow Learning Deep Learning
IBk (k=1) Xception
IBk (k=5) VGG16

SMO VGG19
j48 ResNet50

Random Forest InceptionV3

A total of 80 different configurations were performed,
established in the following order: all algorithms were used to
classify the pollen grains present in the 4 different scales, using
the 1440 image dataset, to verify which method would have
the best results. Subsequently, with the best method selected,
4320, 7200, 11520, and 14400 image datasets, evaluations
were performed, both separated by scales, to verify visual
zoom interference on digital images and to validate whether
such interference has significant relevance.

1) Shallow Learning: In Phase 1, the machine vision steps
[19], [20] were performed before the shallow learning classifi-
cation process, and the extraction of image attributes included
the following extractors: color statistics, gradient histogram,

Hu moments, image moments, local binary patterns and Gabor
filtering [11], [21].

The Polen40k was hold-out into 60% of data for training
and the remaining 40% of the data were used for the testing
process [22]. No copies of the same image appear in both
training and test sets simultaneously, since it would lead to an
incorrect performance evaluation of the demonstrated methods.
Nevertheless, Cross-validation being a preferred method rather
than Hold-out was not used since it requires more computa-
tional power and time, moreover, this work does propose an
initial knowledge about human versus machine classification.
In light of this, the 5 shallow learning algorithms (Table VI)
were used.

The following metrics were extracted: True Positive Rate
(ie the pollen grains the classifier correctly named), False
Positive Rate (ie the pollen grains the classifier said were not
and indeed were not), Precision (ie, performs a calculation
using TP and FP), Recall (ie, performs a calculation using TP
and FN, which are the grains he misclassified), F-Measure (ie,
combines precision and recall to bring a unique number that
indicates the overall quality of the model) and finally, the Area
under ROC curve (ie a metric value calculated from a curve
on a graphic that has two axes, the TP and the FP. The results
obtained are shown in Table IX.

The metrics explained above have the following formulas:
• Precision = TP

(TP+FP )

• Recall = TP
(TP+FN)

• F = 2 ∗ (Precision∗Recall)
(Precision+Recall)

2) Deep Learning: In Phase 2, the deep convolutional
neural network models were implemented using the Keras
application, based on TensorFlow [18]. These models had
already been published and are known for having the best
results at ImageNet [23].

The training was done starting from pre-trained models on
Imagenet, even though the number of images was 903. It
is important to notice that each model has different layers
of topology, however, the activation functions used were
the same. ReLu activation function was used on the fully
connected layer, and the softmax activation function was used
to execute the training predictions.

As following, the informations belonging to each model are
shown:

TABLE VII
LAYERS AND PARAMS OF EACH IMPLEMENTED MODEL.

Model Layers Params Optimizer
Xception 132 20,861,480 SGD
VGG16 19 14,714,688 SGD
VGG19 22 20,024,384 SGD

ResNet50 175 23,587,712 SGD
InceptionV3 311 21,802,784 SGD

The pre-processing of networks input was done by image
data generator –a Keras function to read data– to rescale the
images to 0-1 instead of their pixel values being 0-255. On the
network’s output custom layers were added. A flatten method
following by a fully connected layer with a dropout.



All models used the same initial parameter values: 0.001
learning rate, 0.9 momentum, 16 as batch size, 200 epochs, did
not use the transfer learning technique and neither fine-tuning
adjustments and the percentage of data distribution continued
to be 60% for the training and 40% for the classification test
[24].

It is important to remember that in the shallow learning
algorithms the displayed metric used is the true positive rate
and for the deep learning algorithms is the accuracy rate, both
quantify the system’s effectiveness in correctly classifying
pollen grains. It is also worth regarding that both were run
on different computers, shallow learning on an i7-7700hq
processor and Nvidia 1050ti graphics card, and the deep
learning on an i7-7700 processor and Nvidia titan XP GPU,
but this comparison does not conflict with the results shown,
in time execution and memory consumption only.

IV. RESULTS AND DISCUSSION

Initially, a comparison with the 68 images dataset used for
the human classification being also used as a test dataset for
the machine classification was evaluated. In the human eye
classification, all the participants had low results in the 5x
scale and contrast, high on the 40x scale. Thus, the average
result of the 5x scale was 25.00%, the 10x scale was 35.29%,
in 20x it was 44.18% and finally in 40x the best result, being
45.59%. The human results can be seen in Table VIII.

TABLE VIII
THE CORRECT PERCENTAGE RATE OF EXPERT PARTICIPANTS (PS) FOR

VISUAL CLASSIFICATION ON EACH OF THE FOUR OPTICAL SCALES.
EXECUTION DONE THROUGH A QUESTIONNAIRE WITH 68 IMAGES.

Ps 1 Ps 2 Ps 3 Ps 4
5x 29.41 29.41 17.65 23.53
10x 47.59 47.59 23.53 23.53
20x 58.82 58.82 29.41 29.41
40x 47.59 52.41 35.29 47.59

Meanwhile, the 1440 images dataset was used to check
the machine classifications zoom pattern. The results of the
shallow learning method show that the best pollen grain
imaging scale is over again 5x, and the algorithm that had the
best results in this approach was the Random Forest. Deep
learning was also used and thus validated the best pollen
grain capture scale is indeed the 5x, being ResNet50 the best
classifier. These results are presented in Table IX.

As a result, the smaller the scale the better the result when
the classification is done by the machine could be explained
by a large amount of unnecessary information. When the
optical scale is low the amount of noisy information makes
no difference, that is, the opposite from high scales, when
there are too many details to deal with that it turns into a
complex learning process.

In consequence of Random Forest and ResNet50 obtained
the best scores rates, subsequently, they were chosen to
perform experiments with the largest image datasets. Using
these algorithms, 40 configurations were conducted, to verify
if the smallest scale still keeps the best classification results

TABLE IX
THE CLASSIFICATION RESULTS OF THE MACHINE LEARNING ALGORITHMS
USED AT EACH OF THE FOUR OPTICAL SCALES. EXECUTION MADE IN THE

DATASET OF 1440 IMAGES.

ibk
(k=1)

ibk
(k=5) SMO j48 Random

Forest
5x 70.33 64.83 78.81 61.94 79.39

10x 61.89 58.11 68.64 54.47 71.25
20x 55.72 47.06 62.14 53.08 71.17
40x 40.28 36.11 48.92 35.39 54.50

Xception Inception
V3

VGG
16

VGG
19

ResNet
50

5x 90.28 97.92 95.82 95.83 96.83
10x 82.94 97.92 95.38 95.14 96.53
20x 82.64 96.53 95.38 95.14 95.14
40x 72.92 84.72 86.06 82.42 88.89

and if the data increase has significant improvement in the
score. The results are represented in Table X.

TABLE X
THE CLASSIFICATION RATES OF THE RANDOM FOREST AND RESNET50

ALGORITHMS ON EACH OF THE FOUR OPTICAL SCALES RESPECTIVE FROM
EACH OF THE DATA AUGMENTATION DATASETS.

Random Forest
1440 4320 7200 11520 14400

5x 79.39 98.70 82.89 92.33 95.78
10x 71.25 99.17 84.17 93.96 96.67
20x 71.17 99.17 83.50 94.44 97.14
40x 54.50 96.67 71.72 88.51 93.78

ResNet50
1440 4320 7200 11520 14400

5x 96.83 98.29 99.72 99.83 99.72
10x 96.53 98.29 99.72 99.83 99.99
20x 95.14 98.11 99.99 99.74 99.99
40x 88.89 94.08 99.86 99.99 99.99

In addition, it has been observed that convolutional neural
networks, current state-of-the-art image classification methods,
actually defeat traditional algorithms, in Table X the more
images there are, the better machine learning gets, but CNN’s
stand out. In the first technique, the Random Forest algorithm
stood out, achieving 69.08% of overall performance. In the
second technique, the ResNet50 algorithm was the best, ob-
taining 97.80% of overall performance.

Figure 3 (a) shows the graphic of ResNet50’s accuracy result
in the 1440 image dataset is shown. Accuracy results were
97.92%, 96.53%, 95.14% and 88.89% respectively at the 5,
10, 20 and 40x scales. Next, the loss rate can be seen in part
(b), being 0.14%, 0.14%, 0.16% and 0.36%.

Further, the accuracy and error results from the 14400 image
dataset can be seen in Figure 4. The maximum accuracy values
were: 99.72% with an error of 0.0077% on the 5x scale, and
99.99% and an error values of 0.0005% for the other scales,
respectively.

It can also be proved that manually increasing data for
shallow machine learning techniques is of utmost importance
as it significantly improved the evaluation rate by 21% on the
5x scale, 28% on the 10x and 20x scales, and 43% on the
40x scale, ie 30% improvement in overall score (improvement



(a) (b)

Fig. 3. Accuracy (a) and loss (b) of the ResNet50 convolutional neural
network performed on the 1440 images dataset.

(a) (b)

Fig. 4. Accuracy (a) and loss (b) of the ResNet50 convolutional neural
network performed on the 14400 images dataset.

rates from step B of Figure 2) and that after a certain amount
of images this rate maintains, as seen in Table X, indicating
that for larger amounts of images the best technique to use is
deep learning.

V. CONCLUSION

This work proposes a new approach for microscope pollen
grain imaging. A standard for capture has been established
to avoid overwork on other optical scales that are not of
significant relevance. First, 40 different configurations were
executed with shallow learning algorithms and were identified
as a better recognition pattern on the 5x scale. Second, 40 more
configurations with deep learning algorithms were performed
to verify the same pattern, and the obtained results validate
this new point of view. Therefore, it was verified that for
machine techniques of automatic pollen grain classification,
the best-established scale was 5x. Already in the experiment
with humans, were tested if the human mind has the same
outcomes as the machine, and it was validated that the
human eye classifies the grains in the opposite way to the
algorithms, that is, the largest scale has the best results and
so. Similarly, the smallest scale gives the worst results, unlike
the machine. Furthermore, were adopted two different machine
learning techniques for grain classification, shallow learning,
and deep learning, and the results found that the use of CNN’s
outperforms traditional algorithms. As future work, we hope
to do experiments with a larger number of participants and
images.
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