Classifying pests in crop images using deep learning
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Abstract—Pest control is essential for agricultural success,
and rapid and accurate pest identification through computer
vision and machine learning enables effective pest management.
This paper proposes an approach to evaluate nine customiza-
tions of the IP102 dataset. Considering the extensive range of
sub-datasets, a comparative analysis was conducted between
different deep learning models, including ResNet and AlexNet
Convolutional Neural Networks (CNNs), and Vision Transform
(ViT). We carried out tests considering training from scratch
and fine-tuning. Our experimental results demonstrate that ViT
outperforms CNN models for the problem investigated and
benefits significantly from data augmentation strategies. Our
study provides valuable insights for efficient pest classification,
paving the way for future research and advancements in precision
agriculture.

Index Terms—computer vision, agriculture, pest classification,
deep learning, data augmentation, cutmix

I. INTRODUCTION

Agriculture is one of the most critical sectors in the global
economy, and several countries have the largest share of their
wealth in agriculture. Brazil is a significant world agricultural
producer [1]. The South American country is recognized
worldwide for its favorable geographical location, climate, and
considerable government investment in encouraging agricul-
ture. According to official data from the Brazilian Institute
of Geography and Statistics (IBGE), Brazil’s Gross Domestic
Product grew by 1.9 % in the first quarter of 2023 compared
to the previous quarter. Most of this growth is due to the
agricultural sector, at a rate of 21.6%. According to the same
institute, several crops show growth trends for the year, such
as soybean (24.7%), corn (8.8%), tobacco (3%), and cassava
(2.1%) [2].

Pest control is an important challenge in agricultural pro-
duction. Late actions to control pest infestation may lead to
several losses in production or even a reduction in product
quality. Because of the large number of pests that may harm
production, producers may have difficulties identifying rapidly
and precisely the type of infestation that affects this culture.
In this context, computer vision and machine learning tools
can provide valuable solutions for improving the precision and
velocity of pest detection in the field [3].

This work aims to analyze deep learning models and
training strategies to solve the problem of classifying pests,
more specifically insect pests, in agricultural images. We tested

three deep learning classification models, two Convolutional
Neural Network models, AlexNet and ResNet-50, and one
attention-based model, Vision Transformer. The models are
trained using combinations of data augmentation strategies,
including CutMix data augmentation, and the performance was
compared considering different sets of classes of the IP102
dataset.

Our results provide valuable insights into the capacity of
deep learning models to identify and classify crop pests using
digital images. The results and conclusions may be used
to support future applications for the rapid identification of
insects in plantations using handheld imaging devices, such
as smartphones, imaging devices mounted in unmanned aerial
vehicles (UAVs), or autonomous robots [4]-[6]. In addition,
computer vision techniques for detecting and classifying pests
can lead to more efficient use of pesticides, faster and more
adequate responses to attacks by specific insects, and reduced
crop damage and environmental impact.

This paper is organized as follows. After this introduction,
we analyzed some related work to present a big picture of the
state-of-the-art pest classification through computer vision in
Section II. In Section III, we present the proposed method to
analyze strategies to train and test deep learning models to
classify pests in agricultural images. The results obtained by
running our experiments over the IP102 dataset are presented
in Section IV, and we conclude the paper in Section V.

II. RELATED WORK

Besides automatic systems to detect and classify pests and
insects in crops, recent advances in machine learning and
computer vision enable potent tools to improve these systems.
This section provides an overview of the current state-of-the-
art works using computer vision to solve this problem.

Ren et al. [7] proposed the Feature Reuse Residual Network
(RF-ResNet) for classifying pests in images. The network
was evaluated with the IP102 dataset. Ung et al. [8] applied
multiple models based on CNN and attention mechanisms. The
models were also evaluated over the IP102 dataset, achieving
74.13% accuracy.

Ullah et al. [9] developed a deep learning model to clas-
sify pests in crops named DeepPestNet. The model consists
of eleven trainable layers, achieving 100% accuracy in 10
classes of pests. Li et al. [10] proposed the SAFFPest that



implements a deformable convolution to detect pests in rice
plants. Nanni et al. [11] developed approaches based on CNNs
for pest identification. The methods are inspired by different
architectures (e.g., EfficientNet B0, ResNet-50, GooglLeNet,
ShuffleNet, MobileNet V2, and DenseNet-201), with different
variations of the Adam optimizer, with the best performing
one achieving an accuracy of 95.52% on the Deng dataset,
74.11% on the IP102 dataset, and 99.81% on Xie2.

An et al. [12] presented an approach to the problem of insect
recognition based on the fusion of complementary features
from multiple perspectives. Using the ResNet and Vision
Transformer models, the study showed considerable ability
to identify subtle differences in insect species, achieving
significant results in the IP102 dataset. Zhang et al. [13] used
the YOLOS combined with a lightweight module inspired by
MobileNetV3, named C3M.

Zheng et al. [5] created the Pest Classification Network (PC-
Net), an approach that utilizes the EfficientNet V2 embedded
attention mechanism to identify various insect pests, particu-
larly in their larval stage. Guo et al. [14] proposed a multi-label
classification method to address the class imbalance issue on
the IP102 dataset and evaluated the Swin Transformer.

Although the previously mentioned works focused on pest
classification using computer vision, most of them have not
dealt adequately with the problem of class imbalance and
have not investigated the potential of different data augmen-
tation strategies, including CutMix. To fill this gap, our paper
proposes an approach to select the more relevant classes and
evaluate different deep learning models.

III. MATERIAL AND METHODS
A. Dataset

We used the IP102 dataset [15] to perform experiments and
evaluate our training strategies. The IP102! contains 75,222
images organized in 102 classes, and it is provided with a set
of images designed for classification tasks and another one
for detection tasks. In this work, we used the classification
task dataset. The classes of the IP102 dataset are related to
insect pests in diverse agricultural crops. These classes are
organized hierarchically, and the dataset is divided into two
large groups in accordance with the crop classification: field
crop (FC) and economic crop (EC). Each crop group contains
five and three crops, named super-classes, respectively. Each
super-class contains a number of classes representing pests that
affect that type of crop. Also, the IP102 is provided with non-
overlapping training, validation, and test sets, with proportions
60%, 10%, and 30%, respectively.

The IP102 dataset presents challenging features, including
a very large number of highly imbalanced classes. The classes
contain images from very different sources, such as photos and
drawings, some of them with watermarks. Also, the images
present a high variety of poses and zoom levels, and some
insect species are imaged in different growing stages, such as
eggs, larvae, pupas, and adult insects. These features make the

Thttps://github.com/xpwu95/1P102

IP102 a challenging and, at the same time, valuable resource to
study the capacity of building machine learning-based models
to automatically classify these menaces.

B. Architectures

For this work, we trained three deep learning architectures,
two CNNs, AlexNet and ResNet-50, and one attention-based
architecture, Vision Transformer (ViT).

AlexNet [16] stands as one of the pioneering deep learning
architectures that gained widespread recognition. This neural
network is characterized by its composition of multiple convo-
lutional layers followed by fully connected layers. It achieved
victory in the 2012 ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). Due to its historical significance and
simplicity when compared with newer deep learning models,
AlexNet has been selected for this study.

Residual Network (ResNet) [17] is a CNN architecture
distinguished by its innovative concept of residual connections.
These connections enable the gradients to propagate effectively
through numerous layers without diminishing significantly.
This approach addresses the gradient vanishing problem en-
countered in very deep networks.

Vision Transformer (ViT) [18] is not a CNN model but a
transformer architecture applied to image classification. ViT
divides the input image into fixed patches, linearizes them,
and processes them sequentially, resembling the operation of
transformers commonly used in natural language processing
tasks. ViT was incorporated into the project due to its promis-
ing ability to capture long-range dependencies in images and
its widespread popularity and superior performance across
various computer vision benchmarks.

C. Data augmentation

Data augmentation is a regularization technique that consists
of artificially augmenting the number of images available to
train a model based on random transformations and perturba-
tions over the original training images. Data augmentation can
improve the capability of generalization of the models, and it
is useful to deal with small datasets [19].

Besides more traditional data augmentation transformations,
we employed and evaluated the impact of the CutMix data
augmentation [20]. CutMix consists of combining information
from two different images. During the training, patches of
images are cut and pasted into other images in the same batch.
The labels are also combined proportionally to the image
regions. For example, if a patch is extracted from 25% of
a source image and pasted in a destination image, the label
of the image presented to the input layer is 75% of the label
of destine images and 25% of the label of the source image.
Figure 1 illustrates the CutMix applied over a batch of four
images.

D. Experiment design

Before starting the experimental setup, we critically ana-
lyzed the dataset and observed that the dataset was heavily
unbalanced. We avoid the use of classes with a small number
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Fig. 1. Examples of the CutMix data-augmentation strategy applied over a
batch with size 4.

of samples. As the dataset is hierarchically organized, we
selected only the ten and twenty classes with more images
in each crop group, EC and FC, generating the datasets EC-
10, FC-10, EC-20, and FC-20. We also generated two datasets
with the ten and twenty classes with more images considering
the whole dataset, named Full-10 and Full-20. Figure 2(a)
illustrates the selection of the ten and twenty classes for Full-
10 and Full-20 through a histogram of the number of images in
each class. Figures 2(c) illustrate the classes selected to be part
of the datasets EC-10 and EC-20, and Figure 2(b) illustrates
the classes selected to be part of datasets EC-10 and FC-20.
We fine-tuned three deep-learning classification models,
AlexNet, ResNet-50, and ViT, using the Stochastic Gradient
Descending optimizer (SGD) with a learning rate of 0.0001
and momentum of 0.9. During the training, the learning rate
was decreased by a strategy named reduce learning rate on
plateau, where we decreased the current learning rate by a
factor of 0.1 when the validation loss did not improve for 10
epochs. The training process is stopped early if the validation
loss does not decrease for 20 consecutive epochs or the training
reaches a maximum of 200 epochs. We used a batch size
of 256 for AlexNet, 64 for Resnet-50, and 32 for ViT. The
batch sizes for ResNet-50 and ViT are smaller because the
numbers of trainable parameters are higher than AlexNet, and
we used the maximum batch size that the models fit in the
GPU memory. The pre-trained models were obtained from the
torchvision library, and we kept all model layers unfroze, i.e.,
all network parameters were fine-tuned during the training.
Each model was trained considering three data augmenta-
tion strategies: a) no data augmentation, b) data augmentation
without CutMix, and c¢) data augmentation strategies with the
CutMix. For the training strategy without data augmentation,
the images were randomly cropped and resized to 224 x
224 pixels (random resized crop transformation), followed by
normalization considering the mean and standard deviation
of the ImageNet dataset, because the models that we fine-

tuned were pre-trained with the ImageNet dataset. This image
transformation strategy was used for the validation and test
sets across all strategies and experiments. When we trained
the models with data augmentation, images from the train
set were submitted to a random resized crop, followed by a
random horizontal flip, random vertical flip, random rotation
(30°), random sharpness adjustment, random auto contrast
and normalization using the mean and standard deviation of
the ImageNet dataset. Finally, when we trained their models
with CutMix, we applied all transformations considered in the
previous strategy plus the CutMix data augmentation strategy.

E. Model evaluation

We evaluate the trained models over the validation and test
sets using accuracy, precision, recall, and f1-score metrics. By
comparing the metrics obtained with the validation and testing
sets, it is possible to evaluate the capability of the models to
extrapolate the knowledge learned to unseen samples.

Accuracy, precision, recall and fl-score are defined by
Equations 1, 2, 3, and 4:

TP+ TN

ACCUTaCy:TP+TN+FP+FN (1)
TP
Precision = ——— 2
recision TP+ FP 2)
TP
Recall = m (3)
2xTP
F1l-score = - 4)

2xTP+FP+FN

where TP, TN, FP, and FN are true positive, true negative,
false positive, and false negative samples, respectively.

F. Computational resources

Experiments were executed on three PC computers with i5
3.0 GHz processors and 32 GB of RAM. Two of them are
equipped with GPUs NVIDIA 1080 Ti with 11 GB of memory
and the other one with an NVIDIA Titan Xp with 12 GB of
RAM. The development environment is based on Python 3.9
programming language, PyTorch 2.0.1, with CUDA 11.7. The
libraries torchvision 0.15.2, scikit-learn 1.3, and Matplotlib
3.7.2 were also used.

IV. RESULTS AND DISCUSSION

Table I presents the results obtained over the validation set
for the AlexNet, ResNet-50, and ViT models. The results are
computed regarding accuracy, precision, recall, and fl-score.
The tables also show the number of epochs each model was
trained (column Epochs), considering the training was stopped
according to an early stopping strategy based on the validation
loss, as described in Section III-D.

Furthermore, we used the trained models to predict the
classes of images from a new, unseen test set. We consider
these predictions to evaluate the capacity of our model to
extrapolate the knowledge learned during the training. Table
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Fig. 2. Class selection for the entire dataset (a), the FC crop (b), and the EC crop type (c). Each figure shows the ten and twenty classes with more samples

within.

AlexNet. We may observe a slight improvement in ResNet-
50 for the EC-20 and Full-20 datasets when trained with DA

without CutMix.

IT shows the accuracy, precision, recall, and fl-score values

obtained when we submitted the test set images to our models.

In both tables, we marked in bold, for each experiment, the
best result across the three training strategies. We also marked
in italics the best values across the three trained architectures.

Unlike AlexNet and ResNet-50, ViT performed well with
data-augmentation strategies, mainly with data-augmentation

methods combined with CutMix. For FC-10, Full-

10, and EC-

and CutMix. For Full-20, training with data augmentation with

20, ViT performed better when trained with data augmentation
and without CutMix resulted in better evaluation metrics. For

with data augmentation but without

E

Considering the three training strategies, without data aug-

mentation (without DA)
CutMix (DA), and with data augmentation combined with

CutMix (DA + CutMix), our results demonstrated that AlexNet
is not suitable to be trained with data augmentation strategies.
For all datasets (FC-10, FC-20, EC-10, EC-20, Full-10, and

Full-20), AlexNet evaluation values tend to be worse when

EC-10, the model was trained with data augmentation without
CutMix, and only for FC-20, the better model was trained

without any data augmentation.

Figure 3 illustrates the test accuracy for each model con-
sidering each one of the training strategies. In the figure, one
can visualize the impact of the data augmentation strategies

on each model and compare them among the models. As

trained with DA and even worse with DA and CutMix com-
bined (DA + CutMix). ResNet-50 also did not perform well

when trained with data augmentation strategies. However, the
differences in the evaluation metrics were smaller than in



TABLE I
EVALUATION OVER THE VALIDATION SET FOR ALEXNET, RESNET-50, AND VIT.

VAL. Without DA DA DA + CutMix
Arch. | Dataset | Classes | Acc. Prec. Rec. F1 Epochs | Acc. Prec. Rec. F1 Epochs | Ace. Prec. Rec. F1 Epochs
FC 10 0.6867 | 0.6660 | 0.6483 | 0.6530 69 0.6584 | 0.6248 | 0.6213 | 0.6143 100 0.6166 | 0.5859 | 0.5671 | 0.5546 104
- 20 0.6162 | 0.5826 | 0.5708 | 0.5727 108 0.5545 | 0.5208 | 0.4976 | 0.4969 116 0.5103 | 0.4756 | 0.4479 | 0.4440 129
% EC 10 0.7622 | 0.7416 | 0.7084 | 0.7231 175 0.7197 | 0.6899 [ 0.6201 | 0.6470 89 0.7035 | 0.6931 | 0.5764 | 0.6160 136
2 20 0.7055 | 0.6575 | 0.6197 | 0.6359 97 0.6881 | 0.6297 | 0.5834 | 0.6004 130 0.6690 | 0.6183 | 0.5395 | 0.5679 181
< Full 10 0.7182 | 0.7022 | 0.6796 | 0.6388 75 0.6803 | 0.6557 | 0.6452 | 0.6452 77 0.6458 | 0.6264 | 0.6083 | 0.6081 106
20 0.6551 | 0.6271 | 0.5994 | 0.6095 120 0.6039 | 0.5597 | 0.5368 | 0.5392 106 0.5691 | 0.5351 | 0.4936 | 0.4992 143
FC 10 0.8127 | 0.7934 | 0.7836 | 0.7877 106 0.8204 | 0.7988 | 0.7811 | 0.7847 107 0.7892 | 0.7685 | 0.7489 | 0.7498 98
=) 20 0.7288 | 0.7008 | 0.6895 | 0.6938 124 0.6985 | 0.6710 | 0.6536 | 0.6570 66 0.7214 | 0.6964 | 0.6790 | 0.6826 173
g EC 10 0.8715 | 0.8464 | 0.8404 | 0.8427 60 0.8686 | 0.8647 | 0.8228 | 0.8400 o8 0.8473 | 0.8361 | 0.7943 | 0.8109 100
Z 20 0.8310 | 0.7946 | 0.7566 | 0.7721 68 0.8428 | 0.8022 | 0.7852 | 0.7913 144 0.8015 | 0.7723 | 0.7054 | 0.7316 83
2 Full 10 0.8569 | 0.8461 | 0.8362 | 0.8404 84 0.8546 | 0.8396 | 0.8299 | 0.8340 100 0.8489 | 0.8319 | 0.8220 | 0.8254 142
20 0.7993 | 0.7728 | 0.7558 | 0.7624 86 0.7973 | 0.7652 | 0.7482 | 0.7538 148 0.7866 | 0.7654 | 0.7350 | 0.7450 114
FC 10 0.8257 | 0.8031 | 0.7966 | 0.7987 53 0.8233 | 0.8002 | 0.7953 | 0.7968 70 0.8345 | 0.8118 | 0.8052 | 0.8071 85
20 0.7423 | 0.7125 | 0.7064 0.7081 58 0.7466 | 0.7196 | 0.7133 | 0.7151 64 0.7641 | 0.7381 | 0.7275 | 0.7304 118
= EC 10 0.8843 | 0.8725 | 0.8451 | 0.8573 50 0.8954 | 0.8901 | 0.8586 | 0.8725 61 0.8881 | 0.8770 | 0.8557 | 0.8636 88
> 20 0.8665 | 0.8374 | 0.8181 | 0.8265 63 0.8432 | 0.8067 | 0.7861 | 0.7949 54 0.8682 | 0.8470 | 0.8306 | 0.8373 145
Full 10 0.8619 | 0.8452 | 0.8400 | 0.8411 39 0.8773 | 0.8650 | 0.8573 | 0.8607 72 0.8884 | 0.8779 | 0.8667 0.8720 140
20 0.8061 | 0.7760 | 0.7622 | 0.7677 82 0.8136 | 0.7798 | 0.7703 | 0.7738 95 0.8173 | 0.7903 | 0.7780 | 0.7822 136
TABLE II
EVALUATION OVER THE TEST SET FOR ALEXNET, RESNET-50, AND VIT.
TEST Without DA DA DA + CutMix
Arch. | Dataset | Classes Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1
EC 10 0.6948 | 0.6649 | 0.6507 | 0.6519 | 0.6586 | 0.6257 | 0.6147 | 0.6094 | 0.6151 0.5795 | 0.5632 | 0.5502
= 20 0.6087 | 0.5781 | 0.5598 | 0.5647 | 0.5687 | 0.5323 | 0.5161 0.5143 | 0.5117 | 0.4719 | 0.4462 | 0.4421
é EC 10 0.7819 | 0.7475 | 0.7330 | 0.7396 | 0.7238 | 0.6889 | 0.6343 | 0.6548 | 0.7089 | 0.6846 | 0.5999 | 0.6292
o 20 0.7145 | 0.6629 | 0.6269 | 0.6422 | 0.6866 | 0.6308 | 0.5854 | 0.6013 | 0.6574 | 0.6112 | 0.5291 | 0.5582
< Full 10 0.7241 | 0.7121 | 0.6959 | 0.7026 | 0.6939 | 0.6732 | 0.6637 | 0.6641 0.6606 | 0.6447 | 0.6272 | 0.6277
20 0.6568 | 0.6196 | 0.5997 | 0.6065 | 0.6117 | 0.5632 | 0.5480 | 0.5471 0.5783 | 0.5375 | 0.5044 | 0.5065
FC 10 0.8165 | 0.7947 | 0.7826 | 0.7874 | 0.8024 | 0.7784 | 0.7637 | 0.7680 | 0.7773 | 0.7480 | 0.7323 | 0.7335
2 20 0.7332 | 0.7073 | 0.6976 | 0.7011 | 0.7097 | 0.6791 | 0.6650 | 0.6681 | 0.7223 | 0.6961 | 0.6830 | 0.6860
< EC 10 0.8760 | 0.8537 | 0.8493 | 0.8510 | 0.8695 | 0.8509 | 0.8291 | 0.8383 | 0.8482 | 0.8285 | 0.8101 | 0.8165
Z 20 0.8393 | 0.8036 | 0.7801 | 0.7901 | 0.8505 | 0.8066 | 0.7997 | 0.8021 | 0.8102 | 0.7676 | 0.7283 | 0.7437
gz Full 10 0.8623 | 0.8516 | 0.8429 | 0.8463 | 0.8598 | 0.8451 | 0.8410 | 0.8426 | 0.8572 | 0.8466 | 0.8402 | 0.8423
20 0.7992 | 0.7680 | 0.7575 | 0.7612 | 0.8033 | 0.7693 | 0.7591 | 0.7616 | 0.7788 | 0.7514 | 0.7284 | 0.7360
FC 10 0.8306 | 0.8066 | 0.7990 | 0.8022 | 0.8257 | 0.7995 | 0.7964 | 0.7970 | 0.8315 | 0.8075 | 0.8009 | 0.8031
20 0.7617 | 0.7343 | 0.7295 | 0.7313 | 0.7555 | 0.7247 | 0.7248 | 0.7242 | 0.7547 | 0.7272 | 0.7206 | 0.7222
e EC 10 0.8878 | 0.8763 | 0.8601 | 0.8679 | 0.8904 | 0.8771 | 0.8611 | 0.8679 | 0.8844 | 0.8600 | 0.8590 | 0.8588
> 20 0.8594 | 0.8253 | 0.8102 | 0.8171 | 0.8588 | 0.8304 | 0.8149 | 0.8217 | 0.8702 | 0.8406 | 0.8274 | 0.8334
Full 10 0.8702 | 0.8562 | 0.8523 | 0.8527 | 0.8787 | 0.8692 | 0.8604 | 0.8643 | 0.8916 | 0.8813 | 0.8753 | 0.8779
20 0.8164 | 0.7851 | 0.7747 | 0.7793 | 0.8242 | 0.7919 | 0.7860 | 0.7884 | 0.8242 | 0.7944 | 0.7872 | 0.7899

discussed before, ViT is the only model that takes advantage
of the data augmentation strategies, including the one we
combined with data augmentation and CutMin. Besides, ViT
is the best architecture for all datasets, followed closely by
ResNet-50 with more distant values for the models trained
with data augmentation strategies. AlexNet has the worst
performance in every scenario, with values very distant from
the other networks.

V. CONCLUSIONS

In this work, we performed an extensive analysis of different
deep-learning models applied to classify insect pests in crop
images. By considering different training strategies to train
each deep learning architecture, we may find how each archi-
tecture behaves for that strategy. As we deal with a complex
and highly unbalanced dataset with a large number of classes,
we selected only the ten and twenty classes with more images.
We also separated the full IP102 dataset into two groups in
accordance with their crop classification, also considering only
the ten and twenty classes with more images.

Our results lead us to conclude that transformer-based
architectures performed better for this kind of problem than
the CNN-based solutions. Also, the ViT models take more
advantage of data augmentation strategies than the CNN coun-
terparts. This work and the results bring important insights for
building more efficient and accurate models that can be used
in real applications for crop management. Systems that rapidly
return an accurate classification of pests found in plantations
will play an important role in agriculture production. Enabling
fast responses and minimizing risks even without the presence
of an expert.

Future works include evaluation of other deep learning-
based architectures, looking for more adequate data augmen-
tation strategies for each architecture. Training and evaluating
strategies that work well with a large set of pests, considering
even training and predictions with other datasets.
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Fig. 3. Line charts presenting the accuracies of the models when trained with different data augmentation strategies. The first row is for the models trained
with 10 classes, and the last row is for the models trained with 20 classes. The first column is for the FC crop classification, the second column is for the
EC, and the third column is for the combination of FC and EC crop classifications.
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