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Abstract—Skin cancer is one of the most common types of
cancer in Brazil and its incidence rate has increased in recent
years. Melanoma cases are more aggressive compared to non-
melanoma skin cancer. Machine learning-based classification
algorithms can help dermatologists to diagnose whether skin
lesion is melanoma or non-melanoma cancer. We compared four
convolutional neural networks architectures (ResNet-50, VGG-
16, Inception-v3, and DenseNet-121) using different training
strategies and validation methods to classify seven classes of skin
lesions. The experiments were executed using the HAM10000
dataset which contains 10,015 images of pigmented skin lesions.
We considered the test accuracy to determine the best model for
each strategy. DenseNet-121 was the best model when trained
with fine-tuning and data augmentation, 90% (k-fold cross-
validation). Our results can help to improve the use of machine
learning algorithms for classifying pigmented skin lesions.

Index Terms—Skin cancer, machine learning, convolutional
neural networks, classification.

I. INTRODUCTION

The skin can be affected by different types of tumors with
different levels of aggressiveness. These tumors are usually
classified as melanoma skin cancer or non-melanoma skin
cancer (all tumors except the melanoma type). Non-melanoma
is the most frequent skin cancer, corresponding to about 30%
of all malignant tumors registered in Brazil. Although non-
melanoma has a low mortality, if not properly treated it
can cause significant mutilations [1]. Melanoma is the least
common type among the other types of skin cancer, but it is
the most dangerous as it is much more likely to spread to other
parts of the body if it is not detected and treated early [2].

Visual inspection of skin lesions consists of comparing
the lesion with the surrounding normal tissue and is subject
to misdiagnosis. Dermatoscopy is an examination method
that uses a dermatoscope to allow a magnified view of the
skin’s surface while the reflection is reduced or filtered.
Although dermatoscopy exam is more effective compared
to visual examination, dermatologists still face challenges to
improving the diagnosis of skin cancer. Manual inspection
of dermatoscopic images by specialists is often complex,
prone to failure, time-consuming, and subjective (may produce
different results) [3]. Therefore, automated diagnosis using
image classification algorithms has become important. Arti-
ficial intelligence and machine learning techniques enable the
creation of classifiers that can be used as a computer-assisted
diagnosis (CAD), supporting dermatologists’ decisions [4].

The objective of this work is to improve the available
information about using convolution neural networks (CNNs)
for the automatic classification of skin lesions. We exploit
this problem by comparing the performance of four CNN
architectures, the impact of training the networks from Scratch
Vs. using fine-tuning as well as the impact of training with
data augmentation.

The remaining of the paper is organized as: In Section II
we present some related works. The material and methods are
described in Section III. In Section IV the results are presented
and discussed and we conclude the study in Section V.

II. RELATED WORKS

Kassani and Kassani [5] compare CNN architectures for
detecting melanoma in skin lesions. The work compares the
architectures: AlexNet, VGG-16, VGG-19, ResNet-50, and
Xception. The dataset used was the HAM10000, the same
dataset used in our work. The result shows that the ResNet-50
neural network had the best performance among the architec-
tures. Differently, our work explores other training strategies
and considers a deeper architecture, DenseNet-121.

Le et al. [6] applies class-weighted and focal loss functions
along with transfer learning to increase performance and deal
with problems such as class imbalance. Dropout layers were
also implemented, which randomly ignore some connections
during the training phase. The authors used a pre-trained
ResNet-50 model with some modifications, such as using
global average pooling (GAP) instead of traditional pooling
layer.

Mohamed et al. [7] used the Densenet-121 and MobileNet,
both pre-trained with the ImageNet dataset. Dataset down-
sampling and data augmentation were applied to handle un-
balanced data. MobileNet surpassed the highest accuracy of
ISIC 2018 challenge by 4.2 p.p. The work of [7] is used as a
reference for some common accuracy and sensitivity averages
in the literature.

The union of two neural networks forming a new model was
addressed in [8]. Fine-tuning training strategy was applied with
the HAM10000 dataset and classic preprocessing techniques,
but without increasing the number of images.

Rezvantalab et al. [9] uses the HAM10000 along with
another dataset and compared four classic CNN architectures:



Inception-v3, InceptionResNet-v2, ResNet-152 and DenseNet-
201. The best architecture was DenseNet-201. Their results
surpassed the diagnoses made by dermatologists.

Chaturvedi et al. [10] used the MobileNet CNN architecture
to classify the HAM10000 dataset. They also created a Web
application integrated with the MobileNet model. The trained
model achieved 83.1% accuracy. The models were trained
using transfer learning and image preprocessing. Duplicated
images (different images of the same lesion) were excluded
from the validation set.

III. MATERIAL AND METHODS

In this section, we describe the image dataset used in the
experiments, the CNN architectures, training and validation
methods, and data augmentation strategies. Image normaliza-
tion was applied in all experiments.

A. Dataset

We used the HAM10000 dataset (”Human Against Machine
with 10000 training images”)1. The HAM10000 is composed
of 10,015 dermatoscopic images that were collected over 20
year in different populations and with different acquisition and
storage methods. More than 50% of lesions were confirmed
by histopathology, while the ground-truth for the remaining
lesion were by follow-up examination, expert consensus, or
in-vivo confocal microscopy [11].

The dataset metadata contains information about the diag-
nosis (the classes the stains belong to), the age of the person
from whom the stain was collected, biological sex, type of
diagnostic procedure, and the part of the body where the stain
was.

Each image in the HAM10000 dataset belongs to one of the
seven classes, which correspond to relevant pigmented lesions:
Actinic keratoses and intraepithelial carcinoma/ Bowen’s dis-
ease (akiec); basal cell carcinoma (bcc); benign keratosis-
like lesions (bkl); dermatofibroma (df); melanoma (mel);
melanocytic nevi (nv) and vascular lesions (angiomas, an-
giokeratomas, pyogenic granulomas, and hemorrhage) (vasc).
Figure 1 illustrates one sample from each one of the classes.

1Available at: https://bityli.com/FlYo6Y

Fig. 1: One sample from each class of pigmented lesion in the
HAM10000 dataset.

There is an imbalance in the classes, as seen in Figure 2,
which is handled with the data augmentation method.

Fig. 2: Unbalance of classes in the HAM10000 dataset.

B. Architectures

One of the fundamental factors in determining the perfor-
mance and efficiency of a CNN is its architecture [12]. How
the layers are structured, the elements used in each layer, and
how they are designed often affect how quickly and accurately
it can perform various tasks [13].

The VGG-16 [14] achieved one of the best performances in
the 2014 ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). The architecture uses filters smaller than 3×3 to
better extract image features. Studies have found that using

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/ DVN/DBW86T


smaller filters to increase network depth is more effective than
increase network width [5].

ResNet [15] uses residual connections to avoid the vanishing
gradient effect in very deep networks. Residual connections
skip some layers and feed the output of one layer as input to
the next layers, which allows this architecture be deeper than
other CNN architectures, such as VGG [5], [16]. We used the
ResNet-50, with 50 layers, but there are variations such as
ResNet-101 with 101 layers [5], [16].

Inception’s architecture [17] introduced the Inception mod-
ules which computes parallels convolutions with different
kernel sizes and pooling layers. The version used in this work
is the Inception-v3.

DenseNet [18] concatenates the resulting output from the
previous layer with the next one, while ResNet had an addi-
tive method to merge its previous layers with the next one.
DenseNet concatenates the feature maps while preserving the
information, improving feature reuse. In this work, we used
the DenseNet-121, with 121 convolutional layers.

C. Experimental Setups

To perform the experiments, the dataset (described in Sec-
tion III-A) was treated using two validation methods: holdout
and k-fold cross-validation. In the holdout method, the dataset
was split in 75% of the images for training, 15% for validation,
and the remaining 15% for testing. In the k-fold method, the
dataset was split into five non-overlapping folds of equal size,
and in each iteration, one fold is used for testing, while the
remaining is used for training. The selected number of folds
was 5 (k = 5).

In order to improve the classification performance of the
models, we performed hyperparameter optimization using
random search on the training and validation sets (holdout
validation method). As the stochastic gradient descent with
momentum (SGDM) optimizer was used, the hyperparameter
and respective search spaces were as follows:

• Batch size: {8, 16, 32, 64};
• Learning rate: between 0.0001 and 0.1;
• Momentum: between 0.6 and 0.98;
• Step size: integer values between 5 and 45;
• Weight decay: fixed in 0.1.
The hyperparameter optimization was executed during 30

epochs. The set of parameter values that achieved the best
validation accuracy were the same for all CNN architectures:
learning rate = 0.0101, momentum = 0.6214, step size = 25
and batch size = 32. These values were used in all training
strategies described below.

We designed three training strategies for the experiments. In
strategy 1 the CNN models were trained from scratch (no fine-
tuning) and without data-augmentation, in strategy 2 the mod-
els were trained from scratch, but now with data augmentation,
and finally, in strategy 3 the models were trained with fine-
tuning and data augmentation. The idea behind this experiment
design is to assess the impact of data augmentation and fine-
tuning on the model classification performance. Strategies 1,
2, 3 were applied using the holdout validation method, and

strategy 3 was also applied using the k-fold cross-validation
method. Figure 3 illustrates the described experimental setup.

Fig. 3: Workflow of the experimental setup.

D. Data Augmentation

Overfitting usually occurs when there are a small number of
training examples. One way to solve this problem is to increase
the dataset to have a sufficient number of training samples.
Data augmentation is the process of generating more training
images from existing training samples through a series of
random transformations that produce reliable-looking images.
This procedure enables exposing the model to more aspects
of the data improving the model generalization [5]. In this
work, we applied randomly horizontally and vertically flips
and random rotations. In Figure 4 it is shown samples of the
augmented images in one single batch.

Fig. 4: Augmented images from one training batch.

E. Fine-tuning

As a transfer learning strategy, fine-tuning consists of using
a network that has been previously trained for a classification
task using a very large dataset, such as ImageNet [12]. The
fine-tuning strategy adopted here consists of not freezing any
layers and training on the pre-trained model using our image
dataset. In this work, we used fine-tuning to train the four
CNN models. The last layer of the pre-trained networks was



replaced by a new softmax layer to fit the number of classes
in the present working problem.

F. Computational Resources

The experiments were developed using Python 3.7, PyTorch
1.8.1, and TorchVision 0.9.1. Scikit-learn 0.24.2 and matplotlib
3.4.2 were also used. The experiments were performed on a
machine running Ubuntu 16.04.2 LTS with an Intel i5 3.00
GHZ processor, 32 GB RAM, and a NVIDIA Titan XP GPU
with 12 GB.

IV. RESULTS AND DISCUSSION

In this section, we present and discuss the results obtained
by applying the strategies described in Section III-C consider-
ing the holdout and the k-fold cross-validation methods: strat-
egy 1: training the models from scratch (no data augmenta-
tion); strategy 2: training from scratch with data augmentation
and strategy 3: fine-tuning with data augmentation.

Table I presents the results of all experiments in terms of test
set accuracy for the holdout validation method and in terms
of accuracy mean and standard deviation of the five validation
folds for the k-fold cross-validation method.

TABLE I: Results of all experiments in terms of accuracy.

Holdout Cross-validation
Strategy 1 Strategy 2 Strategy 3 Strategy 3

Model Test Acc Test Acc
VGG-16 0.7725 0.7698 0.8636 0.8704 ± 0.0088

ResNet-50 0.7904 0.7558 0.8776 0.8929 ± 0.0050
DenseNet-121 0.8127 0.7904 0.8776 0.9000 ± 0.0083
Inception-v3 0.7734 0.7738 0.8975 0.8993 ± 0.0054

Considering the holdout validation method, the DenseNet-
121 model performed better when trained with strategy 1 and
strategy 2, with 0.8127 and 0.7984 of accuracy, respectively.
Surprisingly, the accuracy for all model has decreased when
trained with data-augmentation, with exception of Inception-
v3 which remain practically unchanged. One possible expla-
nation is the choice of a very naive set of transformations
(Section III-D). Other transformations sets or even auto-
augmentation methods [19], should be experimented in future
works.

Still considering the holdout validation method, Inception-
v3 had the best accuracy when training with strategy 3. It is
possible to observe that each model had its accuracy improved
when trained with fine-tuning.

Only the strategy 3 was applied using the k-fold cross-
validation. Cross-validation seeks to avoid biases in the vali-
dation process, as it guarantees that each sample participates
in the training and validation processes at least once [12], [5].
Standard deviation was calculated to show the dispersion of
data within the population relative to the mean. It is possible
to observe that all standard deviations are very low, below
0.0088.

Figure 5 shows the evolution of accuracy and loss curves
during training DenseNet-121 with fold 4 under strategy 3, in
which it is possible to observe that overfitting does not occur.

Fig. 5: Accuracy and Loss evolution during the DenseNet-121
model training (cross-validation in fold 4 with strategy 3).

Table II shows the confusion matrix of the Inception-v3
when trained with the holdout method. Inception-v3 trained
using strategy 3 had the highest accuracy considering the
holdout method.

TABLE II: Inception-v3 confusion matrix using holdout and
trained with strategy 3.

Inception-v3, holdout + strategy 3
akiec bcc bkl df mel nv vasc

akiec 0.673 0 0.184 0 0.102 0.020 0.020
bcc 0.039 0.766 0.065 0 0.039 0.090 0
bkl 0.018 0 0.860 0.006 0.048 0.067 0
df 0 0.055 0 0.778 0.055 0.111 0

mel 0 0.012 0.054 0.006 0.736 0.186 0.006
nv 0 0.001 0.025 0.001 0.030 0.942 0.001

vasc 0 0 0 0 0 0 1

Table III shows the confusion matrix obtained by the
DenseNet-121 when trained with k-fold cross-validation, con-
sidering the fold 4 for validation. DenseNet-121 was the
model with the highest accuracy using k-fold cross-validation,
remembering that only strategy 3 was applied using cross-
validation.

TABLE III: DenseNet-121 confusion matrix using cross-
validation with strategy 3, considering fold 4

DenseNet-121, cross-validation + strategy 3
akiec bcc bkl df mel nv vasc

akiec 0.708 0 0.123 0.015 0.092 0.062 0
bcc 0.019 0.884 0.039 0 0.029 0.029 0
bkl 0.009 0.009 0.864 0 0.054 0.064 0
df 0.044 0.130 0.044 0.652 0 0.130 0

mel 0.009 0 0.059 0 0.739 0.194 0
nv 0 0.004 0.010 0.001 0.018 0.966 0

vasc 0 0 0 0 0 0.103 0.897

Figure 6 shows examples of images correctly or incorrectly
classified by the Inception-v3 trained with strategy 3 and
holdout validation method.



Fig. 6: Inception-v3 confusion matrix when trained with
strategy 3 and holdout validation. Showing some correctly and
incorrectly classified images.

Figure 7 shows examples of images correctly and incorrectly
classified by the DenseNet-121 when trained using k-fold
cross-validation.

Fig. 7: DenseNet-121 confusion matrix when trained using
cross-validation in fold 4. Showing some correctly and incor-
rectly classified images.

Table IV presents other evaluation metrics computed on the
model with better results in terms of accuracy (see Table I)
when using the k-fold cross-validation method – the DenseNet-
121. We computed the per class precision, recall, and f1-score.
The values in the table were calculated as the mean across
the 5 folds, and the last row shows the overall metric value
computed as the mean across all classes.

Table V presents other evaluation metrics computed on the
model with better results in terms of accuracy (see Table I)
using the holdout validation method.

TABLE IV: Classification report for DenseNet-121 training
using cross-validation method with strategy 3.

precision recall f1-score support

akiec 0.8010 0.6944 0.7401 327
bcc 0.8577 0.8424 0.8496 514
bkl 0.7941 0.8298 0.8115 1099
df 0.8281 0.7391 0.7769 115

mel 0.7741 0.7062 0.7382 1113
nv 0.9449 0.9603 0.9525 6705

vasc 0.9453 0.9301 0.9366 142

accuracy 0.9000 10015

avg 0.8493 0.8146 0.8293 10005

TABLE V: Classification report for Inception-v3 training using
holdout method with strategy 3.

precision recall f1-score

akiec 0.8462 0.6735 0.7500
bcc 0.9365 0.7662 0.8429
bkl 0.7474 0.8606 0.8000
df 0.8235 0.7778 0.8000

mel 0.7235 0.7365 0.7300
nv 0.9480 0.9423 0.9452

vasc 0.8750 1.0000 0.9333

accuracy 0.8916

avg 0.8429 0.8224 0.8288

Based on confusion matrices (Table II and Table III) and
the per class evaluation metrics (Table IV), it is possible to
observe that the models could classify each class very well.

V. CONCLUSION

In this work we presented and evaluated methods to clas-
sify pigmented skin lesions using four CNN architectures:
DenseNet-121, ResNet-50, VGG-16 and Inception-v3. A com-
parison was made between three training strategies considering
holdout and k-fold cross-validation methods.

When we consider the experimented training strategies,
training the models using fine-tuning and data augmentation
(strategy 3) outperformed the other strategies for all CNN
models. When performing a comparative analysis between
the CNN models, DenseNet-121 performed better in most
scenarios, achieving 90.0% accuracy when trained with fine-
tuning and data augmentation using k-fold cross-validation
method. In short, DenseNet-121 showed to be the best model
for this classification task, but the other evaluated CNN models
are able to obtain reasonable results. Taking the best training
strategy (fine-tuning and data augmentation), DenseNet-121
(best model) achieved 90.0% and 89.75% accuracy versus
87.04% and 86.36% for VGG-16 (which had the worst results),
a difference of 2.96 and 3.36 percentage point, for holdout and
k-fold, respectively.

As future work we suggest: a) to consider other hyper-
parameters optimization algorithms; b) experiment other im-
age transformations for data-augmentation, including autoaug-
ment; c) use the CNNs as a feature extractor; and d) testing



the proposed strategies on other skin cancer datasets, including
datasets with samples of lesions in black skin.
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