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Av. Tamandaré, 6000 CEP 79117-900, Campo Grande, MS, Brazil

†Universidade Federal do Mato Grosso do Sul
Av. Costa e Silva, s/no – Bairro Universitário, CEP 79070-900, Campo Grande, MS, Brazil

Email: msleonardo.1998@gmail.com, leopaillo2005@gmail.com,
luishkorocg@hotmail.com, rf3513@ucdb.br, pistori@ucdb.br, higornucci@gmail.com

Abstract—Peanut is one of the most grown leguminous crops
in the world, but it can suffer during water deficit periods. In
this paper, a new method to help monitoring root growth for lab-
oratory experiments with this plant is proposed. By using a new
combination of smoothing, thresholding, morphological filtering
and skeletonization, our method has achieved a correlation of
0.968 with the Tennant’s standard approach.

I. INTRODUCTION

The peanut (Arachis hypogaea L.) is a leguminous plant
originally from South America but that is commonly cultivated
in countries with a warm climate from Asia, Africa and the
Americas. It is a product consumed worldwide and has as
some of its purposes the production of vegetable oil and animal
feed. Among the legumes, peanuts are one of the main crops,
with China being a major producer with an output reaching
17.33m in 2019 [1].

The inoculation of peanut seeds with bacteria, as for in-
stance the Azospirillum brasiliensi, can promote greater root
growth, thus giving a higher tolerance to periods of water
deficit. Inoculation with such bacteria can also result in higher
plant height and more mass [2]. In order to measure a
plant’s root growth an equipment called rhizotron is usually
used [3, 4, 5]. The rhizotron used in our experiments, shown
in Figure 1, is made of PVC tubes, with a diameter of 0.20m
and a height of 1.00m. The tubes were cut in half in the
longitudinal direction, forming a flat face, where a glass wall
was installed.

In the traditional Tennant’s method to measure the root
length, a drawing of the root is made using a transparent plastic
sheet that is then put over a grid paper. Each cell of the grid
that intersects the root is counted and a conversion considering
the cell size is used to produce an estimation for the root total
length. In this paper, a new method to turn this process less
time-consuming and prone to errors is proposed by using a
smartphone to photograph the transparent plastic sheet and one
software that uses computer vision to automatically calculate
the root length. The computer vision software is a novel
combination of several filters, skeletonization and graph based
line length estimator. Bar graphs and regression lines are used

Fig. 1: Rhizotron inside a green house showing the roots of 3
peanut plants used in our experiments

to investigate the proposed approach performance. The results
showed a high correlation between the proposed approach and
the traditional one.

II. MATERIALS AND METHODS

The proposed approach to calculate the peanut roots length
is a sequence of image processing steps. The input is a photo
from the transparent plastic sheet where the roots were drawn
by hand, following the contour of the actual root. In order
to provide a higher contrast between the root drawing and
the background, the transparent plastic sheet is put over a
white matt paper, as shown in Figure 2a. Then the image
captured is manually cropped to remove elements that are
not related to the problem at hand. Some image editing is



(a) Before (b) After

Fig. 2: Root drawing image preparation before the automatic
length measuring: (a) original image and (b) image after
cropping and edition in order to remove false lines

(a) Before

(b) After

Fig. 3: Image top region were the calibration line is drawn
before (a) and after (b) image processing and conversion factor
calculation. In this example, the line has 1486 pixels and 16.7
cm, given a conversion factor of 88.98

sometimes necessary to remove the false lines introduced by
light reflections and paper or plastic disruptions. The result of
the cropping and editing operation is exemplified in Figure 2b.

The first image processing step automatically crops the
upper part of the image containing a thick calibration line with
a known length, around 17cm (see Figure 3). The length of this
line is measured in pixels, by the software, and a conversion
formula is derived to provide an output in centimeters. The
agronomic treatment name that appears above the calibration
line is removed using a morphological opening operation with
a horizontal line structuring element (3x200 pixels in size).
Figures 3a and 3b show the calibration line before and after
the image processing step that calculates the conversion factor
between pixels and centimeters.

After calibration, the image is cropped again to contain
only the root and is converted to gray scale and smoothed
using a bilateral filter [6], which is a non-linear filter that
aims to reduce noise without blurring the edges. The bilateral
filter has two important parameters, sigmaColor (SC) and
sigmaSpace (SS), that control how the color range distance and
space distance between two pixels will affect the smoothing
results, respectively. The proposed approach does not use color

information like in the manual method because we assume
that new images will be captured at each growing stage of the
plant. The color range distance in this case is related to the
pixel gray value after color to gray scale conversion. The best
values for these and other parameters are found using a subset
of all the images collected during the experiment, in a process
called parameter-tuning.

The smoothed image is then binarized using a local ap-
proach called adaptive Gaussian threshold [7] that has two
parameters: a block size (BS) that controls the size of the
area around each pixels that will be used to calculate that
binarization threshold; and the C parameter that is subtracted
from the weighted mean values around a pixel and is used to
decide if this pixel will be changed to black or to white. After
binarization, the images are processed using the opening and
closing morphological operators to filter out small artifacts
that are not linked to the root and to close gaps that may
appear in the root image during processing or image capture.
These operators are controlled by a parameter linked to the
size of the structuring element, in our case, a square. We have
tested different sizes for opening (OS) and closing (CS) during
parameter-tuning.

The last image processing step is called skeletonization and
it produces an image of the root with thin lines that are all
only one pixel large. This is a very important step that enables
the length calculation in pixels, that are then converted to
centimeters using the conversion factor calculated in the first
step. The skeletonization is made using the algorithm proposed
by Zhang and Suen [8] that works by successively removing
one pixel from the objects borders. Figure 4 shows the original
image, the gray scale smoothed version and the final skeleton.
At the bottom of the third image the lengths calculated using
the manual method (314.679) and the automated one (306.92)
are shown, in centimeters. The difference between the manual
and automated methods is also shown in brackets (2.78%).

All the image processing steps described so far have
been implemented using the numpy, opencv [9] and scikit-
image [10] packages. The skeleton length calculation was
made using the skan package [11] that uses a graph based
approach to represent the adjacency relations between the
skeleton pixels. In this way, the algorithm can distinguish
between junctions, end points and internal paths to estimate
the length of all skeletons branches. A final parameter, the
minimum length (ML), was introduced in our proposal to be
used as a threshold to cut from the final length small objects
that are not part of the root but was not removed during the
previous steps. All objects with lengths smaller than ML are
discarded from the final length computation.

The parameter tuning was made using 50% of the images
available (training set) and the other 50% (test set) have been
used to estimate the proposed approach performance using the
mean absolute error (MAE) and the mean absolute percentage
errors (MAPE) metric. The Pearson’s correlation coefficient
(r) between the manual and the automatic length measures
has also been calculated for the test set. During parameter
tuning, the best value for the seven parameters was calculated



(a) Original (b) Smoothed (c) Skeletonized

Fig. 4: Sequence showing (a) the Original image, (b) the image
after gray scale conversion and smoothing and (c) the image
skeleton with final measurement results at the bottom

independently for (1) SC and SS; (2) BS and C; (3) OS
and CS and (4) ML. Table II summarizes these parameters,
showing the set of values used during tuning. The values
follow a geometric progression as it would be computationally
infeasible to test all possible combinations. The percentile
difference between manual and automatic measurements has
been chosen as the main performance metric and the best value
for each parameter has been chosen by comparing the median
values for this metric over the training set.

TABLE I: Set of values used for each parameter of the
proposed approach during tuning

Param. Description Tested Values
SC Sigma Color 10 20 40 80 160
SS Sigma Space 1 2 4 8 16 32
BS Block Size 3 7 15 31 63 127 255
C C 2 4 8 16

OS Opening Size 2 4 8 16
CS Closing Size 2 4 8 16
ML Minimum Length 0 10 20 40 80

The dataset is composed of images taken during an agro-
nomic experiment with peanut plants that happened between
April 9 and May 21, 2020, inside a green house in the Dom
Bosco Catholic University campus, Campo Grande, Brazil. A
total of 24 peanut seeds have been planted in 24 rhizotrons and
the Tennant’s method [12] has been used to measure the root

TABLE II: Best values chosen using the parameters tuning
boxplots

Param. Description Best Value
SC Sigma Color 20
SS Sigma Space 2
BS Block Size 15
C C 2

OS Opening Size 2
CS Closing Size 4
ML Minimum Length 10

growth two times a week: days 7, 11, 14, 18, 21, 25, 28, 32,
35 and 39 after planting. In some of these days, pictures have
been taken from some of the transparent plastic sheets used in
the Tennant’s method, giving a total of 30 images, 15 (50%)
were used for training (parameter tuning) and 15 (50%) for
testing the proposed approach. Figure 8 shows four examples
of images from this dataset corresponding to different days
and treatments. Figures 5a and 5b are from the same plant
treated with azospirillum in days 14 and 28. Figures 5c and
5d are from two different control plants in days 11 and 25.
The images were taken using a smartphone model.

III. RESULTS

Table II shows the best values for all the hyperparameters
that have been selected using the training dataset and then
set as the default values to test the proposed approach on the
test set. The bar graphs in Figure 6a compare the references
(Tennant’s) lengths and the lengths calculated using our pro-
posed approach on the training set, while Figure 6b compares
the same two strategies, Tennant’s and ours, using the test
dataset.

It is evident from the bar graphs in Figure 6 that for most
of the images our methods compares well to the Tennant’s
approach, both in the training and test set. The Pearson
correlation (r) on the test set was 0.968, which indicates a very
high correlation that can be observed through the regression
line and points drawn in Figure 7b. The mean absolute error
(MAE) and the mean absolute percentage errors (MAPE) were,
respectively, 44.4 and 22.9, indicating that in spite of the high
correlation, there is some room for improvements.

Table III shows, for each image from the test set, the
absolute and percentage difference between our method and
the standard. There is a clear outlier, image T1-A-6, with a
percentage error greater than 50% (52.74%) that has a great
impact on MAE and MAPE. The best results, for the A6-D-5
image, the system achieved an error of just 2.84%.

IV. DISCUSSION

The proposed automated root measuring method, as afore-
mentioned, was intended to be less time-consuming and prone
to errors when compared to other automated and manual meth-
ods. Moreover, the Pearson correlation between the proposed
approach and Tennant’s manual method was 0.968, showing
that our procedure was proven to be highly accurate. With that
in mind, it is essential to review our experiments and find room



(a) Azospirillum, day 14

(b) Azospirillum, day
28

(c) Control, day 11 (d) Another control,
day 25

Fig. 5: Some examples of the images that compose the dataset
used in the experiments. The roots are in different growth
stages

(a) Train

(b) Test

Fig. 6: Bar graph showing the manual (Tennent’s) and auto-
matic (our’s) lengths over the images from the (a) training and
the (b) test set.

for future improvements, while also highlighting its positive
features when compared to related researches and studies.

For instance, Dong et al. [13] have developed a method
that consists in coupling a notebook and a flatbed scanner to a
rhizotron containing Malus domestica roots, in order to obtain
high-resolution root images and then estimate their lengths
by using a computer image analysis system. For the purpose
of obtaining the images, the door blocking the rhizotron’s
transparent wall should be opened, so that the researchers
could press the scanner to the box. This simple and practical
automatized technique allowed the researchers to monitor
numerous and relatively large roots frequently, while getting
a notable correlation of (r=0.75) with Tennant’s method.



(a) Train

(b) Test

Fig. 7: Scatter plot with regression bar for manual (Tennant’s)
against automatic (our’s) lengths over the images from the (a)
training and the (b) test set.

When compared to this scanning method, our approach
is generally simpler and more affordable, given that it only
requires a few tools, like a phone or any other camera device.
Moreover, it does not require any specific managements on
distancing or lighting, since the aforecited calibration line
allows the computer to establish a conversion factor between
the image’s length in pixels and centimeters. However, our
technique has faced a few limitations in the measuring process,
mainly in its image processing step.

In order to address those limitations, the roots in which
our method differed the most from the traditional method
should be analyzed, especially the image T1-A-6, according
to the Table III. This image, shown in Figure 8a, had as

TABLE III: Differences between the proposed approach and
Tennant’s ordered by the best to the worst case

Image Tennant Our Dif. Perc.Dif.
Image Tennant Our Dif. Perc.Dif.
A6-D-5 315 306 8.93 2.84%
A2-A-2 209 219 9.73 4.65%
A2-A-6 714 753 39.24 5.49%
A4-C-3 88 95 6.66 7.57%
T3-B-8 317 292 24.97 7.87%
T6-E-1 13 14 1.37 10.55%
C6-C-7 351 294 57.4 16.34%
T3-B-6 234 195 38.47 16.46%
A3-B-7 508 419 89.34 17.59%
T4-C-7 280 227 52.51 18.77%
C3-A-3 82 66 15.68 19.19%
T6-E-6 405 320 85.63 21.12%
T6-E-7 436 326 110.75 25.37%
B5-A-2 5 7 1.43 27.96%
T1-A-6 236 112 124.74 52.74%

an outcome in its automatic measurement a discrepancy of
52.74% from the manual measurement. By analyzing the
drawn root’s structure and how the software ran it, it’s possible
to infer that the greatest outlier in this case was the region
where both green and purple drawn lines were very close
to each other (Figures 8b and 8c). As a result, the software
couldn’t detect the two different lines and registered them as
only one single line, as shown in Figure 8d, making the result
substantially lower than the expected.

This is a case in which the parameters defined with the
training set were not enough to measure this root correctly,
most likely because there were little to no similar structures
in the training set. Although the computer vision software in
general was not designed for this kind of input, which aims for
one-dimensional structures as an outcome, there are plenty of
ways of improving those results in future experiments, mainly
in the input itself. For instance, different kinds of pens or
markers, preferably with thicker tips, could be used, in order to
make each color stand out more. A less reflective material, like
vegetal paper, could be used in the process of hand drawing
and photography, making the images clearer. Lastly, the roots
could be drawn in different paper layers, mainly in cases like
this, so that different images generated and then and then
overlaid during the skeletonization process. There can also
be improvements in the software itself, mainly in the defined
parameters, by making them more specific according to further
testings. Furthermore, it’s important to note that our method
faces physical limitations, like the size of the rhizotrons and
the root’s two-dimensional view, which makes the technique
unable to measure large roots or monocotyledon plants’ roots.
Thereafter, it is viable to state that our method is efficient for
measuring smaller plant root lengths in a quick, automated
way.

V. CONCLUSION

A new approach to aid in the process of plant root estimation
has been proposed and tested. The results are encouraging and
differently from most of the solutions currently available, the
method does not require any special imaging equipment, just a



(a) Original (b) Delimited

(c) Zoomed (d) Highlighted

Fig. 8: Sequence that shows (a) the image T1-A-6, (b) the
delimitation on the region where its length was miscalculated
the most, (c) a close-up on the region and (d) a yellow
highlight on its problematic portion

common cell phone. For future works, we envision optimizing
our methods and the measurement procedures - for instance,
by using an object of known length for calibration instead of a
drawn line, raising the accuracy of the length conversion -, as
well as testing the proposed approach directly on images from
the rhizotron and not from the transparent plastic sheet, turning
the method even more efficient and less time consuming.
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