Support Vector Machines in Smile detection: A
comparison of auto-tuning standard processes in
Gaussian kernel
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Abstract—Support Vector Machines are a set of machine learn-
ing models that have great performance in several tasks as well
as on image classification and object recognition. However, the
proper choice of model’s hyperparameters has a great influence
on the outcomes and the general capacity performance. In this
paper, we explore some different traditional auto-tuning processes
to estimate o hyper-parameter for SVMs Gaussian Kernel.
These processes are common and also implemented on standard
software of data science languages. The paper considers some
different situations on smile detection. The results are composed
by simulation study, two benchmark image applications and a
real video data application.

Index Terms—SVM, Gaussian Kernel, tuning, image detection,
smile.

I. INTRODUCTION

Support Vector Machines (SVMs) are machine learning
methods in which input vectors are non-linearly mapped to a
higher dimensional feature space where a decision boundary
is constructed [6]. Its good capacity performance for clas-
sification and regression tasks made SVMs widely used for
solving many image classification problems [11], [14],[15].
In the mental health field, it can be used, for instance, to
recognize mood states from individuals. This is especially
important given the stigma that is usually associated with
mental disorders where through a subtle technology to rec-
ognize someone’s mood states it would be possible to provide
an earlier diagnostic. Shivaswamy et al. [19] attribute the
success of support vector models mainly to four factors: i)
rooted in the statistical learning theory, SVMs possess superior
generalization capacity, i.e: yields a smaller generalization
error to predict new observations; ii) a globally optimal solu-
tion is obtainable by solving a convex optimization problem,
while the problems of local minima crack other contemporary
approaches, such as neural networks; iii) using the so-called
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kernel trick, it is convenient to solve non-linear problems in
arbitrarily high dimensional feature spaces; iv) only a part of
training samples are involved in solution representation.
Even though SVMs have good prediction performance, they
are sensitive to the hyperparameters used to fit the model,
hence the need to proper set them before training [13].
Defining SVMSs’ hyperparameters might be time consuming
depending on how the search is done, for example, Grid
Search (GS) evaluates the performance of a predefined range
of parameters in order to select the one with the best metrics.
GS for hyper-parameter tuning can take less time when there
is a small range of values to search. In [4], the performance
of different values for the hyper-parameter o was evaluated
to provide researchers with good initial choices for the search
of a proper value, after experimenting with different datasets,
they came up with an ideal starting point by defining Eq. 1,

0. =N M, (1)

as a good value, to begin with, being N the dimensionality of
the data and M the magnitude of the coordinates of the data.

In [5] the hyper-parameter v (a different way to represent
the width spread of the Gaussian kernel as we will explain
later) is defined as Eq. 2:
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In this paper we investigate these two auto-tuning processes
using two datasets of smiling and not smiling faces and evalu-
ated on real data application gathered from a psychiatric study.
The next sections are organized as follows: Section II describes
the methodology, Section III describes the experimental setup,
database and features used and the setup of our machine,



Section IV shows the results obtained when applying each
investigated experiment and after that we conclude the paper
with some final considerations.

II. SUPPORT VECTOR MACHINES

SVMs classifies feature vectors by use of constructed op-
timal hyperplanes, a decision surface on high dimensional
spaces that ensures high generalization for the network. The
selected hyperplane is the one with greatest separation space
between selected margin vectors, that can be written as some
linear combination and represented by w, it can than classify
a feature vector x, with b being a constant parameter. The
hyperplane is defined as [6]:

w-r + b = 0.

While linear data can be easier to classify, we often face
problems where feature vectors are not linearly separable
and, therefore, need nonlinear SVMs where the feature vec-
tors input to the network model are mapped by use of a
prior chosen function, a kernel [20] K (xz;,x;) such that
K(xi,xj) = &(xi) - ¢(x;) replaces the inner product in the
original networks machines formulation.

A map function ¢ operates as shown in

¢:RY— H,

where the dimension of H is higher than d with the hyperplane
now represented as

w-p(x) + b = 0.

There are some established kernels used as mapping func-
tions: linear, polynomial or Gaussian [9].

A. Gaussian kernel

In this paper, we investigate the use of the Gaussian kernel
(also called Gaussian Radial Basis Function, or Gaussian
RBF). The Gaussian kernel can be written as

i — X 2
k(xz;,xj) = exp <—7”“202]H ) , 3)

with o defining the width of the kernel, other representation
of the Gaussian kernel is k(z;,z;) = exp(—v|lz; —xsz),
where v = 5 5.

The Gaussian kernel is responsible to transform the origi-
nal feature space into an infinite-dimensional representation.
The projections from the transformed data are given in an
exponentially decaying function from the distances among
the instances. Figure 1 represents how the choice of o can
influence the level of this behaviour. For greater values of o
the ratio is decaying slower, while for smaller values there is
a sharp decrease.

B. Auto-Tuning

Among the types for auto-tuning a model parameters there
are: the cost constant C, the exponent parameter of the
polynomial kernel and the o parameter of the Gaussian kernel
[7]. We focus on the sigma parameter in our experiments.

The influence of ¢ on the Gaussian kernel is shown in Fig. 1,
which expresses the behavior of the Eq. 3 and how sigma
regularizes the squared difference ||z; — z; |* in the Gaussian
Kernel. Therefore, it may scale (or descale) distance values
between vectors in the hyperlane projections.
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Fig. 1. Influence of o on the Gaussian kernel width spread. Source: prepared
by the authors.

If o is assigned to a big value (y — 0) it might lead to
underfit as every instance is classified into one class and if o
is close to zero (7 — oo) the SVM might overfit, as all the
training instances are used as support vectors [17], as shown
in Fig. 2. As seen, choosing the right value to o is crucial
to the proper training of an SVM model using a Gaussian
kernel. On [4] experiments, (1) is shown to be a good value
to start searching for the ideal value, but, for better-searching
purposes, a range is set to ease where to look at. This range
can be obtained by computing the values of ||z; — xjHQ and
using the 0.1 and 0.9 quantiles to start searching.

Henceforth, the hyper-parameter o, or v equivalent, auto-
tuning processes considered in this paper are named and
defined as follows:

e auto: definied as Eq. 2 or 0 = @ and used in [5];

o median: the median of the range defined by [4];

e 90% quantile: the 0.9 quantile value of the range from

[4];
e quantile mean: the mean of the 0.9 quantile and 0.1
quantile as shown in [4].

III. SIMULATION STUDY

To compare the standard methods of o auto-tuning con-
cerning their predictive capacity, we consider an artificial
data generation with size 2000, different numbers of features
(ny € (10,30,100)) and different proportion of class 1 balance
(%class; € (50,10)). The features were generated from a
multivariate normal distribution as X¢i4s51 ~ Np, (0,%) and
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Fig. 2. Influence of o on a SVM’s decision function. As o decreases, the
model get more fitted to the data. Source: Adapted from [18] and prepared
by the authors

Xcilasso ~ Np, (1,3), where X is the covariance matrix
with 4 variance and 2 covariance for each component. All
experiments were performed on a Intel Core 17, 16GB RAM,
5.4.0 Linux kernel.
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Fig. 3. Behavior of ||z;—x||2 considering p, balanced (50%) and unbalanced
(10%) artificial data. In blue observation on the same classes and in yellow
observations on different classes

We used a repeated holdout validation method with 100
repetitions. In other words, to avoid having any influence on
the random choice of train an test sets, 100 random shuffling
of 70/30 splits were created. The performance measure used
for reporting the simulation experiment is the Brier score loss
(BS) [3]. The Brier score is a rigorous performance function
used to measure the general accuracy of probabilistic estimates

TABLE I
AUTO-TUNING PROCESSES WITH THE LOWEST BRIER SCORE ON THE
SIMULATION STUDY

Setup auto  quantile mean  median  90% quantile

ny =2
50% 3 1 22 74
10% 42 28 13 17

ny =30
50% 0 0 0 100
10% 40 16 11 33

ny = 100
50% 9 27 11 53
10% 49 7 18 26

and the real classes [16]. The BS for binary classification is
given by the Equation:

Tsamples
1 - .
BS = E (i — Pi)?,
Nsamples i—1

where y; € {0,1} is the real class value, p; € (0,1) is
the estimated probability by the SVM method for belong the
classy and Nggmpies 1 the sample size of the test data.

Fig 3 shows the estimated distribution behavior of the
distance among each generated data observation in each setup.
We can observe that with an increase in the number of features
such distribution moves further and further away from zero, a
problem related to the curse of dimensionality. Furthermore,
and for this case, the increase of the dimension turns the
distribution more and more right-skewed. The unbalance also
affects the behavior of distances between observations that
belong or do not belong to the same class. With a high
imbalance, we have even greater asymmetry for observations
that belong to the same class. These behaviors are explanatory
for the results in Table I. The auto method is more efficient to
the unbalanced dataset other methods are competitive in the
balanced dataset.

IV. SMILE DETECTION
A. Benchmark Applications

To make the experiments, we used two datasets composed of
smiling and not smiling faces, example are shown in Fig. 4.
The first subset (Dataset 1) corresponds to selected smiling
faces from [8] and is available online!, the second (Dataset
2) is also a subset of [8], but smaller and balanced, it was
gathered by [1], Table II shows the numbers of both datasets
where it can be seen the imbalance of Dataset 1.

We used two features for training and experimenting: His-
togram of Oriented Gradients and the landmarks of each face
(retrivied using [10]), as seen in Fig. 5. The validation was
also realized using a 100 repeated holdout. The metrics used
for reporting these experiments are BS, cited in Section III,

Thttps://github.com/hromi/SMILEsmileD



closer to 100% on the models trained with Dataset 2 that also
presents more flattened boxes, indicating less variability on the
final predictions’ probabilities. These probabilities corroborate
with the results shown by Table III where all the metrics
are better for Dataset 2, specifically BS, that analyses the
probabilities given by a model.

TABLE III
RESULTS
Fig. 4. Examples of faces used on training. Source: [8]. Method ACC F1-Score MCC BS
Dataset 1
TABLE II auto 91.37%  83.97%  78.23% 631
QUANTITIES OF THE SMILE DATASETS. median 91.18%  83.64%  71.76%  6.42
90% quantile  91.28% 83.82% 78.01%  6.36
Dataset ‘ Smile ‘ Not smile ‘ n ‘ p% Smiles ‘ ny quantile mean 91.19% 83.66% 77.78% 6.41
Dataset 1 3690 9475 13165 28.03 648
Dataset 2 ‘ 600 ‘ 600 ‘ 1200 ‘ 50 ‘ 648 Dataset 2
auto 95.06% 95.01% 90.12%  3.62
median 95.04% 94.99% 90.08%  3.64
90% quantile 95.08 % 95.03% 90.17%  3.60
as well as the common measures Accuracy (ACC), F1-Score quantile mean ~ 95.05%  95.01%  90.11%  3.63

(F1), Matthews correlation coefficient (MCC) [12].
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Fig. 5. Features used. Source: adapted from [8] and prepared by the authors.
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078 In Table IV we compare every model trained with each
method with themselves, evaluating them by counting how
many times a model obtained greater metrics. Here, even
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Fig. 6. Behavior of ||z; — ;|2 to the both data real data: (A) Dataset 1 and
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On our experiments, we trained all the 100 holdouts and ACC 73 5 3 3
show the results with the mean of ACC, Fl-score, MCC Fl-Score 72 2 21 5
and BS, results are shown in Table III. We also report the M%g ;‘8‘ (2) 129 (5)
numbers of the probabilities estimated by the trained models
with different hyperparameters tuning in a boxplot format, Dataset 2
shown in Fig. 7 for the imbalanced dataset and Fig. 8 for the ACC 55 33 9 3
balanced dataset. The boxplot images show that the probability Fl_i,‘l:grg 4518 2; }(1) g
estimation of a model depends directly on whether the dataset BS 40 14 33 13

used for training is balanced or not. For every auto-tuning

. . . e T 1 12 12
method used, the median of inference’s probabilities was otal 516 0 8 3
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Fig. 8. Probabilities of each estimation on one holdout test set for Dataset 2.

though 90% quantile had better means, auto has higher counts.
To aid on the selection of the proper method for hyper-
parameter we also present Table V showing the total number
of outliers present on each of the above boxplots. This table
depicts the higher number of outliers probabilities present on
models trained with imbalanced datasets, 90% quantile and
mean quantile have 0 outliers but also taller boxes. From Table
IIT is possible to observe that the performance over the first
dataset was better using the auto method, when compared with
the other approaches. Given the unbalance among classes, this
result was expected, since that yielded an asymmetry in the
density of distances resulting in poor initial estimates for the
other methods, as mentioned in the Simulation section. On
the other hand, the same table shown a good performance of
90% quantile, but competitive among the others, once for the
second dataset the density of distances is symmetric.

TABLE V
TOTAL NUMBER OF OUTLIERS FOR EACH METHOD.

Dataset | auto | median | 90% quantile | quantile mean
Dataset 1 ‘ 58 ‘ 58 ‘ 0 0

Dataset 2 25 21 23 23

B. Real Data application

To test the tuning methods studied, we applied the models
trained with all the data from both datasets with 4 different
tuning Methods: 1. Features from Dataset 1 trained using o
auto; 2. Features from Dataset 1 trained using o median; 3.
Features from Dataset 1 trained using o 90% quantile; 4.
Features from Dataset 1 trained using o quantile mean; 5.
Features from Dataset 2 trained using o auto; 6. Features from
Dataset 2 trained using o median; 7. Features from Dataset 2
trained using 0 90% quantile and 8. Features from Dataset 2
trained using o quantile mean.

We measured the count of smiles on videos collected from
a psychiatric study. In the videos, interviewed participants
were asked about recent dreams, their relationship with their
parents, to talk about the day before or to tell a story based on
images shown. Fig. 9 shows an example of a face (image half
blurred to preserve identity of patient) found in the videos.

To make the experiments, we used [2] to get each frames
from a video and transform the image to grayscale; using [10]
library we detect the person’s face and the landmarks used
for inference among the face’s HOG feature vector, after that
we use each SVM classifier to find out if the features vector
represents a smiling face or not, if we find a smiling face for
10 frames straight, we add one smile to the count.

Fig. 9. Features of real case sample.

The data set includes 30 real patient videos recorded by
Laboratorio de Neurociencias (LIM 27) (http://neurociencias.
org.br/) from University of Sao Paulo (USP), Brazil. On the
experiment we compared the number of smiles detected when
using these considered the 8 methods. For better understanding
of how each method behaves on real images, we calculated the
Mean Average Error (MAE) for every 30 videos with:

Z ‘ypred - ytrue|
Number of videos

The results with models trained with Dataset 1 are presented
in Table VI and Table VII. On videos with no smiles, all the
models trained with Dataset 1 performed well, but, when there
are smiles present it is shown that different o calculations
result in different counting outcomes, also, on real data, the
model with auto o calculation on Dataset 1 still outperformed
the other methods. On Dataset 2, the model performed poorly
on real data (probably due to the lower quantity of images)
with a maximum and minimum MAEs of 14.33 (Method 5)
and 13.73 (Method 6) respectively.

V. FINAL COMMENTS

Auto-tuning methods are a fast and very used approach to
fit machine learning methods, as there is a limitation on the
investigation time to find the proper hyperparameters, e.g. GS.
On the context of SVMs, the auto-tuning methods are similar,
but there are differences among them. The auto method
(o= @) is, in general, superior compared with other ones,
specially when there is a great number of features and high
imbalanced data. However, methods based on o estimation
are potent for balanced data with no strong asymmetry on the
Euclidean distance distribution, among them, 90% quantile is
the most adequate when such asymmetry is strong. Therefore,
is important to highlight the importance of analyzing the
density from the distances for a given dataset in order to
achieve the most suitable estimation for ¢. Finally, despite
the presented guideline to select a good initial computation
of o, for obtaining the best performance over it is always
recommended the use of GS or Bayesian optimisation methods
to select the best value for the hyperparameters, despite the
computational burden.



TABLE VI
RESULTS COMPARING THE NUMBER OF SMILES DETECTED ON EACH
VIDEO AND THE GROUND TRUTH ON DATASET 1
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TABLE VII
MEAN AVERAGE ABSOLUTE ERROR FOR EACH METHOD.

Method
MAE

Method 1
1.67

Method 2 Method 3  Method 4
1.93 1.83 1.7

ACKNOWLEDGMENT

This work was supported by the Wellcome Trust
[223139/7/21/Z]. M.M.’s work was supported by a Sci-
ence Foundation Ireland Career Development Award grant
17/CDA/4695.

REFERENCES

[1] O. Arigbabu. Smile detection from face images. Mende-
ley Data, 2017.

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal
of Software Tools, 2000.

[3] G. W. Brier. Verification of forecasts expressed in terms
of probability. Monthly Weather Review, 78:1-3, 1950.

[4] B. Caputo, K. Sim, F. Furesjo, and A. Smola.
Appearance-based object recognition using svms: which
kernel should i use? In NIPS Proceedings, Whistler,
volume 2002, 2002.

[5] C.-C. Chang and C.-J. Lin. Libsvm: a library for
support vector machines. ACM transactions on intelligent
systems and technology (TIST), 2(3):1-27, 2011.

[6] C. Cortes and V. Vapnik. Support-vector networks.
Machine learning, 20(3):273-297, 1995.

[7] L. H. Hamel. Knowledge discovery with support vector
machines, volume 3. John Wiley & Sons, 2011.

[8] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller.
Labeled faces in the wild: A database forstudying face
recognition in unconstrained environments. In Workshop
on faces in’Real-Life’Images: detection, alignment, and
recognition, 2008.

[9] T. Jebara. Multi-task feature and kernel selection for
svms. In Proceedings of the twenty-first international
conference on Machine learning, page 55, 2004.

[10] D. E. King. Dlib-ml: A machine learning toolkit. Journal
of Machine Learning Research, 10:1755-1758, 2009.

[11] P. Li, L. Dong, H. Xiao, and M. Xu. A cloud image
detection method based on svm vector machine. Neuro-
computing, 169:34-42, 2015.

[12] M. Maia, J. S. Pimentel, 1. S. Pereira, J. Gondim, M. E.
Barreto, and A. Ara. Convolutional support vector
models: Prediction of coronavirus disease using chest x-
rays. Information, 11(12):548, 2020.

[13] R. G. Mantovani, A. L. Rossi, J. Vanschoren, B. Bischl,
and A. C. De Carvalho. Effectiveness of random search
in svm hyper-parameter tuning. In 2015 International
Joint Conference on Neural Networks (IJCNN), pages
1-8. Ieee, 2015.

[14] U. Maulik and D. Chakraborty. Remote sensing image
classification: A survey of support-vector-machine-based
advanced techniques. [EEE Geoscience and Remote
Sensing Magazine, 5(1):33-52, 2017.

[15] R. Mishra, S. Meher, N. Kustha, and T. Pradhan. A skin
cancer image detection interface tool using vIf support
vector machine classification. In Computational Intel-
ligence in Pattern Recognition, pages 49-63. Springer,
2022.

[16] J. Platt et al. Probabilistic outputs for support vec-
tor machines and comparisons to regularized likelihood
methods. Advances in large margin classifiers, 10(3):61—
74, 1999.

[17] C. Savas and F. Dovis. The impact of different kernel

functions on the performance of scintillation detection

based on support vector machines. Sensors, 19(23):5219,

2019.

Scikit-learn. RBF SVM parameters. https://scikit-learn.

org/stable/auto_examples/svm/plot_rbf_parameters.html,

2008. [Online; accessed 10-October-2021].

[19] P. K. Shivaswamy, W. Chu, and M. Jansche. A support
vector approach to censored targets. In Seventh IEEE
International Conference on Data Mining (ICDM 2007),
pages 655-660. IEEE, 2007.

[20] W. Wang, Z. Xu, W. Lu, and X. Zhang. Determination of
the spread parameter in the gaussian kernel for classifica-
tion and regression. Neurocomputing, 55(3-4):643—-663,
2003.



