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Abstract—Investments in Augmented Reality (AR) have grown
considerably in recent years. This advance is due to the increased
use of AR in areas such as education, training, games and
medicine. In addition, technological advances in hardware enable
devices that, a few years ago, were unthinkable. A popular
example is Microsoft Hololens 2, which allows the user to use
their own hands as a means of interacting with an AR experience.
However, a disadvantage from this device is its high cost due to
several sensors. Thus, this project offers an AR architecture that
uses only a monocular RGB camera as a sensor, allowing the user
to interact with an AR experience using their hands to perform
gestures similar to the Microsoft Hololens 2 architecture, where
it is possible to handle a virtual object in the same way that
a real object would be manipulated. The results obtained are
promising, where the verification of the interaction of the hand
with the virtual object worked in approximately 80% of the tests
carried out, respecting the path defined by hand movement.

Index Terms—Augmented Reality, Monocular, Object Recog-
nition.

I. INTRODUCTION

Augmented Reality (AR) is considered one of the fastest
growing areas in Computer Vision today. Companies such
as Apple, Microsoft, among others, have invested billions
of dollars annually to advance the area [11], in order to
revolutionize the way people consume and interact with con-
tent. Applications that use AR can be used in several areas,
especially in games, education, medicine and human-machine
interaction.

Studies, such as the one presented by [20], show that the
use of AR in education results in greater student engagement,
in addition to allowing a better understanding of subjects that
require visualization of concepts. Also in the area of education,
AR has been used for specialized training, allowing more
people to have appropriate training in any location, without
the need for real contact with the training object.

AR can be used with or without reference to artificial
markers. Artificial markers are usually binary images, making
them simple to locate. Despite facilitating the location, the

system becomes dependent on markers for its operation. With
the advancement in the area of computer vision, the use
of methods such as locating surfaces and objects has been
increasingly common.

Currently, according to the bibliographic research carried
out for the development of this work, there are three types of
interaction with a virtual object. Screen interaction, where the
movement of the virtual object is performed using a mouse or
the touchscreen [1]. Interaction with specific gestures, where
some gestures are selected that, when recognized, activate a [4]
function. Hand interaction, making the hand able to interact as
if the virtual object were real [15], but with current technology
this type of interaction ends up being dependent on many
sensors.

Thus, this work proposes an architecture that allows the
creation of an AR experience without ambient markers and
using only a monocular Red Green Blue (RGB) camera as a
sensor. This experience will allow the user to interact with the
virtual object in a similar way to Microsoft Hololens 2, where
the user can move (push, pull or lift) the virtual object, taking
their own hand to where the virtual object is being represented
in the real world and interacting with this object as if it were
a real object. This architecture can be used as a new method
of human-machine interaction for low cost hardware.

II. RELATED WORKS

In this section, we will present works related to the subjects
that will be addressed in this work. With the intention of im-
proving the understanding of the relationship of these articles
with our proposed theme, the works were separated into 3
categories: Camera calibration techniques and their orientation
in the environment; recognition of objects and surfaces through
monocular, stereo and RGB-D images; and recognition of
human gestures and body movements.



A. Camera Calibration Techniques and Their Orientation in
the Environment

The work of [18] presents a tutorial for visual odometry
techniques. The author set out to write a guide that con-
tains techniques for camera model perspective, omnidirectional
camera models, camera calibration, 2D-2D, 3D-3D and 3D-2D
transformations, among others. The author seeks in his text to
motivate the reader to formulate solutions for growth in the
area.

In the work of [14], an improvement in monocular Simulta-
neous Localization and Mapping (SLAM) methodologies was
proposed, where the authors couple to the process the ability
to close cycles, reusing their mapping system to minimize
deviations in locations already mapped. The technique was
designed to work on monocular cameras. Experiments demon-
strate that its monocular SLAM retrieves scale metrics with
high accuracy, surpassing the state of the art in stereo visual-
inertial odometry.

The work of [17] presents a large-scale image-based local-
ization approach. The proposal allows to use points of interest
that are most likely to be useful in 2D-3D conversion.. The
technique presented efficient localization times in relation to
the state-of-the-art. The authors demonstrate that co-visibility
information, available in the Structure-from-Motion (SfM)
process, can be used to speed up all stages of the localization
process.

To estimate the distance between monocular cameras, [21]
propose a framework to estimate both the distance and move-
ment of cameras between unstructured video sequences. Using
networks that contain poses with single and multiple views,
the distance with the loss acquired in the image from the
distortions close to the object is calculated. The authors
conclude that, despite having achieved good results in their
evaluations, the problem of automatic inference of structures
in 3D scenes is still an open problem.

B. Object and Surface Recognition Through Monocular,
Stereo and RGB-D Images

The work of [3] presents a method of visual odometry with
sparse and direct precision, called Direct Sparse Odometry
(DSO). The work combined probabilistic models and para-
metric optimization. The results demonstrated the superiority
over state-of-the-art methods.

The works of [8], [6], [5], [7], [9] present competitions
in the area of object recognizers, where it was possible to
notice a dominance in the performance of recognizers based on
deep learning techniques, mainly on CNNs. For the evaluation
of each of the recognizers, a database created for each of
the competitions was used, with the main evaluation factors
being the accuracy of the tests and the speed with which the
recognizer was able to find the object. It is possible to notice
that the number of recognizers based on CNNs has grown
every year, especially in the work of [9], where all competitors
in the top 10 make use of such.

C. Recognition of Human Body Movements and Gestures

In the work of [12], the authors aimed to reconstruct a
hand skeleton in a 3D environment from a monocular RGB
sequence. The process combines a CNN with a kinematic
3D handheld model that is capable of producing results
even under occluding conditions and varying viewpoints. It’s
also robust to hand movement so its hand anatomy remains
realistic over each frame. The method demonstrates significant
improvements compared to the similar work of [22], especially
at the point where there is an occlusion in the scenario.

[19] use neural networks with long-term temporal convolu-
tions (LTC), for learning video actions. They demonstrate that
LTC-CNN models with increased time extensions improve the
accuracy of stock recognition. The authors rely on two evalu-
ation metrics: precision by frame, and precision by video. The
authors highlight that the results using LTCFlow algorithms
in conjunction with average fusion RGB, outperformed the
average baseline Twostream by 4.8% and 6.8% in the bases
of UCF101 and HMDB51 data, respectively.

III. METHODOLOGY

Fig. 1. Schematic diagram of the proposed methodology.

This section describes the flow of processing performed for
the interaction of human hands with virtual objects projected
in AR. This flow is composed of 8 main steps, illustrated in
Figure 1. These steps will be explained in detail throughout
the next sub-sections.

The process starts with Step (1), where images are obtained
through a camera. After that, there are two workflows (2 (upper
in Figure 1) and 3 (lower in Figure 1)) occurring in parallel.

The flow corresponding to Step (2) starts with a process
of locating the camera and mapping the environment (Step
2.1), followed by two options (depending on the desired
experience, a specific type of anchor must be used): The
first (Step 2.2.1) consists of identifying horizontal surfaces
and their uses as anchors; The second (Step 2.2.2) is about
identifying previously trained objects and also their uses as
anchors. Finishing this step, there is the positioning of the
virtual object (Step 2.3).

Starting the flow of Step (3), there is the detection and
segmentation of the hand (Step 3.1). After this process, the
hand skeleton is matched with the result obtained previously
(Step 3.2). Finally, there is the superimposition of the skeleton
in the frame (Step 3.3).



Joining the two parallel flows, there is Step (4), responsible
for the interaction of the skeleton obtained in step (Step 3.2)
with the virtual object positioned in the scene in step (Step
2.3).

A. Camera

In this step, an RGB monocular image capture device was
used. For this work, the rear camera of an Apple iPhone X
smartphone was used.

B. Camera Location and Environment Mapping

In this step, the environment was mapped and the camera
coordinates were determined using the ORB-SLAM algorithm
[13], which uses points of interest detected in the environment.

Fig. 2. Distance Calibration Methodology for ORB-SLAM.

The ORB-SLAM, when used in its monocular mode, ar-
bitrarily defines a scale for its coordinates, based on the
distance between MapKeyPoints through the frames in the
calibration process, making impossible to predict the exact
value. Therefore, a distance calibration process was created,
detailed in Figure 2.

In Step (1) of Figure 2, the standard initialization of the
ORB-SLAM is performed, making sure that the camera is
completely perpendicular to the ground (parallel to the y axis
of the world). In Step (2), the camera is placed in a known
location and the calibration process in the engine Panda 3D
begins [2]. Finally, in Step (3), the camera must be moved one
meter away from the starting position and then select the ”end
of calibration” option in Panda 3D.

This process is performed by calculating the Euclidean
distance between the initial position PA = (xA, yA, zA) and
the final position PB = (xB , yB , zB) of the camera through
the Equation (1).

dAB =

√
(xB − xA)

2
+ (yB − yA)

2
+ (zB − zA)

2 (1)

After obtaining the distance equivalent to 1 (one) meter, all
coordinates received from the ORB-SLAM are now adjusted in
all frames, following the Expression P =

(
x

dAB
, y
dAB

, z
dAB

)
.

With that, we have the coordinates system calibrated to meters.
In Figure 3 an environment initialized by ORB-SLAM is

shown.

C. Horizontal Surface Detection and Anchoring

This step is considered an alternative to the step described in
sub-section III-D, in which case it is responsible for detecting
horizontal surfaces and specifying anchors on these surfaces,
allowing the step described in sub-section III-E to take place.

Fig. 3. ORB-SLAM with environment detected.

For the effective detection of the surface, the MapKeyPoints
generated by the ORB-SLAM were used. The 3D coordinates
of each of the MapKeyPoints visible in the frame are compared
to each other, in order to group them so that the MapKeyPoints
with similar heights (a variation was defined through empirical
tests). acceptable of +/− 2 centimeters between heights can
be considered coplanar.

With these groups defined, the largest is selected, which
corresponds to the plane with the largest amount of coplanar
MapKeyPoints of the frame in question, thus translating into
the largest surface at that moment. After selecting the group
corresponding to the plan, only 4 (four) MapKeyPoints are
selected:

• MapKeyPoint with the most negative x coordinate, de-
fined as Mx1 = (x1, y1, z1);

• MapKeyPoint with the most positive x coordinate, de-
fined as Mx2 = (x2, y2, z2);

• MapKeyPoint with the most negative z coordinate, de-
fined as Mz1 = (x3, y3, z3);

• MapKeyPoint with the most positive z coordinate, defined
as Mz2 = (x4, y4, z4).

Thus, we have the extreme points of the plane in question,
just defining the 3D coordinate of the midpoint of this plane,
through the expression P =

(
x1+x2

2 , y1+y2+y3+y4

4 , z3+z4
2

)
.

The point P is then used as the origin coordinate for the plane
generated by Panda 3D. This process only occurs when the
user selects the option to detect horizontal surface in Panda
3D, in order to reduce system processing.

With the horizontal plane defined, the coordinate of the
anchor is created, being defined as A = (0, 0, 0) in relation to
the created plane.

D. Object Detection and Anchoring

This step is an alternative to step (2.2.1). In order to use
YOLOv4 [16] for object detection, a training base (here called
YOLO Base) was used, consisting of five different objects,
with 150 (one hundred and fifty) photos each, totaling 750
(seven hundred and fifty) photos. These photos were captured
from various angles and possible poses in at least 3 (three)
different locations.



After YOLO training, the flow illustrated in Figure 4 is
executed, where in sub-step (1), the camera is pointed at the
object to be identified. In sub-step (2), there is the bounding
box generated by YOLO, in addition to the identification of
the detected object. Thus, both the location and the object label
are defined for each frame.

Fig. 4. Object detection flow and its orientation in relation to the camera.

Thus, the angles and directions of each object in relation to
the camera pose are then calculated, as illustrated in Figure 5,
where the first angle is the β, which indicates the position of
the camera in the horizontal plane in relation to the front of
the object. The second is the γ, indicating the camera angle
in the vertical plane, in relation to the horizontal plane.

Fig. 5. Illustration of camera angles in relation to the object.

To define the angle of the object a homography-based
approach was used. The database used to find the angulation
(called here Angular Base) consists of image captures of
objects at the following angles β in the horizontal plane (in
Figure 5): 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦, 210◦, 240◦,
270◦, 300◦ and 330◦. For each horizontal angle, pictures
are taken at the following angles γ in the vertical plane (in
Figure 5): 0◦, 15◦, 30◦, 45◦ and 60◦, totaling 60 photos per
object. These photos were captured with the objects on a green

background, in order to minimize the amount of fiducial points
that are not part of the object.

Initially, the SIFT descriptor [10] is applied to each image of
the angular base, in order to extract its fiducial points. As the
name of the images are labeled containing the object name
and the angle (β and γ), it is thus possible to identify the
fiducial pattern of each object at all angles considered.

In sub-step (3) of Figure 4, the fiducial points contained
in the bounding box generated by the YOLO detection of
the input frame are extracted and in sub-step (4) the data are
serialized for comparison.

Thus, each point will be compared with the points of the
base, as illustrated in sub-step (5) of Figure 4, in order to
identify the set that has the greatest amount of fiducial points
of the frame under analysis, determining the angle of the object
in relation to the camera.

To anchor the virtual object in the virtual world, the position
of the real object in relation to the camera is estimated, using
directly proportional quantities for x and z in the virtual world,
and angular diameter for y, representing the depth in the virtual
world. For this method to be possible, it is necessary that
all images maintain a specific aspect ratio of 16:9. Thus, the
directly proportional magnitude is calculated, using the values
of the width and height of the real object and the normalized
bounding box of the object in the frame. In angular diameter,
the apparent angle θ that an object is viewed is related to
the actual size of the known object d and the distance to the
camera D (Equation (2)). The angular diameter is obtained
from the object’s width in the frame, which has a known
angular aperture. This method was chosen because it is simple
and quick to calculate, aiming at better performance.

tan(θ) =
d

D
(2)

E. Virtual Object Positioning

The position of the virtual object mainly depends on the
surface or object detection step (sub-sections III-C and III-D).
If the user chooses the surface option, the center of the object
will be positioned in the environment at the same coordinate
as the anchor of the plane with the height (z dimension) added
with the distance from the bottom of the object to the center,
thus positioning so that the plane and the bottom of the object
just touch each other. If the object detection option is choosen,
the virtual object will be positioned at the same coordinate of
the calculated anchor in sub-section III-D.

F. Hands pipeline

This pipeline was performed by the algorithm proposed
by [12], thus allowing the detection and segmentation of the
hand in the camera frame to be performed (3.1 of Figure
1), corresponding it immediately afterwards to a 3D skeleton
composed of 21 movable joints (3.2 of Figure 1) that are used
for the virtualization of the hand in the frame (Step 3.3 of
Figure 1).



G. Skeleton’s Interaction with Augmented Reality

The last step performs the union of all the steps previously
performed, in order to allow the user to interact with a virtual
object (projected in the augmented reality environment) using
their own hand.

First, the 21 coordinates of the articulations of the hand
skeleton, obtained in Section III-F, are stored at each frame.
Thus, these coordinates are used to position a 3D mesh of a
human hand in the same position in space as the user’s hand.
This mesh is transparent, so it only serves as a representation
of the user’s hand in the virtual world, in order to allow the
next sub-step to be possible.

Finally, the collision interaction of the 3D mesh of the user’s
hand with the 3D mesh of the virtual object is performed.
This is accomplished using the engine Panda3D. Each object
studied has a set of primitive geometries (spheres, cubes or
cylinders) for collision calculations, as well as the 3D mesh of
the user’s hand. This allows the collision processing between
meshes to be less than considering all the geometry of the
objects. When detecting an intersection between the meshes,
the objects are moved by contact with the 3D mesh of the
hand, thus allowing them to be pushed and even lifted, when
there are contacts that allow these movements.

Figure III-G shows the model related to the human hand in
contact with the virtual model.

Fig. 6. Red squares indicate hand contact with the virtual model. The surface
does not interact with the hand.

IV. RESULTS

In order to measure the reliability of this work, five cate-
gories of experiments were proposed, with the aim of validat-
ing the steps of the proposed methodology. These categories
are divided into two stages: experiments with isolated modules
(classification of horizontal surfaces, detection of defined
objects and detection of the angle of objects) and experiments
with full implementation (definition of the resolution of the
camera used and interaction of the virtual object with the
movements of hand).

For the surface classification results, 15 experiments were
performed, were the camera was pointed at 2 surfaces (a desk
and a bed, one at a time), where the camera was moved in
a semi-circle shape, with the intention of map the surface
from different angles. From this sample, 13 experiments were

considered as successful and the other 2 experiments were
considered as failure, as they did not meet the necessary
requirements. Therefore, as 13 out of 15 experiments were
considered successful, this test was accurate to approximately
86.67%.

For the verification of the surface detection experiment, the
mean assertiviness was used, comparing the results given by
the algorith and if the image was really showing a surface.
For the YOLO detections, each of the 5 items (150 images
each) that were previously captured were sent to YOLO and
its assertiveness percentages and IOU were measured after
training. All objects in the experiment scored correctly with a
100% true positive rate. Table I presents the results regarding
the mean IoU, standard deviation and variance for each object
and for all objects considered.

TABLE I
TABLE LISTING THE MEAN ASSERTIVENESS, STANDARD DEVIATION AND

VARIANCE OF EACH OBJECT

Mean IOU Standard deviation Variance
Small Car 93,56% 3,85% 0,1480%
DualShock4 90,57% 5,27% 0,2776%
IamGroot 95,23% 1,87% 0,0349%
MiniCraque 93,67% 3,02% 0,0911%
PlayStation2 91,86% 3,66% 0,1341%
All objects 92,98% 4,04% 0,1630%

In the quantitative object angle detection experiments, where
the number of fiducial points found within the bounding box
provided by YOLO was compared with the reference points
of the base used for YOLO training, with predefined angles
(totaling 150 images each item). The results of this test are
represented in Table II.

TABLE II
TABLE OF QUANTITATIVE TESTS, RELATING IMAGE RESOLUTIONS TO

OBJECTS, DEMONSTRATING THE NUMBER OF IMAGES THAT WERE
SUCCESSFULLY IDENTIFIED

640x480 800x600 960x720 1280x960 1440x1080
Small Car 102 124 145 147 150
DualShock4 20 37 66 127 139
IamGroot 37 64 82 112 115
MiniCraque 53 71 94 130 136
PlayStation2 80 115 138 149 149

For the resolution tests, 1080p, 720p and 640p resolutions
were used. After the tests, the average frame rate of the
system was calculated. The results were: 47 fps for 640x480
resolution, 35 fps for 1280x720 resolution and 18 fps for
1920x1080 resolution.

In the experiments carried out to validate the interaction of
the hand with the object (illustrated in Figure 7), the precision
of the interaction between the hand mesh and the virtual object
projected in the scene was taken into account. Thus, starting
and ending points were defined for the object to be pushed. A
total of 15 tests were performed, where 12 times in which this
simulation was performed, the object reached the end point
covering the pre-defined 40 centimeters, respecting the path
defined by the movement of the hand. In 3 of these situations,



Fig. 7. Visualization of the interaction between the mesh of the real hand
and the virtual object, which in this case is a model of a wrench. (a) Hand
almost touching object. (b) Hand tangent to object. (c) Hand pushing object.

the object did not successfully reach the destination. Thus, the
accuracy of this test was 80%.

V. CONCLUSION

From the bibliographic research, it was verified that most
of the works used hardware resources, such as depth sensors,
stereo cameras, RGBD cameras, touchscreen, accelerometer
and gyroscope to perform an interaction with the virtual object
in augmented reality. This work successfully performed this
interaction using a monocular RGB camera, where all the
environment mapping, hand detection, object detection and
interaction computation are performed via software in a fluid
way (35 fps), but it can be noted in some results, the accuracy
with limited hardware ends up being lower due to the fact that
GANHands has the flaw where the thumb generates unreal
movements, moving the object in an unwanted way.

For future work, there are some improvements and even
new implementations, such as: Improvement of the algorithm
for hand recognition and structuring of the mesh in the 3D
environment; Addition of virtual objects that allow a more
immersive interaction with the user; Application of this work
to new contexts of study, such as medicine, training, remote
support and schooling.
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