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Abstract—Convolutional Neural Networks (CNN) can achieve
excellent computer-assisted diagnosis with a good amount of data.
However, there is still a growing demand for specific data and
information for training Machine Learning models, either for
classification or other tasks such as segmentation. Towards this,
the Data Augmentation (DA) technique can handle the small
medical imaging dataset problem by generating artificial training
data. In this context, Generative Adversarial Networks (GANs)
can synthesize realistic images to increase the number of images
in a dataset. Therefore, to maximize the DA efficiency in a CNN-
based tumor classification task, we propose using non-extensive
Gabor filters as a convolutional layer kernel initializer. Our
proposal has been tested in the BraTS15 dataset and results
show that CNN with an additional q-Gabor layer can achieve
an average accuracy 3.65% better than CNN with Gabor and
5.03% better than the default model when trained with artificial
images (data augmentation).

Index Terms—data augmentation, GANs, synthetic medical
imaging, gabor function, tumor detection

I. INTRODUCTION

Recently, the development of both hardware and software
has expanded in practically all areas of technology, impacting
the advancement of society and the expansion of accessibility
and availability of information.

One of the areas that has benefited the most is medicine,
where the amount of digital information based on images,
text and signals is nowadays much greater than the amount
of physical information. The healthcare industry has success-
fully used modern machine learning methods at all clinical
stages, including pre-clinical, diagnostic, operative, and post-
treatment [1], [2]. One of the main challenges in the medical
imaging field is the automatic diagnosis for tumor detection
[3], which is the focus of this article.

On the other hand, Convolutional Neural Networks (CNNs)
are the fundamental techniques used in this area, mainly for
tumor classification, location, detection, and segmentation.
However, for better performance of these techniques, a large
amount of data is required. Currently, for the training of
these networks, researchers usually carry out the classic data
augmentation, which consists of applying geometric transfor-
mations to the original images [4]–[6]. However, it has been
proven that more modern models of Deep Learning, such as
Generative Adversarial Networks (GANs), can generate new
artificial yet realistic samples and improve the results [7].

The combination of these two methods is explored by
[8] to increase the performance of a CNN to classify liver

injuries, the authors applied data augmentation by combining
the classical data augmentation (geometric transformations)
and generation of new samples using a GAN. The results
showed a accuracy improvement from 78.6% to 85.7% in the
classifier.

Using two-step DA-based GAN, the authors of [9] aimed
to maximize the DA effect with GAN combinations. In the
first step, Progressive Growing GAN, presented by [10], was
used to generate realistic/diverse 256 × 256 MRI samples.
The authors tested these experiments in a CNN-based tumor
detection, which increased from 93% to 96% the classifier
accuracy.

Artificial data generation has been very successful in several
image processing applications, especially after the advance-
ment of neural networks [11]. These networks are structured
in different ways. One of the main strategies is the use of ac-
tivation functions in convolutional processes, as is the famous
case of CNN. These functions can also be used for spatial
filtering in several dimensions, and their parameterization is
usually one of the primary metrics. Some of the best-known
works in this context are [12]–[15].

For many decades, the use of standard functions for mod-
eling scientific-technological problems has been widespread.
Among these functions, probably the most known is the expo-
nential function, whose versions and simple parameterization
facilitate the understanding and implementation. In addition to
the vast statistical field where this function has been applied
for centuries, it is in digital image processing (DIP) that it has
gained recent popularity, probably due to its frequent use in
filtering in both the spatial and frequency domains, a process
known as mathematical convolution.

However, in the machine learning area, this function, along
with other variants, has been used with enthusiasm, producing
exceptional results that are gaining more and more popularity.
In this area, more specifically in deep neural networks, the
Gaussian function has been successfully used both in the
convolution stage, as a convolutional kernel, and in the fully
connected flat phase, as an activation function.

In turn, a Gabor function is a better choice for modeling
various real problems, especially biological ones [16]. It is
known, for example, that the neuronal communication signal
in the brain can be better represented by a Gabor function
instead of well-known functions such as relu, hyperbolic or
sigmoid tangent . In the specific case of convolutional layers,



the Gabor function is more appropriate when the analyzed
scene’s direction is essential for analyzing the data. This
direction information is usually captured with the strategy of
using several Gabor convolutional filters, each with a different
direction.

On the other hand, with the emergence of Tsallis’s non-
extensive statistics [17], [18], many physical systems rein-
vented themselves and the enthusiasm for applications in
various areas grew. The impact on image processing and
computer vision was evident, [19]–[22]. The general idea of
this statistic is the adaptability of functions to physical systems
called non-extensive, through the estimation of the so-called
non-extensivity parameter q. One of the best-known examples
of this adaptability can be found in the work of [22], where
the authors demonstrate the effectiveness of segmentation with
the so-called q-Entropy.

Therefore, this work proposes a methodology based on data
augmentation and CNN with q-Gabor 2D function, used as
kernels initializer in convolutional layers, for tumor detection
in magnetic resonance images.

II. GABOR FUNCTIONS AND THEIR APPLICATIONS

A. The 1D Gabor Function

Traditional Gabor functions can be used as filters for one-
dimensional signals. Gabor function G in the complex domain
is defined by the product of a Gaussian envelope w with
a sinusoidal s in the complex domain [16], as is shown in
Equation 1 as the following.

G(X) = keθiw(αX)s(X) (1)

where:
w(X) = e−πX

2

(2)

s(X) = e(2πfX)i (3)

and α, k, θ and f are the parameters of the function applied
in the vector X . Then, you can see the Gabor filter as two
parts: one real and one imaginary [16], as shown in Fig. 1.

Fig. 1. Example of a 2D Gabor function with u = v = 0.08, P = 0, k = 5,
Xo = Y o = 0, a = b = 0.075

B. The 2D Gabor Function

Similar to Equation 1 of the 1D version, the 2D version for
the Gabor function’s spatial domain is expressed in Equation
4.

G(X,Y ) = s(X,Y )w(X,Y ) (4)

where s(X,Y ) is a sine wave in the complex domain called
support, and w(X,Y ) is a 2D Gaussian form called envelope
[16], best explained further.

The sinusoidal is defined by the function as the following
complex domain:

s(X,Y ) = e(2π(uX+vY )+P )i (5)

where (u, v) and P define spatial frequency and the sinusoidal
frequency phase, respectively [16].

The envelope is defined as follows:

w(X,Y ) = ke−π(a
2(X−Xo)2+b2(Y−Y o)2) (6)

where (Xo, Y o) is the envelope peak, and a and b are envelope
width scaling parameters [16].

Finally, the complex Gabor Function consists of 9 parame-
ters:

1) (X,Y ): Location of the peak of the Gaussian envelope;
2) u and v: Spatial frequencies of the sinusoid carrier in

Cartesian coordinates. It can also be expressed in polar
coordinates as (F0, w0);

3) P : A phase of the sinusoid carrier;
4) k: Scales the magnitude of the Gaussian envelope;
5) a and b: Scale the two axes of the Gaussian envelope;
6) θ: Rotation angle of the Gaussian envelope.

A Gabor function consists of two other functions, conveniently
located in real and imaginary parts, forming a function in the
complex domain [16]. An example of the 2D version is shown
in Fig. 1.

III. THE PROPOSAL FOR A q-GABOR FUNCTION

It has been known for over a century that the entropy
proposed by Boltzmann-Gibbs [23] has been able to explain
several classical physical systems in the field of thermody-
namics. However, for some systems with specific character-
istics, such as long-range memory, long-range interactions,
and fractal border behavior, Boltzmann’s formalism is only
an approximation. More detailed discussions of these ideas
can already be found in the vast literature, as in [17], [18].

In the mid-1980s, C. Tsallis proposed a new formalism,
which became known as Tsallis entropy or Tsallis statistics
[17], [18]. This formalism was proposed in the form of
Equation 7, whose main feature is the introduction of the so-
called entropy parameter q, used to maximize the probability
distritution pi, 0 ≤ pi ≤ 1.0,

∑k
i=0 pi =1.0, where k is the

number of physical states of the system.

Sq(p1, ...pk) =
1−

∑k
i=1 p

q
i

q − 1
(7)

This parameter, when it tends to 1.0, makes the (7) equivalent
to the traditional entropy equation proposed by Boltzmann-
Gibbs and Shannon (8), which became known in the area of
Theory of Information as Shannon Entropy.

S = −
∑
i

piln(pi) (8)



Regarding the vast number of successful applications of
Tsallis statistics, specifically for DIP, and the recent and also
good performances of the q-Gaussian and q-Sigmoid proposals
[24], in this work, we present an extension of this theory
applied to a 2D q-Gabor function used as a convolution kernel
of a convolutional neural network for image classification.
Like the proposal made for q-Sigmoid in [24], the proposal
presented here for q-Gabor is replacing the Gaussian envelope
with a q-Gaussian envelope. The details of this replacement
are given further.

A. The proposed q-Gabor 1D Function

Similar to a Gabor function, a q-Gabor qG is built with a
sine wave s and an envelope w which is changed by adding a
q-Exponential function, thus obtaining a thinner envelope next
to its peak and broadest near base:

qG(X) = keθiw(αX)s(X) (9)

s(X) = e(2πfX)i (10)

w(X) =
1

(1 + (1− q)X2)
1

1−q

(11)

Note that, in the envelope, the non-extensibility parameter q
cannot be equal to 1 due to the power denominator, which
allowed us to guarantee to work in the non-extensive domain.

B. The proposed q-Gabor 2D Function

By expanding q-Gabor into the space domain, we get:

g(X,Y ) = w(X,Y )s(X,Y ) (12)

s(X,Y ) = e(2π(uX+vY )+P )i (13)

w(X,Y ) =
1

(1 + (1− q)(a(X −Xo) + b(Y − Y o)))
1

1−q

(14)
Just as q-Gaussian functions tend to Gaussians when q →

1.0, we hypothesize that q-Gabor functions try Gabor functions
under the same conditions. This hypothesis has not been
proven in the literature. However, the proof is not the focus
of our work.

IV. THE PROPOSED METHODOLOGY

Traditionally, tumor detection in medical images is per-
formed by adapting mathematical functions to probabilistic
distributions. One of the most used functions is the so-called
Gabor function. Considering that the non-extensive Tsallis
entropy is an advance in this area when adapted to the q-
Gaussian version, in this article, we propose a methodology
using the q-Gabor function to solve this problem more broadly,
since the q-Gabor is the generalization of the Gabor function
just as the q-Gaussian is the generalization of the Gaussian
function, with promising results.

This section presents the methodology proposed in this
work. This methodology is composed of six steps, which the
pipeline is presented in Fig. 2. This methodology is further
explained in the following.

Fig. 2. Methodology flowchart.

A. BraTS 2015

The dataset used in this work consists of 240×240 contrast-
enhanced T1-weighted (T1c) brain axial MR images of high-
grade glioma and low-grade glioma cases from Multimodal
Brain Tumor Image Segmentation Benchmark (BRATS) 2015
[25].

B. Pre-processing

To perform the experiments, the dataset was extracted and
separated as follows: slices were extracted from the range [60,
110] of 274 patients in total. During extraction, they were
resized to 256×256 to better fit the PGGAN training . Finally,
the slices were separated into tumor and non-tumor images.
Thus, the final base was contained by:

• 7,592 tumor MRI samples of size 256× 256.
• 1,064 non-tumor MRI samples of size 256× 256.
Examples of samples from this step can be seen in Fig. 3.

Fig. 3. Examples of real MR samples of size 256× 256.

1) Data split: After pre-processing step, the dataset was
splitted into training, validation and test set for the classifi-
cation task. Details of the sets can be observed in Table I.

TABLE I
REAL IMAGES SETS

Set Non-tumor Tumor Total
Training set 851 6.073 6.924

Validation set 106 759 865
Test set 107 760 867



C. Progressive Growing of GAN (PGGAN)

The PGGAN architecture, denominated Progressive Grow-
ing of GAN [10], is a training methodology for GANs [26],
which consists of progressively growing the generator and
discriminator network. The training starts by generating low-
resolution images, and new layers are added during this pro-
cess until reaching the desired resolution. Accordingly to the
authors, this speeds the training up and significantly stabilizes
it, producing excellent artificial samples.

The training starts with the G Generator Network and the D
Discriminator having a resolution of 4× 4 pixels. As training
process progresses, new layers are added for G and D so that
the spatial resolution of the artificial images increases until
the desired 256× 256. Previous layers continue to be trained
during this process [10].

1) PGGAN implementation details: This work uses PG-
GAN architecture to generate MRI samples with tumor and
non-tumor artificially. Unlike the primary goal of generating
high-resolution images (1024 × 1024) [10], we modified the
network to generate 256× 256 images.

D. ResNet-50

Residual Neural Networks are neural networks that consist
of stacked residual units. Each unit can be expressed in the
following:

yl = h(xl) + F (xl,Wl) (15)

xl+1 = f(yl) (16)

where xl and xl+1 are the input and output of the l-th unit,
and F is the residual function [27]. In [28], h(xl) = xl is an
identity mapping and f is a ReLU function [29].

The primary idea of a Residual Neural Network is to learn
the active residual function F with respect to h(xl), with a
key choice of using an identity mapping h(xl) = xl. This
is accomplished by attaching an identity hopping, or shortcut
connection [27].

1) ResNet-50 implementation details: This work used the
residual model with 50 layers, ResNet-50. Some settings were
modified to make it possible to detect tumors on MR images.

Similar to [9], a Dropout layer with a rate of 0.5 was
introduced before the final Dense layer. The images were
resized from 256 × 256 to 224 × 224 to fit the input size of
ResNet and have been converted to grayscale (i.e., 1-channel).
We use a bath size of 64, and a learning rate of 0.002 with the
SGD optimizer [30]. The loss function used was categorical
crossentropy and the accuracy was used as a metric. This
network will be mentioned as default in the sections below.

E. q-Gabor 2D Convolutional Layer

As shown in Section III-B, the q-Gabor 2D function was
used as convolution filters (kernels), just as [31] used Gabor
filters. The q-Gabor is a normal convolution layer; however,
it is initialized with filters to fit the q-Gabor 2D function, and
its values are automatically updated according to the network
training. The layer is placed as the first convolution layer of
the network [31] with a desired number of kernels and size,

in this work we use 64 filters and a kernel size of 7×7. Table
II shows the first layers of ResNet-50 architecture with the
q-Gabor 2D as a convolutional layer.

TABLE II
INITIAL LAYERS OF RESNET50 ARCHITECTURE W/ q-GABOR

Layer Output shape
Input layer (224,224,1)

Zero padding (230,230,1)
q-Gabor2D 7× 7 (112, 112, 64)

Conv2D 7× 7 (53, 53, 64)
Max pooling (26, 26, 64)

F. Experimental Configuration

To compare the effects of data augmentation with images
generated by PGGAN and also the use of q-Gabor 2D in tumor
detection, the following ResNet50 configurations and image
sets were compared:

1) Default ResNet-50
a) Training with real images;
b) Training with real + 88k PGGAN-based images;

2) ResNet-50 with Gabor convolutional layer
a) Training with real images;
b) Training with real + 88k PGGAN-based images;

3) ResNet-50 with q-Gabor convolutional layer
a) Training with real images;
b) Training with real + 88k PGGAN-based images;

To test these models, we added zero-mean white Gaussian
Noise with the following variance values in the tests sets: 0.01,
0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0, 3, 0.4, 0.5.

V. RESULTS AND DISCUSSION

In this work, PGGAN [10] was used for generating new re-
alistic MR images. Fig. 4 show some examples of the realistic
images generated by PGGAN in steps 3.1 and 3.2, respectively,
of the proposed methodology (Fig. 2). It is possible to see

Fig. 4. Examples of artificial MR samples of size 256× 256.

that the artificially generated images are similar to the original
images of the BraTS15 dataset. After performing steps 3.1 and
3.2, we generate 55.000 MR images with tumor and 55.000
MR images without tumor.

For tumor detection, the PGGAN-generated images were
separated into training, validation, and test images similar to



TABLE III
ARTIFICIAL IMAGES SETS

Set Non-tumor Tumor Total
Training set 44.000 44.000 88.000

Validation set 5.500 5.500 11.000
Test set 5.500 5.500 11.000

what was done in step 2. Details of the sets can be observed
in Table III.

Table IV presents the results of the tumor detection task with
the modifications made in ResNet-50. For ResNet-50 training,
only the training, validation, and testing sets from the real
dataset (Section IV-B1) were used. The images were resized
from 256× 256 to 224× 224 to fit the input of the network.
As a first experiment, the default architecture was used, and
it was possible to achieve an accuracy of 99.30% by testing
in 867 real images. As a second experiment, a convolutional
layer with Gabor filters was added, as presented by [31],
before the first convolutional layer. The model achieved an
accuracy of 95.96%. Like the previous experiment, the Gabor
convolutional layer was replaced by a q-Gabor convolutional
layer, and the model achieved an accuracy of 99.42%.

TABLE IV
TUMOR DETECTION EXPERIMENTS

Training procedure Accuracy
ResNet-50 (no modifications) w/ real dataset 99.30%

ResNet-50 (w/ Gabor2D) w/ real dataset 95.96%
ResNet-50 (w/ qGabor2D) w/ real dataset 99.42%

It can be noticed that the three network models performed
well, but it is possible to notice the difference when the test
set images are noisy. Fig. 5 presents the results obtained when
adding Gaussian Noise with different values of variance to
the images in the test set. It can be seen that the accuracy of
the unmodified ResNet-50 (default) drops significantly as the
images get noisier. On the other hand, ResNet with the Gabor
layer and q-Gabor maintains accuracy up to 80% and 90%,
respectively. The model with q-Gabor maintains an accuracy
up to 9.79% better than the model with Gabor. Table V

Fig. 5. Accuracy values evaluated in test set without data augmentation.

presents results when tests are carried out on the test set with

artificial images, detailed in Table III. Accuracy drops from 3%
to 4% when the network is trained with a few set (real) images
and tested on a large set of images (artificial). The architecture
without additional convolution layers achieved an accuracy
of 94.27%, which is 3.17% better than the architecture using
Gabor and 1.04% better than the architecture using q-Gabor.

TABLE V
TUMOR DETECTION IN DATA AUG. EXPERIMENTS

Training procedure Accuracy
ResNet-50 (no modifications) w/ real dataset 94.27%

ResNet-50 (w/ Gabor2D) w/ real dataset 91.10%
ResNet-50 (w/ qGabor2D) w/ real dataset 93.23%

However, when Gaussian Noise is added to the images, the
model with the q-Gabor layer maintains a high accuracy up to
0.06 of variance, as shown in Fig. 6. On the other hand, the
model with the Gabor layer does not have an accuracy very
high from start but manages to maintain a good stability. The
default model drops significantly to 48% of accuracy after
a 0.03 of variance. Experiments 1-b, 2-b and 3-b, detailed

Fig. 6. Accuracy values evaluated in test set with 11K images.

in Section IV-F were tested with the artificial images. The
results are shown in Fig. 7. When tests are performed on
images without any noise, the three models of the ResNet-
50 have good accuracy. However, as images become more
noisy, the default model stays between gabor and q-gabor
after a certain value of variance of Gaussian Noise. q-Gabor
is superior compared to both gabor and default.

VI. CONCLUSION

This work presented a methodology for detecting tumors
in T1C MR images from the BraTS15 [25]. The proposed
methodology used a PGGAN [10] for data augmentation, a
ResNet-50 [28] for tumor detection and a q-Gabor 2D function
to initialize kernels for convolutional layer of the ResNet-50.

In order to increase images in the dataset, PGGAN was
able to generate 110K new realistic MRI images, separated
into tumor images and non-tumor images. These images were
used for training and testing the ResNet for tumor detection
(binary classification).



Fig. 7. Accuracy values evaluated in test set with model trained with data
augmentation.w

To simulate the real world, such as when MR images can
be collected with noise, we add Gaussian Noise to the test
set images of both real and artificial images (generated by
PGGAN).

For the experiments, three ResNet-50 models were used: (1)
standard model, (2) model with a convolutional layer Gabor,
(3) model with a convolutional layer q-Gabor. When training
is done on a few images and tested on a large number of
images (real + artificial), the standard models, with the Gabor
and with the q-Gabor achieve an average accuracy of: 64.57%,
73.71%, and 74.08%, respectively. When the artificial images
combined with the real ones are used for training, the models
reach an average accuracy of: 74.60%, 75.20%, and 78.97%,
respectively.

Therefore, the results conclude that the model with the q-
Gabor behaves better with and without data augmentation.
Data augmentation increases the average accuracy of models
by up to 7%. These and other results with Tsallis entropy
applied to medical imaging suggest the potential of this theory
in future work using q-Gabor in CNNs.
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