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Abstract—Lymphoma is one of the most common types of
cancer and its treatment can be more effective if the disease
variant is correctly diagnosed. Many works have been done
using computer vision and machine learning to classify the
lymphoma based on histological images. This work presents
a method using simple descriptors and a decision tree-based
ensemble classifier, aiming to maintaing the interpretability of the
data and understand what information in most important to the
classification task. We use morphological and non morphological
descriptors extracted from the cells nuclei, a feature selection
method based on principal component analysis (PCA), and a
gradient boosting decision tree (GBDT) method for multiclass
classification. Our approach achieves an average accuracy of
0.932. this result is close to those obtained in the state of the
art, while it uses simpler descriptors and better interpretable
classification models.

Index Terms—Multiclass classification, feature selection, mor-
phological and non-morphological descriptors, lymphoma.

I. INTRODUCTION

Lymphoma is the group of cancer that develop in the
lymphocytes, a type of blood cell that is responsible for the
immunology of the organism [18]. It is one of the most
common types of cancer [17] and can be divided between
Hodkin lymphomas (HL) and non-Hodkin lymphomas (NHL).
Twenty-eight variants of the disease are already known, but
only three NHL represents 85% of all lymphoma cases:
the mantle cell lymphoma (MCL), the follicular lymphoma
(FL) and the chronic lymphocytic leukemia (CLL) [22]. The
high occurrence frequency of this types make them important
subjects of research.

An important step on the treatment of lymphomas is cor-
rectly diagnosing the type of the disease. Unfortunately, this
crucial task is not trivial, even to specialists. The analysis
of histological images can be used in this process, but inter
and intra-pathologist variability in the diagnosis can occur,
caused by the subjectivity of human analysis [13]. Computer
aided diagnosis (CAD) systems are tools designed to facilitate
physicians in the analysis of medical exams. Using computer
vision and machine learning techniques, a CAD system can
be created to classify histological images of lesions, which
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can speed up the diagnosis and mitigate the variation in the
analysis.

The success of the various machine learning models depends
on collecting high quality and reliable data. A gold standard
annotated database of histological images of lesions of three
types of NHL (MCL, FL and CLL) is presented in [23].
Several researches have been conducted using this database,
addressing different approaches to extract useful information
for classifying images between the cited types. The extraction
of descriptors from medical images and their statistical analy-
sis can lead to new features and aid in the discoveries regarding
the subject diseases [5]. However, many works either do not
segment the image to find information in the cell nuclei or they
use complex descriptors, that can not be easily interpreted by
a specialist [6], [13], [14]. In [17], the authors extract simple
data from the cell nuclei related to their color and shape, but
they only perform binary classification.

Many multiclass approaches with high accuracy for the
lymphoma classification problem have been proposed in the
literature. However, they often use more complex descriptors
and machine learning methods with low levels of explain-
ability [3], such as deep learning [4], [15]. In these models,
the knowledge and logic used in classification are intrinsic,
making it difficult to understand why and how a decision is
made. On the other hand, when a specialist uses an automated
system to help in his diagnosis, he needs more then just an
accurate prediction. It is really important for a CAD to be
transparent enough so the user can understand better what
context leads to each diagnosis [3].

In this paper, we present an approach for the classification
of lesions in NHL histological images. The proposed method
uses images with nuclei detected by the method proposed by
[17]. Morphological and non morphological descriptors are
extracted from the segmented images, which are based on the
form of these nuclei and on the brightness level of their pixels,
respectively. Then, a principal component analysis (PCA)
technique are used to select a subset of features. Finally, the
gradient boosting decision tree (GBDT) method is employed to
classify the lymphoma. The choice of algorithms aims to main-
tain the simplicity and transparency of the information used



in the decision, being a step further to the creation of a fully
interpretable model, able to support doctors in their diagnoses.
The main contributions of this paper are: (i) The combination
of simple and interpretable descriptors, a PCA-based feature
selector and a DT-based ensemble method in a classification
approach in order to demonstrate its discriminative capability
in the different lesion classes; (ii) The investigation of mor-
phological and non morphological descriptors in multiclass
classification models, highlighting which descriptors are the
most important for the task and discussing the implications of
combining both types of descriptors.

II. METHODOLOGY

Fig. 1 illustrates the general flow of the proposed method.
Initially, descriptors are extracted from the images using the
method proposed in [17]. In preprocessing, a feature selection
algorithm based on PCA is used to reduce the number of
features, which are then used in the training of a GBDT.

The algorithms used were chosen aiming to create a simple
prediction methodology, but that have achieved competitive
performance in other classification problems [11], [27], [29].

A. Dataset and Image Descriptors

The dataset used in this work were proposed in [23] and
is formed by 375 labeled images of NHL lesions, where their
subtypes CLL, FL and MCL have 113, 140 and 122 images,
respectively. They was created from a set of 30 histological
samples (10 samples of each type of NHL), colorized with
hematoxylin and eosin (H&E).

Aiming to obtain data from the images, we use the same
segmentation and feature extraction method proposed in [17],
which allows the detection of the cells nuclei in the images
and the extraction of morphological and non-morphological
descriptors. The process generates a set of 36 morphological
descriptors based on statistical data about the geometric shape
and size of cells nuclei. For each nucleus, nine morpholog-
ical metrics (area, extent, perimeter, convex area, solidity,
eccentricity, equivalent diameter, minor and major axis) are
computed. Then, four statistical data (mean, median, mode and
standard deviation) are calculated for each metric, considering
all nuclei of each image. In addition, a set of 80 non-
morphological descriptors are extracted based on the pixel
brightness in the model RGB (Red, Green and Blue) and
gray-scale channels of the image. For each nucleus, the mean,
median, standard deviation, minimum and maximum values
of pixel brightness in each of four channel are computed.
From these data, we then calculated the mean value, median,
standard deviation and mode for each image channel.

In order to compare them, experiments were conducted
using each set of descriptors separately, as well as with a third
group formed of both of them.

B. Preprocessing

A large number of features can negatively influence in the
performance of classification algorithms [2]. Therefore, the
descriptors extracted from the image are submitted to a feature

selection algorithm in order to get a smaller subset that still
contains enough information to separate the classes.

The traditional PCA algorithm reduces dimensionality by
mapping the original features to new orthogonal variables,
called principal components (PC), in order to maximize the
variance [1]. This method can project the data in a less di-
mensional space, reducing the complexity of the classification
problem. However, the number of descriptors that must be
extracted from the image remains the same, since each main
component is created from a linear combination of all features.
In addition, the new attributes are more difficult to interpret.

In this work, a feature selection algorithm based on PCA
[24] was used. The PCA-based selector chooses the K most
relevant features of the database, that is, those having more
residual variance in the principal components. This approach
returns a subset formed by original descriptors (morphologi-
cal and non-morphological). Unlike the traditional approach,
where there is decomposition of features in a different data
space, the selection method preserves the information of each
feature of the selected subset. Therefore, it improves the model
interpretability, favoring the analysis of the selected features by
a human specialist and reduces the cost of image processing,
since it requires a smaller number of descriptors. The value of
K should be determined searching the best trade-off between
the quantity of features used in the training stage and the
quality of the classifier.

For evaluating this feature selection method, we also com-
pared it’s results with the decomposition approach.

C. Classification

In present work, we perform a multiclass classification for
NHL using a decision tree-based ensemble, where the models
are trained from the features selected in the preprocessing.
An ensemble is formed by several simpler models, where the
classification is made based on the individual decisions of
each model (eg by simple voting). This technique has already
proved to be more efficient than a single model in several
applications [19].

One of the machine learning techniques commonly used in
ensemble models is the decision tree (DT), due to its simplicity
and fast training. Each tree node makes a decision based on
a single attribute, guiding the algorithm to one of its child
nodes and, when it is a leaf node, classifies the sample [21].
This simple structure allows the specialist to understand the
criteria adopted in the decision and confirm the diagnosis. For
example, Fig. 2 illustrates a piece of a DT-based classifier
for NHL. As noted, when the non-morphological descriptor
StdDev MedianPixelValueGr (standard deviation of median
value of pixel brightness of the cells nuclei in the green
channel) is less than or equal to 13.82, the lesion is classified
as CLL. Otherwise, it is necessary to check the morphological
descriptor Median ConvexArea (median of the convex area of
all image nuclei) to decide between FL (≤ 98.5) and CLL
(> 98.5).

GBDT is a method, where new decision trees are iteratively
added to the ensemble in order to decrease its error. In GBDT,
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Fig. 1. Scheme of the proposed methodology for lymphoma classification.

the problem is modified between each iteration, focusing on
the samples most likely to be classified incorrectly. After
trained, the model uses a combination of the results of all
trees to create its final decision.

The experiments were carried out using the GBDT imple-
mentation from the light gradient boosted machine (LGBM)
library [10] and its default configuration for the algorithm’s
parameters.

III. EXPERIMENTS

This section presents the experiments carried out to evaluate
the performance of our methodology and perform an empirical
analysis on the importance of the features on the classifiers
decisions. In order to evaluate and compare the efficiency of
morphological and non-morphological features in the classifi-
cation of lymphomas, the models were constructed considering
each set of descriptors separately and another one composed
by both (features junction). Initially, we evaluated the influence
of PCA-based feature selection method and their parameteri-
zation on the quality of the classifiers. Then, we analyzed the
importance of each feature, and it’s differences between the
set of descriptors, highlighting patterns and behaviors that we
judge as important knowledge and evidence for future works
regarding this problem.

In the comparative analysis, 100 executions of each eval-
uated method were considered. For each one, 10% of the
data was randomly selected for testing, while the other 90%
was used in the training of the classification model. The
separation of samples was performed in order to maintain the
proportion of each class was the same between the training
and test subsets. The algorithm performance is measured by
the accuracy of the model [9]. We also used the Welch test

[8], [28] with a significance level of 5% to confirm or refute
the null hypothesis (H0) that the classification approaches
have similar average performances. It is usually used to
verify the hypothesis that two populations have the same
average, without assuming equal variance between them. In
other words, if the test returns a p-value less than 0.05 (H0
rejected), we determine that the difference between the models
is statistically relevant with 95% confidence. Otherwise, we
observed that the difference in the performance may have
resulted from the random variation inherent to stochastic
methods.

A. Analysis of the Feature Selection

In order to determine which is the smallest subset of
descriptors able to training a model with good classification
accuracy, a feature selection algorithm based on PCA were
evaluated. The number of features selected for each set of
descriptors was determined through multiple executions of
the method, increasing the value of K from 3 to the total
number of descriptors in the set. This incremental process
stops when the improvement in model accuracy is considered
insignificant (< 0.01). Thereby, we could find a good trade-
off between number of features and classifier performance.
Based on the experimental results, we determined the number
of features to be selected for each set of descriptors. While 76
features were selected from the complete set (all descriptors),
for the morphological and non-morphological sets, 33 and 16
descriptors were chosen respectively.

To compare the efficiency of classifiers generated from
our feature selection approach, experiments using a well
established dimensionality reduction technique (PCA-based
feature decomposition algorithm) was also performed. Table
I presents the performance achieved by the classifiers trained
from the features set generated using these two methods for
each sets of descriptors. The column ”Qty” shows the number
of features used in both algorithms. The average accuracy and
it’s standard deviation for each approach is shown in columns
”Decomposition” and ”Selection”, respectively. The column
”All Features” shows the evaluations achieved by using all fea-
tures, without any dimensionality reduction. The highlighted



TABLE I
MODEL’S ACCURACY WITH DIFFERENT PCA-BASED DIMENSIONALITY

REDUCTION METHODS.

Qty Decomposition Selection All Features

All 76 0.929 ± 0.041 0.932 ± 0.042 0.913 ± 0.048

Morph. 18 0.718 ± 0.072 0.702 ± 0.072 0.720 ± 0.077

Non-Morph. 34 0.885 ± 0.050 0.911 ± 0.042 0.917 ± 0.045

values (bold) indicate the best performances with statistical
significance (p-value ≤ 0.05). As can be noted, there was no
significant difference in performance for the morphological
set. Considering the non-morphological set, the selection-
based method had a performance similar to the model using
all features, and superior to the decomposition-based method.
For the mixed set (all descriptors), both evaluated methods
performed better than the approach using all resources, without
significant difference between them. Therefore PCA-based
feature selection is able to achieve a good performance, while
allowing us to keep the interpretability of the original features
unchanged.

B. Analysis of the Feature Importance

Aiming to provide insights about what kind of information
can be more relevant on the classification of histological
images of lymphoma, we present an analysis of the importance
of each descriptor used in the training of the model. We defined
the importance of a feature as the number of times it is used
in a tree node in the 100 executions of the experiments. In
each execution, the PCA-based selector algorithm was used to
choose the features according to the quantity established in the
previous section. If a feature is not selected, it’s importance
is 0 in that execution.

Fig. 3 shows the top-10 most important features for each
descriptor set, ranked according to their degree of impor-
tance. Morphological and non-morphological descriptors are
represented in different geometric shapes, so that it’s easy
to visualize which of them are being used in the set with
both types together (mixed set). Arrows shows the change of
position in ranking between features in their specific descriptor
type set and in the mixed set.

Analyzing the ranks, it is possible to notice that the in-
clusion of new descriptor changes the importance of each
feature. For example, the 4th most important feature on the
set with all descriptors (standard deviation of the average
pixel value on red channel) was placed at 37th when using
only the non-morphological set. Therefore, the addition of
morphological features increases the impact of this descriptor
in the decision. It’s also important to note that, despite the
morphological set results in the worst performance in the
classification, 2 of the top-10 most important characteristics
in the mixed set are morphological. If we consider the top-15
most important features of the mixed set, 6 are morphological,
indicating its contribution when used in combination with
non-morphological features. These results are evidence that

weaker descriptors (that initially has low discriminatory value)
can be used in conjunction with stronger ones, improving
the accuracy of the classifiers. This is specially useful on
the lymphoma problem, where morphological descriptors are
notably weaker, but advantageous to be used in explainable
models, as they are simpler and easier to understand than non-
morphological ones. The 6 morphological descriptors present
on the top-15 features of the mixed set are all related to the
area and the convex area of the cells nuclei, showing the
importance of this type of information when combined with
non-morphological features.

Fig. 4 shows the average importance level for different
groups of descriptors. In Fig. 4(a) is presented the mean im-
portance of non-morphological descriptors grouped according
to color channel. The red and blue channel’s descriptors are
selected more often and consequently has more importance
then those from the green and gray channels. However,
although there are differences between the color channels,
they all seem to contribute to the classification task. Figure
4(b) shows the mean importance of descriptors clustered with
respect to the morphological metrics, composed eight groups
of descriptors. Among them, soliditys’ group seems to be way
less relevant. Three descriptors of this group was selected
at least once in the training phase, but they appear only
2092 times in average, considering a total of 637,239 tree’s
nodes in all 100 executions. This type of information can be
taken in consideration when designing new descriptors for this
problem.

IV. CORRELATED WORKS

Comparison with previous approaches for the lymphoma
lesions classification can be somewhat difficult, since the
available data and the solution’s architecture varies a lot,
and this has a big impact on performance [26]. In general,
published studies report high accuracy (> 90%) when using
deep learning, but this technique often requires large datasets
(2,560 to 850,000 images) or pretrained models [26].

Table II shows the performance of several correlated works
that uses the same dataset employed in our research. The
column ”ACC” shows the accuracy of the method. The column
”Ref” shows the reference to each work. The number of
features and how it was extracted is in the columns ”Qty” and
”Features”, respectively. For comparison, we show the results
achieved from our method using a PCA-based selector and the
mixed set of descriptors. This configuration was chosen since
it achieved the best average accuracy.

All works presented in the table use more complex de-
scriptors demanding more expensive image processing and
hinder their model’s interpretation by doctors, who are not
familiar with this type of data. Furthermore, their methods are
generally black-box, or at least, not trivial to be understood by
non-specialists, such as SVM [6], [16], [25], neural networks
[20] and polynomial classifiers [13], where the information is
embedded in the model or requires an expensive training. In
the other hand, our methodology uses simpler and easier to ex-
tract descriptors, and employs the GBDT algorithm, providing



Fig. 3. Feature importance rank from the GBDT models trained using morphological, non-morphological or mixed set.

TABLE II
RELATED WORK BASED ON MULTICLASS CLASSIFIERS FOR THE LYMPHOMA DATABASE

Ref Features Qty Classifier ACC

[20] Features based on the percolation theory 15 DECORATE 0.92

[14] Color, Histogram, Texture, Wavelet and Binary Patterns information 50 C-RSPM 0.927

[6] histogram; LBP; gist; curvelet; color correlogram and moments; wavelets; 200 SVM ensemble 0.955

[25] IFV; LBP; HOG;GIST and CENTRIST 180 SVM 0.968

[13] Fractal geometry features 18 HPG4 0.914

[4] patch-level textural & statistic. feat.; color feat.; GoogLeNet pre-trained model 550 RF + CNN 0.991

[16] Stationary Wavelet Transform 34,236 SVM 1

Ours Morph. and non-Morph. features 76 RF 0.932

a fast training of classification DT-based ensembles. Despite
the simplicity of the methodology, our approach achieved an
accuracy close to several other recent methods in the literature.

V. CONCLUSIONS

In this work, we present a method for classifying NHL that
employs interpretable and easy to extract descriptors and a
classifier based on decision tree ensemble, where the knowl-
edge used in decision making is explicit in the tree nodes. This
features are important steps toward the creation of a method of
classification that favors the interpretation of data by human
specialists and, consequently, its use to aid the physician’s
diagnosis. Our approach proved to be efficient, returning good
performance in the task of multiclass classification of histolog-
ical images of patients with lymphomas. Experimental results
indicate that it is possible to obtain an accuracy similar to
related works from the selection of a subset of characteristics,
both for the complete set and for the one formed only by non-

morphological descriptors. In both scenarios, it was possible
to build classifiers based on DT ensemble that reached good
accuracy. The two best performances were achieved using
76 features from the mixed set (0.932 accuracy) and 34
descriptors of the non-morphological set (0.911 accuracy),
respectively. Both models using the gradient boosting decision
tree method as the classifier.

Although ensembles make it difficult to interpret the gen-
erated model, there are methods in the literature to create
interpretable models from them, for example, a technique
that transforms an ensemble of decision trees in a simpler
and interpretable model based on decision rules is presented
in [7]. Another approach is discussed in [12], where local
feature importance is used to explain tree ensemble models.
In future work, we intend to investigate such methods to
further improve the interpretability of our model. Based on
the descriptors analysis realized in present work, we see po-
tential in reformulating or creating other types of interpretable



Fig. 4. Quantity and mean importance of descriptors

descriptors, increasing the model’s accuracy while maintaining
its features easy to understand. Future works may also evaluate
the efficiency of this method on other histological classification
problems.
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