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Abstract—The disease detection is vital to increase the pro-
ductivity and quality of soybean cultivation and this detection
is usually carried out in a laboratory, which is time consuming
and costly. To overcome these issues, there is a growing demand
for technologies that aim at a faster detection and classification
of diseases. In this context, this work proposes the extraction of
several patches from a leaf image and combining a convolutional
neural network with a support vector machine, we present a
complete model for the classification of soybean leaf diseases.
In this approach, an image dataset with evidence of diseases
commonly observed in soybean crops was analyzed and our
experiments achieved precisions greater than 90%.

Index Terms—Soybean leaf diseases, Classification, Convolu-
tional Neural Network.

I. INTRODUCTION

Soybean is the main agricultural export product of Brazil,
filling more than 35 million hectares in 2021 [1]. In the last
20 years, the annual growth of soybean production in Brazil
was 3.5 million tons, which represents an increase of 13.4 %
each year [2]. Much of this growth is due to the increase and
improvement of technology used in the field, such as the use
of intelligent irrigation systems and soil quality control.

However, there are several diseases that affect and make
it difficult to obtain high levels of productivity in soybeans
[3]. Moreover, considering the increase of number of farms,
the number of diseases to which soybeans are exposed also
increases significantly, and may cause great economic losses.
Consequently, the continuous monitoring of the crop is a
fundamental strategy for disease management and should be
considered among all farmers [3]. However, the process of
identifying a disease usually requires an expert and can be
very time-consuming, thence also costly [4].

In recent years, precision agriculture has been more widely
used, applying computer resources for a better control of the
crop productivity and reducing the need for specialized help
[5]. And computer vision is frequently applied as part of the
precision agriculture, improving many tasks from carrying out
weed detection using aerial photos to identify diseases in fruits
and plants.

Therefore, several works have been presented over the last
few years towards the classification of diseases that affect
different types of crops through the analysis of leaves. Fuentes
et al. [6] proposed the used of neural networks like Fast-RCNN
for the detection of diseases and pests in tomato crops. Hassan

et al. [7] analyzed different plants through convolutional neural
networks such as Inceptionv3 and MobileNetV2.

Considering the analysis of soybean diseases in Brazil,
the present approaches used only classic methodologies (not
based on Deep Learning). Pires et al. [4] used Bag of Visual
Words and Support Vector Machine (SVM) to achieve 98%
in four types of diseases. Barbedo et al. [8] converted the
original RGB images into the HSV, L*a*b* and CMYK color
spaces and using a modified pairwise voting system based on
intensity histograms, achieved 58% of precision for 9 classes
of diseases.

A more recent approach proposed by Karlekar et al. [9] was
the first to introduce the use of a deep learning convolution
neural network (CNN) for soybean leaf diseases classification
after a segmentation step to remove the complex background
and result in 97% of precision. However, their experiments
created synthetic images using a huge data augmentation for
both training and testing, thus creating a data leak and making
it difficult to analyze their results in real situations.

To the best of our knowledge, this paper is the first to
present an approach based on convolutional neural networks
(as Karlekar et al. [9]) combined with SVM (as Pires et al. [4])
to identify the most frequent soybean leaf diseases. Moreover,
our experiments demonstrate that this robust methodology is
able to achieved high precision with much smaller datasets
than previous works [4] [6] [7] [9].

II. MATERIALS AND METHODS

The image dataset was originally collected by EMBRAPA
(the Brazilian Agricultural Research Corporation) and presents
5 types of leaf diseases and also a class with healthy leaves.
The number of images per class is presented in Table I and
some image samples can be seen in Figure 1. By the time
we had access to this dataset, there were also images with
Copper Phytotoxicity, Mirothecium Leaf Spot, Charcoal Rot
and Rhizoctonia Aerial Blight disease, however they were not
considered in this work due to low number of images (less
than 10).

A. Data preprocessing

Before we could process the images, the dataset was splitted
into training, validation and testing sets. The number of images
per class after the splitting can be seen in Table II and was



Fig. 1. Example of soybean leaves from the image dataset.

TABLE I
IMAGE DATASET

Diseases Number of images
Mosaic Virus 22

Downy Mildew 35
Powdery Mildew 78

Rust 65
Bacterial Blight 50

Healthy 8

done manually, so we could guarantee that different levels of
disease degradation are present in the training set. However,
it is possible to observe that most of the images are separated
for training in order to provide a proper estimation of the
effectiveness of the proposed architecture.

TABLE II
DATASET SPLITTING

Class Training Validation Testing
Mosaic Virus 8 4 10
Bacterial Blight 10 5 35
Rust 14 7 47
Downy Mildew 12 6 17
Powdery Mildew 14 7 57
Healthy 5 3 0

However, the low number of samples for training does not
allow the training of a deep neural network using the entire
images. So, we decided to extract patches from all images, as
proposed in [4], and its main objective is to obtain local data
(texture information) from each area of the leaf, while also
increases the number of samples for training. Nevertheless,

this extraction is processed only after the segmentation step.
Figure 2 illustrates these steps as well the following steps, and
each one of them is described next.
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Fig. 2. Proposed architecture diagram.

B. Segmentation

After careful analysis of several images in the RGB and
other color spaces, we observed that the saturation (S) channel
from the HSV color model presents a good separation between
the leaves pixels and the background pixels. Thus, all pixels
with S higher than 0.7 were considered as part of the leaves
and mathematical morphology was used to eliminate possible
smaller remaining segments.

An example of the result of the segmentation step is
presented in Fig. 3.

C. Patches extraction

From each image and its correspondent segmentation mask,
patches of 224×224 pixels were extracted. The stride (number
of pixels between each patch) was set to 112 pixels for the
training set and 224 for the validation set.

Also, a data cleaning step was necessary, since many patches
were extracted near the border of the leaf and may contain
several pixels from the background. So, every patch with more
than 50% of background pixels was eliminated. Also, a manual
inspection eliminated all patches that were clearly health areas
of the leaf. This step aims to help the disease classification,
otherwise healthy areas would be part of the set of all diseases
and the training process would be very noisy and ineffective.

The preprocessed image dataset contains 5411 patches for
training e 892 for validation. The number of patches per class
can be seen in Table III.

D. Patches classification

We propose the use of InceptionNetV3 [10] for the classi-
fication of each extracted patch, since this neural network is
one of the most robust deep learning techniques and is part of
the state-of-the-art for many classification tasks. But, since its



Fig. 3. Illustration of segmented image.

TABLE III
NUMBER OF PATCH IMAGES

Class Training Validation
Soybean Mosaic Virus 591 80
Bacterial Blight 1274 180
Rust 913 246
Downy Mildew 907 148
Powdery Mildew 1023 163
Healthy 703 75

native input is 299× 299 pixels, all patches were rescaled to
this size. Furthermore, we performed data-augmentation to the
training set using random zooms, flips and rotations, ensuring
a sixfold increase for each class. It is important to observe,
though, that the validation data remained intact, to guarantee
the technique feasibility in real data.

Based on the concept of transfer learning, the original final
fully connected layer with 1000 nodes was replaced with a
layer with 6 nodes, representing each of the classes in our
dataset. All weights obtained with the ImageNet database for
this convolutional neural network were frozen, and only the
new final layer is trained for 25 epochs.

As can be seen in Fig. 4, the accuracies for the training and
validation sets achieved more than 90 % after only 5 epochs.
We continued the training for more 20 epochs so the loss could
decrease to a number closer to zero, while the accuracy could
also increase. After 25 epochs, the accuracy reached 98% and
97% respectively for the training and validation sets.

E. Leaf disease classification

Although the proposed deep neural network may achieve
a high accuracy, it was created for the classification of small

Fig. 4. Plots of accuracy and loss during training.

areas of each leaf, and not for the entire leaf. So, the final step
of our proposed methodology is to combine the information
obtained from each patch and indicate the soybean disease.

For the testing set, the patches were extracted not in the
same way as for the training and validation sets. Patches of
224 × 224 were extracted in random locations, but to avoid
the influence of the leaf structure (e.g. borders, veins, etc) and
also to guarantee that most of the leaf area is well represented,
the extraction respect the following rules:

• The minimum distance between the center of the all
patches must be greater than 224 pixels, ensuring low
or none overlap between them;

• The extracted patch must not contain a majority of
background pixels, i.e. at least 50% of pixels should be
within the leaf region.

• The number of extracted patches N is given by:

N =

⌈
LeafArea ∗ 0.65

2242

⌉
, (1)

where de denotes the ceiling function. Considering this
equation, patches are extracted until the summation of
their areas correspond to 65% of the leaf area.

An example of the patch extraction process can be seen in
the Fig. 5.

Then, the class of each extracted patch is inferred using the
retrained InceptionNetV3 and we compute the percentage of
patches that were classified to each class. These percentages
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Fig. 5. Example of Patches Extraction.

create a vector with 6 numbers, representing the leaf. The
vectors are then used as the input for a Support Vector Machine
(SVM) classifier with linear kernel. Using a 5-fold cross-
validation for the testing dataset, the trained SVM were able
to classify each leaf with accuracy of 98%. An illustration of
this whole process can be seen in Fig. 6.

III. RESULTS AND DISCUSSION

In Table IV, we present the obtained F-score, precision
and recall for each of the 5 soybean leaf diseases using the
proposed architecture. As can be seen, we were able to correct
classify more than 90% of the images for all diseases.

TABLE IV
PRECISION, RECALL AND F-SCORE FOR EACH OF THE 5 DISEASES

Class Precision Recall F-score
Soybean Mosaic Virus 1.00 1.00 1.00
Bacterial Blight 0.92 1.00 0.96
Rust 1.00 1.00 1.00
Downy Mildew 1.00 0.88 0.94
Powdery Mildew 0.98 0.96 0.97

Moreover, it is important to observe that SVM was used
to improve the robustness of the whole model. If we apply
just a majority voting, i.e. consider the disease with higher
percentage from the extracted patches, the result would be
different for only three images of the testing set, and it would
also result more than 90% of correctly classified images for
all diseases.

Barbedo et al. [8] obtained his dataset from the same source
as ours, and although we cannot be sure, we believe that the
images used in our experiments are the same as them for 4 leaf
diseases. The comparison between our results and theirs for
these 4 classes are presented in Table V. We believe that our
approach achieves more precise results specially because of
the feature extraction based on a convolutional neural network,
which is able to better represent the characteristics of different
level of degradations, while Barbedo et al. [8] used color
histograms, which could make the classification step more
difficult. And, another factor that was very important was
the use of patches, increasing the number of samples for the
training process and creating a more robust model.

TABLE V
COMPARISON OF OBTAINED PRECISIONS FOR BARBEDO ET AL. [8] AND

OUR APPROACH

Class Barbedo et al. [8] Ours
Bacterial Blight 24% 92%
Rust 94% 100%
Downy Mildew 60% 100%
Powdery Mildew 92% 98%

Regarding the other previous approaches for the classifi-
cation of soybean leaf diseases, we present a comparison in
Table VI. As can be seen, our method requires much lower
number of images to achieved as precise or better results.

TABLE VI
COMPARISON WITH OTHER STATE-OF-THE-ART APPROACHES

Autor Avg. Leafs Per Class Precision
Pires et al. [4] 300 98%
Karlekar et al. [9] 1077 97%
Ours 43 98%

IV. CONCLUSION

This paper proposed a robust and precise methodology
for the classification of soybean leaf diseases. Using transfer
learning from a renowned convolutional neural network, we
trained a model able to classify patches from the original
images and this classification was used in a Support Vector
Machine to identify the disease.

The preliminary experimental results suggest that our ap-
proach can potentially be more robust than comparable meth-
ods available in the literature.
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[9] A. Karlekar and A. Seal, “Soynet: Soybean leaf diseases classification,”
Comput. Electron. Agric., vol. 172, p. 105342, 2020.



0.083

0.5

0.0

0.0

0.0

0.417

Soybean Mosaic Virus

Bacterial Blight

Rust

Downy Mildew

Powdery Mildew

Healthy

SVM

Patches Classification Vector

Bacterial Blight

Final
Classification
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