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Abstract—Pest control is essential for agricultural success,
and rapid and accurate pest identification through computer
vision and machine learning enables effective pest management.
This paper proposes an approach to evaluate nine customiza-
tions of the IP102 dataset. Considering the extensive range of
sub-datasets, a comparative analysis was conducted between
different deep learning models, including ResNet and AlexNet
Convolutional Neural Networks (CNNs), and Vision Transform
(ViT). We carried out tests considering training from scratch
and fine-tuning. Our experimental results demonstrate that ViT
outperforms CNN models for the problem investigated and
benefits significantly from data augmentation strategies. Our
study provides valuable insights for efficient pest classification,
paving the way for future research and advancements in precision
agriculture.

Index Terms—computer vision, agriculture, pest classification,
deep learning, data augmentation, cutmix

I. INTRODUCTION

Agriculture is one of the most critical sectors in the global
economy, and several countries have the largest share of their
wealth in agriculture. Brazil is a significant world agricultural
producer [1]. The South American country is recognized
worldwide for its favorable geographical location, climate, and
considerable government investment in encouraging agricul-
ture. According to official data from the Brazilian Institute
of Geography and Statistics (IBGE), Brazil’s Gross Domestic
Product grew by 1.9 % in the first quarter of 2023 compared
to the previous quarter. Most of this growth is due to the
agricultural sector, at a rate of 21.6%. According to the same
institute, several crops show growth trends for the year, such
as soybean (24.7%), corn (8.8%), tobacco (3%), and cassava
(2.1%) [2].

Pest control is an important challenge in agricultural pro-
duction. Late actions to control pest infestation may lead to
several losses in production or even a reduction in product
quality. Because of the large number of pests that may harm
production, producers may have difficulties identifying rapidly
and precisely the type of infestation that affects this culture.
In this context, computer vision and machine learning tools
can provide valuable solutions for improving the precision and
velocity of pest detection in the field [3].

This work aims to analyze deep learning models and
training strategies to solve the problem of classifying pests,
more specifically insect pests, in agricultural images. We tested

three deep learning classification models, two Convolutional
Neural Network models, AlexNet and ResNet-50, and one
attention-based model, Vision Transformer. The models are
trained using combinations of data augmentation strategies,
including CutMix data augmentation, and the performance was
compared considering different sets of classes of the IP102
dataset.

Our results provide valuable insights into the capacity of
deep learning models to identify and classify crop pests using
digital images. The results and conclusions may be used
to support future applications for the rapid identification of
insects in plantations using handheld imaging devices, such
as smartphones, imaging devices mounted in unmanned aerial
vehicles (UAVs), or autonomous robots [4]–[6]. In addition,
computer vision techniques for detecting and classifying pests
can lead to more efficient use of pesticides, faster and more
adequate responses to attacks by specific insects, and reduced
crop damage and environmental impact.

This paper is organized as follows. After this introduction,
we analyzed some related work to present a big picture of the
state-of-the-art pest classification through computer vision in
Section II. In Section III, we present the proposed method to
analyze strategies to train and test deep learning models to
classify pests in agricultural images. The results obtained by
running our experiments over the IP102 dataset are presented
in Section IV, and we conclude the paper in Section V.

II. RELATED WORK

Besides automatic systems to detect and classify pests and
insects in crops, recent advances in machine learning and
computer vision enable potent tools to improve these systems.
This section provides an overview of the current state-of-the-
art works using computer vision to solve this problem.

Ren et al. [7] proposed the Feature Reuse Residual Network
(RF-ResNet) for classifying pests in images. The network
was evaluated with the IP102 dataset. Ung et al. [8] applied
multiple models based on CNN and attention mechanisms. The
models were also evaluated over the IP102 dataset, achieving
74.13% accuracy.

Ullah et al. [9] developed a deep learning model to clas-
sify pests in crops named DeepPestNet. The model consists
of eleven trainable layers, achieving 100% accuracy in 10
classes of pests. Li et al. [10] proposed the SAFFPest that



implements a deformable convolution to detect pests in rice
plants. Nanni et al. [11] developed approaches based on CNNs
for pest identification. The methods are inspired by different
architectures (e.g., EfficientNet B0, ResNet-50, GoogLeNet,
ShuffleNet, MobileNet V2, and DenseNet-201), with different
variations of the Adam optimizer, with the best performing
one achieving an accuracy of 95.52% on the Deng dataset,
74.11% on the IP102 dataset, and 99.81% on Xie2.

An et al. [12] presented an approach to the problem of insect
recognition based on the fusion of complementary features
from multiple perspectives. Using the ResNet and Vision
Transformer models, the study showed considerable ability
to identify subtle differences in insect species, achieving
significant results in the IP102 dataset. Zhang et al. [13] used
the YOLO5 combined with a lightweight module inspired by
MobileNetV3, named C3M.

Zheng et al. [5] created the Pest Classification Network (PC-
Net), an approach that utilizes the EfficientNet V2 embedded
attention mechanism to identify various insect pests, particu-
larly in their larval stage. Guo et al. [14] proposed a multi-label
classification method to address the class imbalance issue on
the IP102 dataset and evaluated the Swin Transformer.

Although the previously mentioned works focused on pest
classification using computer vision, most of them have not
dealt adequately with the problem of class imbalance and
have not investigated the potential of different data augmen-
tation strategies, including CutMix. To fill this gap, our paper
proposes an approach to select the more relevant classes and
evaluate different deep learning models.

III. MATERIAL AND METHODS

A. Dataset

We used the IP102 dataset [15] to perform experiments and
evaluate our training strategies. The IP1021 contains 75,222
images organized in 102 classes, and it is provided with a set
of images designed for classification tasks and another one
for detection tasks. In this work, we used the classification
task dataset. The classes of the IP102 dataset are related to
insect pests in diverse agricultural crops. These classes are
organized hierarchically, and the dataset is divided into two
large groups in accordance with the crop classification: field
crop (FC) and economic crop (EC). Each crop group contains
five and three crops, named super-classes, respectively. Each
super-class contains a number of classes representing pests that
affect that type of crop. Also, the IP102 is provided with non-
overlapping training, validation, and test sets, with proportions
60%, 10%, and 30%, respectively.

The IP102 dataset presents challenging features, including
a very large number of highly imbalanced classes. The classes
contain images from very different sources, such as photos and
drawings, some of them with watermarks. Also, the images
present a high variety of poses and zoom levels, and some
insect species are imaged in different growing stages, such as
eggs, larvae, pupas, and adult insects. These features make the

1https://github.com/xpwu95/IP102

IP102 a challenging and, at the same time, valuable resource to
study the capacity of building machine learning-based models
to automatically classify these menaces.

B. Architectures

For this work, we trained three deep learning architectures,
two CNNs, AlexNet and ResNet-50, and one attention-based
architecture, Vision Transformer (ViT).

AlexNet [16] stands as one of the pioneering deep learning
architectures that gained widespread recognition. This neural
network is characterized by its composition of multiple convo-
lutional layers followed by fully connected layers. It achieved
victory in the 2012 ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). Due to its historical significance and
simplicity when compared with newer deep learning models,
AlexNet has been selected for this study.

Residual Network (ResNet) [17] is a CNN architecture
distinguished by its innovative concept of residual connections.
These connections enable the gradients to propagate effectively
through numerous layers without diminishing significantly.
This approach addresses the gradient vanishing problem en-
countered in very deep networks.

Vision Transformer (ViT) [18] is not a CNN model but a
transformer architecture applied to image classification. ViT
divides the input image into fixed patches, linearizes them,
and processes them sequentially, resembling the operation of
transformers commonly used in natural language processing
tasks. ViT was incorporated into the project due to its promis-
ing ability to capture long-range dependencies in images and
its widespread popularity and superior performance across
various computer vision benchmarks.

C. Data augmentation

Data augmentation is a regularization technique that consists
of artificially augmenting the number of images available to
train a model based on random transformations and perturba-
tions over the original training images. Data augmentation can
improve the capability of generalization of the models, and it
is useful to deal with small datasets [19].

Besides more traditional data augmentation transformations,
we employed and evaluated the impact of the CutMix data
augmentation [20]. CutMix consists of combining information
from two different images. During the training, patches of
images are cut and pasted into other images in the same batch.
The labels are also combined proportionally to the image
regions. For example, if a patch is extracted from 25% of
a source image and pasted in a destination image, the label
of the image presented to the input layer is 75% of the label
of destine images and 25% of the label of the source image.
Figure 1 illustrates the CutMix applied over a batch of four
images.

D. Experiment design

Before starting the experimental setup, we critically ana-
lyzed the dataset and observed that the dataset was heavily
unbalanced. We avoid the use of classes with a small number
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Fig. 1. Examples of the CutMix data-augmentation strategy applied over a
batch with size 4.

of samples. As the dataset is hierarchically organized, we
selected only the ten and twenty classes with more images
in each crop group, EC and FC, generating the datasets EC-
10, FC-10, EC-20, and FC-20. We also generated two datasets
with the ten and twenty classes with more images considering
the whole dataset, named Full-10 and Full-20. Figure 2(a)
illustrates the selection of the ten and twenty classes for Full-
10 and Full-20 through a histogram of the number of images in
each class. Figures 2(c) illustrate the classes selected to be part
of the datasets EC-10 and EC-20, and Figure 2(b) illustrates
the classes selected to be part of datasets EC-10 and FC-20.

We fine-tuned three deep-learning classification models,
AlexNet, ResNet-50, and ViT, using the Stochastic Gradient
Descending optimizer (SGD) with a learning rate of 0.0001
and momentum of 0.9. During the training, the learning rate
was decreased by a strategy named reduce learning rate on
plateau, where we decreased the current learning rate by a
factor of 0.1 when the validation loss did not improve for 10
epochs. The training process is stopped early if the validation
loss does not decrease for 20 consecutive epochs or the training
reaches a maximum of 200 epochs. We used a batch size
of 256 for AlexNet, 64 for Resnet-50, and 32 for ViT. The
batch sizes for ResNet-50 and ViT are smaller because the
numbers of trainable parameters are higher than AlexNet, and
we used the maximum batch size that the models fit in the
GPU memory. The pre-trained models were obtained from the
torchvision library, and we kept all model layers unfroze, i.e.,
all network parameters were fine-tuned during the training.

Each model was trained considering three data augmenta-
tion strategies: a) no data augmentation, b) data augmentation
without CutMix, and c) data augmentation strategies with the
CutMix. For the training strategy without data augmentation,
the images were randomly cropped and resized to 224 ×
224 pixels (random resized crop transformation), followed by
normalization considering the mean and standard deviation
of the ImageNet dataset, because the models that we fine-

tuned were pre-trained with the ImageNet dataset. This image
transformation strategy was used for the validation and test
sets across all strategies and experiments. When we trained
the models with data augmentation, images from the train
set were submitted to a random resized crop, followed by a
random horizontal flip, random vertical flip, random rotation
(30◦), random sharpness adjustment, random auto contrast
and normalization using the mean and standard deviation of
the ImageNet dataset. Finally, when we trained their models
with CutMix, we applied all transformations considered in the
previous strategy plus the CutMix data augmentation strategy.

E. Model evaluation

We evaluate the trained models over the validation and test
sets using accuracy, precision, recall, and f1-score metrics. By
comparing the metrics obtained with the validation and testing
sets, it is possible to evaluate the capability of the models to
extrapolate the knowledge learned to unseen samples.

Accuracy, precision, recall and f1-score are defined by
Equations 1, 2, 3, and 4:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-score =
2× TP

2× TP + FP + FN
(4)

where TP, TN, FP, and FN are true positive, true negative,
false positive, and false negative samples, respectively.

F. Computational resources

Experiments were executed on three PC computers with i5
3.0 GHz processors and 32 GB of RAM. Two of them are
equipped with GPUs NVIDIA 1080 Ti with 11 GB of memory
and the other one with an NVIDIA Titan Xp with 12 GB of
RAM. The development environment is based on Python 3.9
programming language, PyTorch 2.0.1, with CUDA 11.7. The
libraries torchvision 0.15.2, scikit-learn 1.3, and Matplotlib
3.7.2 were also used.

IV. RESULTS AND DISCUSSION

Table I presents the results obtained over the validation set
for the AlexNet, ResNet-50, and ViT models. The results are
computed regarding accuracy, precision, recall, and f1-score.
The tables also show the number of epochs each model was
trained (column Epochs), considering the training was stopped
according to an early stopping strategy based on the validation
loss, as described in Section III-D.

Furthermore, we used the trained models to predict the
classes of images from a new, unseen test set. We consider
these predictions to evaluate the capacity of our model to
extrapolate the knowledge learned during the training. Table



cic
ad

el
lid

ae
ly

co
rm

a_
de

lic
at

ul
a

m
iri

da
e

ap
hi

ds
bl

ist
er

_b
ee

tle
co

rn
_b

or
er

m
ol

e_
cr

ick
et

be
et

_a
rm

y_
wo

rm
le

gu
m

e_
bl

ist
er

_b
ee

tle
lim

ac
od

id
ae

lo
cu

st
oi

de
a

pr
od

en
ia

_li
tu

ra
cic

ad
el

la
_v

iri
di

s
xy

lo
tre

ch
us

ric
e_

le
af

_r
ol

le
r

ar
m

y_
wo

rm
fla

x_
bu

dw
or

m
as

ia
tic

_r
ice

_b
or

er
wh

ite
_b

ac
ke

d_
pl

an
t_

ho
pp

er
wi

re
wo

rm
th

rip
s

gr
ub

ric
e_

wa
te

r_
we

ev
il

ca
bb

ag
e_

ar
m

y_
wo

rm
bl

ac
k_

cu
tw

or
m

br
ow

n_
pl

an
t_

ho
pp

er
ta

rn
ish

ed
_p

la
nt

_b
ug

sc
irt

ot
hr

ip
s_

do
rs

al
is_

ho
od

fle
a_

be
et

le
am

pe
lo

ph
ag

a
ice

ry
a_

pu
rc

ha
si_

m
as

ke
ll

bi
rd

_c
he

rry
-o

at
ap

hi
d

tri
al

eu
ro

de
s_

va
po

ra
rio

ru
m

pe
ac

h_
bo

re
r

al
eu

ro
ca

nt
hu

s_
sp

in
ife

ru
s

al
fa

lfa
_p

la
nt

_b
ug

en
gl

ish
_g

ra
in

_a
ph

id
ly

tta
_p

ol
ita

la
wa

na
_im

ita
ta

_m
el

ich
ar

po
to

sia
br

e_
vi

ta
rs

is
rh

yt
id

od
er

a_
bo

wr
in

ii_
wh

ite
sm

al
l_b

ro
wn

_p
la

nt
_h

op
pe

r
re

d_
sp

id
er

al
fa

lfa
_w

ee
vi

l
ric

e_
ga

ll_
m

id
ge

da
sin

eu
ra

_s
p

ye
llo

w_
ric

e_
bo

re
r

la
rg

e_
cu

tw
or

m
ric

e_
le

af
_c

at
er

pi
lla

r
sa

lu
rn

is_
m

ar
gi

ne
lla

_g
ue

rr
wh

ea
t_

bl
os

so
m

_m
id

ge
ye

llo
w_

cu
tw

or
m

pi
er

is_
ca

ni
di

a
st

er
no

ch
et

us
_f

rig
id

us
pa

pi
lio

_x
ut

hu
s

da
cu

s_
do

rs
al

is(
he

nd
el

)
un

as
pi

s_
ya

no
ne

ns
is

ric
e_

sh
el

l_p
es

t
ric

e_
le

af
ho

pp
er

ph
yl

lo
cn

ist
is_

cit
re

lla
_s

ta
in

to
n

te
tra

da
cu

s_
c_

ba
ct

ro
ce

ra
_m

in
ax

pa
no

nc
hu

s_
cit

ri_
m

cg
re

go
r

ap
ol

yg
us

_lu
co

ru
m

ric
e_

st
em

fly
vi

te
us

_v
iti

fo
lia

e
ap

hi
s_

cit
ric

ol
a_

va
nd

er
_g

oo
t

wh
ea

t_
sa

wf
ly

gr
ee

n_
bu

g
ad

ris
ty

ra
nn

us
be

et
_w

ee
vi

l
ps

eu
do

co
cc

us
_c

om
st

oc
ki

_k
uw

an
a

ch
lu

m
et

ia
_t

ra
ns

ve
rs

a
be

et
_s

po
t_

fli
es

wh
ea

t_
ph

lo
eo

th
rip

s
oi

de
s_

de
ce

m
pu

nc
ta

ta
m

ea
do

w_
m

ot
h

pa
dd

y_
st

em
_m

ag
go

t
th

er
io

ap
hi

s_
m

ac
ul

at
a_

bu
ck

to
n

ce
ro

pl
as

te
s_

ru
be

ns
lo

ng
le

gg
ed

_s
pi

de
r_

m
ite

pe
nt

ha
le

us
_m

aj
or

ch
ry

so
m

ph
al

us
_a

on
id

um
to

xo
pt

er
a_

au
ra

nt
ii

de
po

ra
us

_m
ar

gi
na

tu
s_

pa
sc

oe
se

ric
ao

rie
nt

_a
lis

m
ot

s_
ch

ul
sk

y
to

xo
pt

er
a_

cit
ric

id
us

al
fa

lfa
_s

ee
d_

ch
al

cid
od

on
to

th
rip

s_
lo

ti
co

lo
m

er
us

_v
iti

s
gr

ai
n_

sp
re

ad
er

_t
hr

ip
s

ph
yl

lo
co

pt
es

_o
le

iv
er

us
_a

sh
m

ea
d

ba
ct

ro
ce

ra
_t

su
ne

on
is

wh
ite

_m
ar

gi
ne

d_
m

ot
h

pa
ra

th
re

ne
_r

eg
al

is
ce

ro
do

nt
a_

de
nt

ico
rn

is
be

et
_f

ly
ni

pa
ec

oc
cu

s_
va

st
al

or
m

an
go

_f
la

t_
be

ak
_le

af
ho

pp
er

po
ly

ph
ag

ot
ar

s_
on

em
us

_la
tu

s
br

ev
ip

oa
lp

us
_le

wi
si_

m
cg

re
go

r
pa

rla
to

ria
_z

izy
ph

us
_lu

cu
s

er
yt

hr
on

eu
ra

_a
pi

ca
lis

Classes

0

500

1000

1500

2000

2500

3000
Nu

m
be

r o
f i

m
ag

es

20 classes

10 classes

Full dataset

(a)

ap
hi

ds
bl

ist
er

_b
ee

tle
co

rn
_b

or
er

m
ol

e_
cr

ick
et

be
et

_a
rm

y_
wo

rm
le

gu
m

e_
bl

ist
er

_b
ee

tle
lo

cu
st

oi
de

a
ric

e_
le

af
_r

ol
le

r
ar

m
y_

wo
rm

fla
x_

bu
dw

or
m

as
ia

tic
_r

ice
_b

or
er

wh
ite

_b
ac

ke
d_

pl
an

t_
ho

pp
er

wi
re

wo
rm

th
rip

s
gr

ub
ric

e_
wa

te
r_

we
ev

il
ca

bb
ag

e_
ar

m
y_

wo
rm

bl
ac

k_
cu

tw
or

m
br

ow
n_

pl
an

t_
ho

pp
er

ta
rn

ish
ed

_p
la

nt
_b

ug
fle

a_
be

et
le

bi
rd

_c
he

rry
-o

at
ap

hi
d

pe
ac

h_
bo

re
r

al
fa

lfa
_p

la
nt

_b
ug

en
gl

ish
_g

ra
in

_a
ph

id
ly

tta
_p

ol
ita

po
to

sia
br

e_
vi

ta
rs

is
sm

al
l_b

ro
wn

_p
la

nt
_h

op
pe

r
re

d_
sp

id
er

al
fa

lfa
_w

ee
vi

l
ric

e_
ga

ll_
m

id
ge

ye
llo

w_
ric

e_
bo

re
r

la
rg

e_
cu

tw
or

m
ric

e_
le

af
_c

at
er

pi
lla

r
wh

ea
t_

bl
os

so
m

_m
id

ge
ye

llo
w_

cu
tw

or
m

pi
er

is_
ca

ni
di

a
ric

e_
sh

el
l_p

es
t

ric
e_

le
af

ho
pp

er
ric

e_
st

em
fly

wh
ea

t_
sa

wf
ly

gr
ee

n_
bu

g
be

et
_w

ee
vi

l
be

et
_s

po
t_

fli
es

wh
ea

t_
ph

lo
eo

th
rip

s
m

ea
do

w_
m

ot
h

pa
dd

y_
st

em
_m

ag
go

t
th

er
io

ap
hi

s_
m

ac
ul

at
a_

bu
ck

to
n

lo
ng

le
gg

ed
_s

pi
de

r_
m

ite
pe

nt
ha

le
us

_m
aj

or
se

ric
ao

rie
nt

_a
lis

m
ot

s_
ch

ul
sk

y
al

fa
lfa

_s
ee

d_
ch

al
cid

od
on

to
th

rip
s_

lo
ti

gr
ai

n_
sp

re
ad

er
_t

hr
ip

s
wh

ite
_m

ar
gi

ne
d_

m
ot

h
ce

ro
do

nt
a_

de
nt

ico
rn

is
be

et
_f

ly

Classes

0

500

1000

1500

2000

Nu
m

be
r o

f i
m

ag
es

20 classes

10 classes

FC

(b)

cic
ad

el
lid

ae
ly

co
rm

a_
de

lic
at

ul
a

m
iri

da
e

lim
ac

od
id

ae
pr

od
en

ia
_li

tu
ra

cic
ad

el
la

_v
iri

di
s

xy
lo

tre
ch

us
sc

irt
ot

hr
ip

s_
do

rs
al

is_
ho

od
am

pe
lo

ph
ag

a
ice

ry
a_

pu
rc

ha
si_

m
as

ke
ll

tri
al

eu
ro

de
s_

va
po

ra
rio

ru
m

al
eu

ro
ca

nt
hu

s_
sp

in
ife

ru
s

la
wa

na
_im

ita
ta

_m
el

ich
ar

rh
yt

id
od

er
a_

bo
wr

in
ii_

wh
ite

da
sin

eu
ra

_s
p

sa
lu

rn
is_

m
ar

gi
ne

lla
_g

ue
rr

st
er

no
ch

et
us

_f
rig

id
us

pa
pi

lio
_x

ut
hu

s
da

cu
s_

do
rs

al
is(

he
nd

el
)

un
as

pi
s_

ya
no

ne
ns

is
ph

yl
lo

cn
ist

is_
cit

re
lla

_s
ta

in
to

n
te

tra
da

cu
s_

c_
ba

ct
ro

ce
ra

_m
in

ax
pa

no
nc

hu
s_

cit
ri_

m
cg

re
go

r
ap

ol
yg

us
_lu

co
ru

m
vi

te
us

_v
iti

fo
lia

e
ap

hi
s_

cit
ric

ol
a_

va
nd

er
_g

oo
t

ad
ris

ty
ra

nn
us

ps
eu

do
co

cc
us

_c
om

st
oc

ki
_k

uw
an

a
ch

lu
m

et
ia

_t
ra

ns
ve

rs
a

oi
de

s_
de

ce
m

pu
nc

ta
ta

ce
ro

pl
as

te
s_

ru
be

ns
ch

ry
so

m
ph

al
us

_a
on

id
um

to
xo

pt
er

a_
au

ra
nt

ii
de

po
ra

us
_m

ar
gi

na
tu

s_
pa

sc
oe

to
xo

pt
er

a_
cit

ric
id

us
co

lo
m

er
us

_v
iti

s
ph

yl
lo

co
pt

es
_o

le
iv

er
us

_a
sh

m
ea

d
ba

ct
ro

ce
ra

_t
su

ne
on

is
pa

ra
th

re
ne

_r
eg

al
is

ni
pa

ec
oc

cu
s_

va
st

al
or

m
an

go
_f

la
t_

be
ak

_le
af

ho
pp

er
po

ly
ph

ag
ot

ar
s_

on
em

us
_la

tu
s

br
ev

ip
oa

lp
us

_le
wi

si_
m

cg
re

go
r

pa
rla

to
ria

_z
izy

ph
us

_lu
cu

s
er

yt
hr

on
eu

ra
_a

pi
ca

lis

Classes

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f i
m

ag
es

20 classes

10 classes

EC

(c)

Fig. 2. Class selection for the entire dataset (a), the FC crop (b), and the EC crop type (c). Each figure shows the ten and twenty classes with more samples
within.

II shows the accuracy, precision, recall, and f1-score values
obtained when we submitted the test set images to our models.

In both tables, we marked in bold, for each experiment, the
best result across the three training strategies. We also marked
in italics the best values across the three trained architectures.

Considering the three training strategies, without data aug-
mentation (without DA), with data augmentation but without
CutMix (DA), and with data augmentation combined with
CutMix (DA + CutMix), our results demonstrated that AlexNet
is not suitable to be trained with data augmentation strategies.
For all datasets (FC-10, FC-20, EC-10, EC-20, Full-10, and
Full-20), AlexNet evaluation values tend to be worse when
trained with DA and even worse with DA and CutMix com-
bined (DA + CutMix). ResNet-50 also did not perform well
when trained with data augmentation strategies. However, the
differences in the evaluation metrics were smaller than in

AlexNet. We may observe a slight improvement in ResNet-
50 for the EC-20 and Full-20 datasets when trained with DA
without CutMix.

Unlike AlexNet and ResNet-50, ViT performed well with
data-augmentation strategies, mainly with data-augmentation
methods combined with CutMix. For FC-10, Full-10, and EC-
20, ViT performed better when trained with data augmentation
and CutMix. For Full-20, training with data augmentation with
and without CutMix resulted in better evaluation metrics. For
EC-10, the model was trained with data augmentation without
CutMix, and only for FC-20, the better model was trained
without any data augmentation.

Figure 3 illustrates the test accuracy for each model con-
sidering each one of the training strategies. In the figure, one
can visualize the impact of the data augmentation strategies
on each model and compare them among the models. As



TABLE I
EVALUATION OVER THE VALIDATION SET FOR ALEXNET, RESNET-50, AND VIT.

VAL. Without DA DA DA + CutMix
Arch. Dataset Classes Acc. Prec. Rec. F1 Epochs Acc. Prec. Rec. F1 Epochs Acc. Prec. Rec. F1 Epochs

A
le

xN
et

FC 10 0.6867 0.6660 0.6483 0.6530 69 0.6584 0.6248 0.6213 0.6143 100 0.6166 0.5859 0.5671 0.5546 104
20 0.6162 0.5826 0.5708 0.5727 108 0.5545 0.5208 0.4976 0.4969 116 0.5103 0.4756 0.4479 0.4440 129

EC 10 0.7622 0.7416 0.7084 0.7231 175 0.7197 0.6899 0.6201 0.6470 89 0.7035 0.6931 0.5764 0.6160 136
20 0.7055 0.6575 0.6197 0.6359 97 0.6881 0.6297 0.5834 0.6004 130 0.6690 0.6183 0.5395 0.5679 181

Full 10 0.7182 0.7022 0.6796 0.6888 75 0.6803 0.6557 0.6452 0.6452 77 0.6458 0.6264 0.6083 0.6081 106
20 0.6551 0.6271 0.5994 0.6095 120 0.6039 0.5597 0.5368 0.5392 106 0.5691 0.5351 0.4936 0.4992 143

R
es

N
et

-5
0 FC 10 0.8127 0.7934 0.7836 0.7877 106 0.8204 0.7988 0.7811 0.7847 107 0.7892 0.7685 0.7489 0.7498 98

20 0.7288 0.7008 0.6895 0.6938 124 0.6985 0.6710 0.6536 0.6570 66 0.7214 0.6964 0.6790 0.6826 173

EC 10 0.8715 0.8464 0.8404 0.8427 60 0.8686 0.8647 0.8228 0.8400 98 0.8473 0.8361 0.7943 0.8109 100
20 0.8310 0.7946 0.7566 0.7721 68 0.8428 0.8022 0.7852 0.7913 144 0.8015 0.7723 0.7054 0.7316 83

Full 10 0.8569 0.8461 0.8362 0.8404 84 0.8546 0.8396 0.8299 0.8340 100 0.8489 0.8319 0.8220 0.8254 142
20 0.7993 0.7728 0.7558 0.7624 86 0.7973 0.7652 0.7482 0.7538 148 0.7866 0.7654 0.7350 0.7450 114

V
iT

FC 10 0.8257 0.8031 0.7966 0.7987 53 0.8233 0.8002 0.7953 0.7968 70 0.8345 0.8118 0.8052 0.8071 85
20 0.7423 0.7125 0.7064 0.7081 58 0.7466 0.7196 0.7133 0.7151 64 0.7641 0.7381 0.7275 0.7304 118

EC 10 0.8843 0.8725 0.8451 0.8573 50 0.8954 0.8901 0.8586 0.8725 61 0.8881 0.8770 0.8557 0.8656 88
20 0.8665 0.8374 0.8181 0.8265 63 0.8432 0.8067 0.7861 0.7949 54 0.8682 0.8470 0.8306 0.8373 145

Full 10 0.8619 0.8452 0.8400 0.8411 39 0.8773 0.8650 0.8573 0.8607 72 0.8884 0.8779 0.8667 0.8720 140
20 0.8061 0.7760 0.7622 0.7677 82 0.8136 0.7798 0.7703 0.7738 95 0.8173 0.7903 0.7780 0.7822 136

TABLE II
EVALUATION OVER THE TEST SET FOR ALEXNET, RESNET-50, AND VIT.

TEST Without DA DA DA + CutMix
Arch. Dataset Classes Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

A
le

xN
et

FC 10 0.6948 0.6649 0.6507 0.6519 0.6586 0.6257 0.6147 0.6094 0.6151 0.5795 0.5632 0.5502
20 0.6087 0.5781 0.5598 0.5647 0.5687 0.5323 0.5161 0.5143 0.5117 0.4719 0.4462 0.4421

EC 10 0.7819 0.7475 0.7330 0.7396 0.7238 0.6889 0.6343 0.6548 0.7089 0.6846 0.5999 0.6292
20 0.7145 0.6629 0.6269 0.6422 0.6866 0.6308 0.5854 0.6013 0.6574 0.6112 0.5291 0.5582

Full 10 0.7241 0.7121 0.6959 0.7026 0.6939 0.6732 0.6637 0.6641 0.6606 0.6447 0.6272 0.6277
20 0.6568 0.6196 0.5997 0.6065 0.6117 0.5632 0.5480 0.5471 0.5783 0.5375 0.5044 0.5065

R
es

N
et

-5
0 FC 10 0.8165 0.7947 0.7826 0.7874 0.8024 0.7784 0.7637 0.7680 0.7773 0.7480 0.7323 0.7335

20 0.7332 0.7073 0.6976 0.7011 0.7097 0.6791 0.6650 0.6681 0.7223 0.6961 0.6830 0.6860

EC 10 0.8760 0.8537 0.8493 0.8510 0.8695 0.8509 0.8291 0.8383 0.8482 0.8285 0.8101 0.8165
20 0.8393 0.8036 0.7801 0.7901 0.8505 0.8066 0.7997 0.8021 0.8102 0.7676 0.7283 0.7437

Full 10 0.8623 0.8516 0.8429 0.8463 0.8598 0.8451 0.8410 0.8426 0.8572 0.8466 0.8402 0.8423
20 0.7992 0.7680 0.7575 0.7612 0.8033 0.7693 0.7591 0.7616 0.7788 0.7514 0.7284 0.7360

V
iT

FC 10 0.8306 0.8066 0.7990 0.8022 0.8257 0.7995 0.7964 0.7970 0.8315 0.8075 0.8009 0.8031
20 0.7617 0.7343 0.7295 0.7313 0.7555 0.7247 0.7248 0.7242 0.7547 0.7272 0.7206 0.7222

EC 10 0.8878 0.8763 0.8601 0.8679 0.8904 0.8771 0.8611 0.8679 0.8844 0.8600 0.8590 0.8588
20 0.8594 0.8253 0.8102 0.8171 0.8588 0.8304 0.8149 0.8217 0.8702 0.8406 0.8274 0.8334

Full 10 0.8702 0.8562 0.8523 0.8527 0.8787 0.8692 0.8604 0.8643 0.8916 0.8813 0.8753 0.8779
20 0.8164 0.7851 0.7747 0.7793 0.8242 0.7919 0.7860 0.7884 0.8242 0.7944 0.7872 0.7899

discussed before, ViT is the only model that takes advantage
of the data augmentation strategies, including the one we
combined with data augmentation and CutMin. Besides, ViT
is the best architecture for all datasets, followed closely by
ResNet-50 with more distant values for the models trained
with data augmentation strategies. AlexNet has the worst
performance in every scenario, with values very distant from
the other networks.

V. CONCLUSIONS

In this work, we performed an extensive analysis of different
deep-learning models applied to classify insect pests in crop
images. By considering different training strategies to train
each deep learning architecture, we may find how each archi-
tecture behaves for that strategy. As we deal with a complex
and highly unbalanced dataset with a large number of classes,
we selected only the ten and twenty classes with more images.
We also separated the full IP102 dataset into two groups in
accordance with their crop classification, also considering only
the ten and twenty classes with more images.

Our results lead us to conclude that transformer-based
architectures performed better for this kind of problem than
the CNN-based solutions. Also, the ViT models take more
advantage of data augmentation strategies than the CNN coun-
terparts. This work and the results bring important insights for
building more efficient and accurate models that can be used
in real applications for crop management. Systems that rapidly
return an accurate classification of pests found in plantations
will play an important role in agriculture production. Enabling
fast responses and minimizing risks even without the presence
of an expert.

Future works include evaluation of other deep learning-
based architectures, looking for more adequate data augmen-
tation strategies for each architecture. Training and evaluating
strategies that work well with a large set of pests, considering
even training and predictions with other datasets.
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Fig. 3. Line charts presenting the accuracies of the models when trained with different data augmentation strategies. The first row is for the models trained
with 10 classes, and the last row is for the models trained with 20 classes. The first column is for the FC crop classification, the second column is for the
EC, and the third column is for the combination of FC and EC crop classifications.
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[11] L. Nanni, A. Manfè, G. Maguolo, A. Lumini, and S. Brahnam, “High
performing ensemble of convolutional neural networks for insect pest
image detection,” Ecological Informatics, vol. 67, p. 101515, 2022.

[12] J. An, Y. Du, P. Hong, L. Zhang, and X. Weng, “Insect recognition based
on complementary features from multiple views,” Scientific Reports,
vol. 13, no. 1, p. 2966, 2023.

[13] L. Zhang, C. Zhao, Y. Feng, and D. Li, “Pests identification of ip102
by yolov5 embedded with the novel lightweight module,” Agronomy,
vol. 13, no. 6, p. 1583, 2023.

[14] Q. Guo, C. Wang, D. Xiao, and Q. Huang, “A novel multi-label pest
image classifier using the modified Swin Transformer and soft binary
cross entropy loss,” Engineering Applications of Artificial Intelligence,
vol. 126, p. 107060, 2023.

[15] X. Wu, C. Zhan, Y.-K. Lai, M.-M. Cheng, and J. Yang, “Ip102: A large-
scale benchmark dataset for insect pest recognition,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2019, pp. 8787–8796.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[18] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[19] M. Xu, S. Yoon, A. Fuentes, and D. S. Park, “A Comprehensive
Survey of Image Augmentation Techniques for Deep Learning,” Pattern
Recognition, vol. 137, p. 109347, 2023.

[20] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Reg-
ularization strategy to train strong classifiers with localizable features,”
in Proceedings of the IEEE/CVF international conference on computer
vision, 2019, pp. 6023–6032.


