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Abstract—A fast diagnosis of kidney stones is crucial to
start the correct treatment, minimizing the risks of urinary
complications. Machine learning approaches are valuable for
an automatic diagnosis system for Kidney stones from computer
tomography (CT) exams. Recently, related studies achieved high
accuracy in detecting kidney stones using deep-learning neural
networks. However, their approaches were highly complex and
time-consuming. This paper proposes a method for automatically
detecting kidney stones on CT images using low-complexity
deep-learning techniques. We compared three models based on
Convolutional Neural Networks (CNN): 3-layered CNN (Conv3),
4-layered CNN (Conv4), and MobileNetV1. They were applied to
kidney stone detection using 1799 CT images divided into 80% for
training, 10% for validation, and 10% for testing. The proposed
model Conv4 obtained the best performance, achieving a test
accuracy of 97.2% and an Fl-score of 97.6%, with a training
time of 140 seconds.

Index Terms—XKidney Stone Detection, Deep Learning, Convo-
lutional Neural Network, MobileNetV1, Computed Tomography

I. INTRODUCTION

Kidney stone is a common disease with an increased
incidence rate in recent decades [/1]], that consists of the
aggregation of minerals in the urine, forming solid substances
located in the kidneys. These stones may lead to severe pain
and permanent damage to the patient’s kidneys [2]], [3]]. Fast
detection and early diagnosis of these stones are essential
to prevent complications and initiate an efficient treatment
strategy [4]].

Imaging tests are a common practice to diagnose patients
suspected of kidney stones. Computed tomography (CT) is
considered the gold standard for diagnosing stones because
of its speed, ease of image collection, the details of the
patient’s internal organs, and the possibility of diagnosis of
other abnormalities in the urinary system [5]. CT scans also
provide detailed information on the patient’s organs, allowing
manipulation and 3D visualization of the patient’s interior.

CT scans not only allow the detection of kidney stones but
also provide characteristics of the stone, such as its location,
size, density, and associated complications. Based on this
information, doctors decide the best treatment strategy for the
patient. However, this process can be time-consuming due to
the excessive number of tests needed to be done. Additionally,
errors in diagnosis can occur due to the lack of experience of

the doctor in charge and the characteristics variability of the
tests used.

Recently, the development of deep-learning neural network
techniques applied to computer vision has benefited the med-
ical field, achieving success in applications such as intelligent
diagnostic systems [6]] and medical image segmentation [7],
for example. These techniques are also applied to solve
problems of urology, such as the automatic diagnosis of
kidney stone disease from image examinations [8], analysis of
stones composition [9]], prediction of treatments and surgical
consequences [10].

Automatic detection of kidney stones on imaging exams
is a fundamental task in developing an intelligent kidney
stone diagnosis system. Usually, to perform the detection,
image scans are used as input to teach a learning model to
differentiate between scans of healthy patients and patients
who have stones in one or both of their kidneys. Recently,
other works have used machine learning techniques to detect
the presence of kidney stones in CT scans.

[11] used machine learning with neural networks to de-
tect kidney stones automatically in imaging exams. A CT
image is received and preprocessed using the Discrete Wavelet
Transform. [12]. Then, the method transforms the image into
a feature vector extracted using the GLCM (Gray-Level Co-
Occurrence Matrix) technique. An MLP (Multi-layer Percep-
tron) neural network [13]] is used to classify each extracted
feature vector, with samples with kidney stones considered
abnormal and samples without kidney stones considered nor-
mal. The method obtained a classification accuracy of 98.8%
on tests with 20 samples.

Two other papers also addresed an automatic system for
detecting kidney stones. [[14]] used GLCM for feature extrac-
tion and an MLP neural network for classification. However,
they pre-processed the input images with a Gaussian filter and
bilateral filtering to smooth the inputs. The results of the exper-
iments showed that the method obtained an accuracy of 96% in
the classification. [|15] applied a histogram equalization to the
CT images used as input, followed by edge enhancement using
convolutional filters. After pre-processing, the SVM (Support
Vector Machine) classifier [[16] was applied to differentiate
kidneys with stones from those without. The authors collected
156 CT images of kidneys to test the method, 78 of which
were of kidneys with stones presence, and 78 were of healthy



kidneys. The method correctly detected 154 of the 156 images,
achieving an accuracy of 98.71%.

Convolutional Neural Networks (CNN) became notable for
solving image classification problems, including applications
for medical images. [17] demonstrated the CNN application
for automatic kidney stone detection. The authors trained a
CNN model with 349 CT scans and tested on 88 scans,
obtaining a specificity of 1.0 and an F1-score of 0.783 on their
best model. [18] also used CNN for kidney stone detection,
obtaining an accuracy of 90%, a sensitivity of 80%, and a F1-
score of 89%. [19] explored CNN in different planes of CT
images. They classified the patients into three groups based
on the size of the stones, using a total of 2959 CT images to
train a CNN model, obtaining a test accuracy of 63%, 72%,
and 64% for each group of the coronal plane.

Other studies used approaches based on deep-learning, using
highly complex neural networks and a larger dataset. [20]]
proposed an automatic kidney stone detector using computed
tomography and deep-learning techniques. A total of 1799
2D images were acquired, of which 80% were used to train
a network XResNet-50 [21] and 20% to test the model.
The model obtained an accuracy of 96.82% and 95.76% of
sensitivity using 146 test samples. [22] proposed the use of
DarkNet19 [23|] for the same problem. The DarkNet19 was
used to reduce the feature generation time, and INCA (Iterative
Neighborhood Component Analysis) method [24]] was applied
to reduce the dimensionality of the feature vector. KNN (K-
Nearest Neighbours) technique [25] was used in conjunction
with a Bayesian optimizer to adjust its hyper-parameters for
classification. Using 10-fold and hold-out cross-validation, the
proposed method obtained an accuracy of 99.22% and 99.71%,
respectively. [26] proposed a new CNN (Convolutional Neural
Network) architecture that uses a convolution based on the
product of Kronecker [27]] to solve the problem of automatic
kidney stone detection. The method obtained an accuracy of
98.56% using a 10-fold cross-validation. [28]] also proposed an
CNN model for kidney stone detection that achieved 99.4%
of accuracy.

Despite the promising results for the automatic detection of
kidney stones in CT scans, the presented deep-learning tech-
niques are highly complex and require a high computational
cost, being time-consuming on the training step. This paper
investigates the use of low-cost CNN for the automatic detec-
tion of kidney stones, compared to state-of-the-art methods.
The potential contributions of this paper are as follows:

o Use of a low-cost CNN architecture for automatic kidney

stone detection.

o A direct comparison of different low-cost neural network

architectures, including MobileNetV 1.

« Evaluation of classification performance to other state-of-

the-art methods.

II. MATERIALS AND METHODS

The main steps of the proposed method is illustrated in Fig.
In the first step, the method reads the dataset of CT images
and applies a preprocessing step, which consists of resizing

and normalizing the intensity of the images. The preprocessed
images are used as input to train deep-learning neural network
models applied to kidney stone detection, classifying images
into two distinct classes: normal and kidney stone.

A. Dataset

A public dataset was used (https://github.com/yildirimoza
I/Kidney_stone_detection) [20]], and it consists of CT scans
without contrast from 463 patients between 18 and 80 years
old. Of the scans collected, 268 belonged to patients with
kidney stones and 165 to patients considered normal. In total,
1799 coronal CT images were collected, of which 790 are
samples with stones and 1009 are samples of normal patients.
The images were in 8-Bits PNG format. Fig. [2] shows samples
from the dataset used to train the models.

B. Preprocessing

Before the images were used to train the neural network
models, we applied a preprocessing step on all CT images
from the dataset. First, the images were resized to 224 x 224
to reduce the complexity of the networks to process the inputs.
Then, we normalized the intensity of each pixel to range their
values between the interval [0,1] to enhance the operation’s
precision that the neural network used during the training
process.

C. Deep-Learning Neural Network Architectures

Three distinct low-cost neural network architectures, with
less than 5 Million (M) trainable parameters, were used for
kidney stone detection based on CT images. Two architectures
are based on traditional CNN [29]. The first consists of 4
convolution layers 2D, followed by a max pooling layer of
2 x 2 size and using RelLu as activation function, and 2
dense layers for classification using 150 and 100 neurons,
respectively. This architecture is referred to in this paper as
Conv4 and is illustrated in Fig. [3| The second architecture is
similar to Conv4 but has only 3 convolution layers, named
Conv3. These architectures were chosen due to their lesser
quantity of parameters compared to architectures used in other
related papers. The last deep-learning architecture used was
MobileNetV1 [30] because it is considered a low-complexity
deep neural network applied for fast and mobile applications.
We trained three models of each architecture with the prepro-
cessed CT images from the dataset. The hyperparameters used
for training are shown in Table [I]

III. EXPERIMENTS AND RESULTS

The hardware used for training the networks included
an Intel Core™j5-12400F 2.50GHz, 16GB DDR4, and an
NVIDIA RTX 4070 12GB graphics card. For implementation,
we used the programming language Python and the libraries
TensorFlow, Keras and OpenCV.

The dataset, consisting of 1799 CT images, was separated
into three groups: training (80%), validation (10%), and testing
(10%). After that, we performed two validation strategies: 10-
fold cross-validation, to generalize the error of the networks
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Fig. 1: The steps of the method proposed.

(d)

Fig. 2: Coronal CT scans of patients with kidney stones - (a)
and (b) - and without kidney stones - (c) and (d) -

TABLE I: Hyperparameters used for training the deep-learning
architectures.

Hyperparameters Details
Epochs 150

Batch size 16

Learning rate 0.01
Optimizer Adam
Activation function = ReLU

Loss function Cross-entropy
Dropout 0.25

on unseen data during the training step, and test validation,
to evaluate the performance of the best models of each of the
three architectures. Thus, we trained the models Conv3, Conv4,
and MobileNetVI with 1590 images (training and validation)
and tested them with 209 images.

For each cross-validation fold, we evaluated the mean and
the standard deviation of the following classification metrics:
accuracy, precision, sensitivity, specificity, and F1-Score. The
results of the 10-fold cross-validation are presented in Table
[ Overall, we observed that the proposed architecture Conv4
achieved higher values on almost every metric evaluated,
except for the sensitivity, where the MobileNetV achieved the
highest mean value of 99.3%, with a difference of 0.4% from
the sensitivity of Conv4. Also, the Conv4 model obtained a
value above 96% on all metrics evaluated, indicating a notable
performance on kidney stone detection based on CT images.

On the test samples, we evaluated the same metrics of the
10-fold cross-validation, with the results of this experiment
presented in Table [l The model Conv4 remained the best
of the three models tested, achieving values above 96% on
all metrics again, and obtained a test accuracy of 97.2% and
F1-Score of 97.6%. Observing the training time, the Conv3
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Fig. 3: Architecture of the network Conv4.

model was only 2 seconds faster than Conv4 but achieved
lower results, while the Conv4 took 340 seconds less than the
MobileNetVI to complete the training process, achieving the
highest results.

IV. DISCUSSION

We compared three deep-learning neural network archi-
tectures for automatic kidney stone detection from coronal
CT images. The trained models are based on CNN and are
considered low-cost neural network architectures since they
have less than 5M trainable parameters. The best model was
the proposed Conv4, which achieved a 10-fold cross-validation
mean accuracy of 97.9%, test accuracy of 97.2%, and 140
seconds of training time.

Other studies also proposed deep-learning-based methods
for kidney stone detection on the same dataset used in this
work. We compared the classification metrics of our best-
performing method with similar papers in the literature [20],
[26]], as shown in Table [[V] Our method performed better than
the method proposed by [20], the paper that introduced the
dataset used, and achieved lower values compared to [26].

In addition to classification metrics, we analyzed the train-
able parameters and training time in seconds of each method
to compare their complexity. Table [V] shows this analysis.
Despite our method achieving lower classification values than
[26], it resulted in a training time of 140 seconds, being
2982 seconds faster. The processing time may be relative

to the hardware used, however, the amount of parameters in
our method is still less than a half compared to the Deep
Kronecker Neural Network. Furthermore, according to ,
Kronecker convolution is more computationally expensive than
traditional convolution. Also, compared to XResNet50, our
method trained faster and had 23x less parameters. Other
papers used the same dataset, but we did not consider them
in our analysis because they did not specify the complexity of
their methods.

The proposed neural network model demonstrated high
classification performance, closer to other methods in the
related literature, with a faster training time. According to the
American Urological Association, the estimated sensitivity and
specificity of clinician diagnosis of kidney stones on CT exams
are ~ 95% and ~ 98%, respectively . Compared to the re-
sults obtained by our method, the sensitivity obtained is 1.2%
higher and the specificity, 0.7%. This tiny difference indicates
that the architecture proposed may aid as a clinical diagnosis
tool and help to reduce the time elapsed for radiologists to
detect kidney stones in CT exams.

Our paper has some limitations. The CNN architecture
is relatively simple, with only 4 convolution layers and 2
dense layers, and was tested with only 180 samples from
the dataset, besides the 10-fold cross-validation. These fac-
tors compromise the method’s robustness, as no tests were
made on other datasets. Furthermore, although the proposed
architecture has low complexity, for applications that require



TABLE II: Results of the 10-fold cross-validation.

Accuracy Precision Sensitivity Specificity F1-Score

Conv3 94.4+1.9% | 93.54+2.4% | 96.6 £1.4% | 91.7+2.8% | 95.0 £ 1.8%

Conv4 97.9+1.0% | 97.4+1.3% | 98.9+1.2% | 96.6 =1.7% | 98.1 & 0.9%

MobileNetVI | 96.7+2.3% | 95.1+3.2% | 99.3+£1.1% | 93.4+4.5% | 97.1 +2.0%

TABLE III: Results of the test validation.

Accuracy | Precision | Sensitivity | Specificity | F1-Score | Training time (s)
Conv3 91.7% 90.9% 95.2% 86.7% 93.0% 138
Conv4 97.2% 99.0% 96.2% 98.7 % 97.6 % 140
MobileNetV1 96.1% 97.1% 96.2 % 96.0% 96.0% 480

TABLE IV: Classification metrics comparison with similar works.

Paper Method Accuracy | Precision | Sensitivity | Specificity | F1-Score
(20] XresNet50 96.8% 97.5% 95.7% 97.8% 96.4%
[26] Deep Kronecker Neural Network 98.5% 99.1% 98.1% 99.0 % 98.6 %

This paper CNN (4 Convolution Layers) 97.2% 99.0% 96.2% 98.7% 97.6%

TABLE V: Complexity comparison with similar works.

Paper Parameters | Time (s)
[20] ~23M 1920
[26] ~2.TM 3122

This paper ~1M 140

greater accuracy, high-cost techniques that result in a more
accurate classification are preferable. We intend to expand
the dataset used, adding samples with varying characteristics
from different CT scanners. Besides the detection of kidney
stones in CT exams, we plan to work in the future with
other applications related to urology, extending our study to
applications in organs of the urinary system other than the
kidney and developing applications related to urinary stone
segmentation, stone location and size estimation, and path
planning of urological invasive surgeries for urinary stone
treatment.

V. CONCLUSION

We investigated and compared three deep-learning neural
network architectures for kidney stone detection on coronal CT
images. The best model was the proposed Conv4, obtaining a
test accuracy of 97.2%, a sensitivity of 96.2%, and an F1-score
of 97.6%. Although our method was not the best-performing
model compared with the related literature, the proposed
architecture is lower in complexity, with approximately 1M
trainable parameters and a training time of 140 seconds. De-
spite the results obtained so far, we plan to improve the model
developed, exploring different planes of CT images on a larger
dataset to train the deep-learning model developed. Also, we
intend to extend our studies to other conditions related to the
urinary system, exploring kidney stone segmentation, stone

volume and composition analysis, and path planning of kidney
stone removal surgeries.
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