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Abstract—This paper presents a neural network-based com-
puter vision approach for detecting ship cargo-hold hatch closure.
The investigation is relevant since weather conditions, especially
rainfall, cause damage to cargo such as sodium sulfate, sugar,
corn, corn bran, and potassium chloride, among others. Register-
ing when the cargo hold hatch is closed could prevent damage
to the cargo, avoiding prejudice to transportation companies.
Our proposal uses YOLO framework vision detection as an
economical alternative to the current state-of-the-art for detecting
ship hatch closing with expensive and complex solutions. This
investigation presents an experiment in a tailored dataset, and
results are applied to real-time video detection that validates
a stable and accurate solution to the problem of ship hatch
detection. Results have shown that even though regular YOLO v4
reaches better metrics, with an accuracy of 91.55%, Fast YOLO
v4 is better for real-time detection but with a penalty of lower
accuracy.

Index Terms—Hatch cover closure, hatch recognition, neural
networks, YOLO, computer vision

I. INTRODUCTION

Innovations in the automation of mechanized port operations
are significant, especially in loading and unloading products,
considering that the number of studies published in this area
is still small. However, many engineers and researchers have
developed intelligent automated control systems for interna-
tional containerized bulk operations. For instance, the Euro-
max terminal in Rotterdam, in the Netherlands, has achieved
the world’s highest degree of containerized automation. On
the other hand, automation in bulk terminal operations has
developed at a slow pace.

Moreover, building an automated bulk operations load sys-
tem is based and premised on the recognition of ship hatches.
In this context, detecting the hatch rapidly and accurately is
still a problem that needs an urgent solution in the current
port production scenario [1]. Weather conditions, such as
rainfall, significantly impact bulk operation loading systems.
In cargo such as sodium sulfate, sugar, corn, corn bran,

wheat, potassium chloride, soybeans, and others, it affects
logistics and losses for cargo and transport companies due
to fines for late delivery. Brazilian ports report up to 110 days
of rain annually, halting their operations. Not wasting time
checking whether the hatch cover has been completely closed
is essential. Capturing the exact moment of closure of the
cargo hold is vital to validate an operational stop and make
port operations more efficient.

Thus, this research aims to solve the following problem:
how to record the exact closing moment of the cargo hold
hatch cover. In its first approach, the main objective is to
validate the recognition detection of the cargo hold hatch.
The research is still relevant because the current state-of-
the-art proposes solutions that require high-cost equipment.
Therefore, the main goal of this paper is to use computer
vision and image processing techniques as an economical
and suitable alternative. As part of the solution, we propose
using a Convolutional Neural Network (CNN), a technique
categorized as deep learning with high performance in differ-
ent types of classification and detection [2]. We compare two
architectures You Only Look Once (YOLO) v4 [3] and Fast
YOLO v4. We used this version because is better documented
than the last version.

Although it seems simple to solve the problem by image
recognition with a CNN, this issue is complex and offers some
challenges to be completed. The first one, hatch cover changes
according to the size and design of the ship [4], making
available several types of mechanisms and systems. Figure 1
illustrates some examples. Secondly, considering the variety
of ships and hatches, the algorithm must be able to detect
what is hatch and what is not. Thirdly, the model must not be
susceptible to the camera angle, which can change the object
size and create occlusion in the image. Finally, the model has
to be fast enough to perform detection in real-time videos.

Due to these challenges and the detection accuracy de-



Fig. 1. Types of hatches covering mechanisms

manded to recognize the hatch closure in real time, the CNN
YOLO network has been chosen because of its accuracy and
speed image recognition [3]. So, this paper is divided as
follows: Section II presents some related works that propose
much more expensive solutions for the problem; Section III
introduces how the dataset was built and how data augmenta-
tion was used; Section IV shows the experiments in the dataset
and real-time video; finally, Section V concludes this works
summarizing results, exposing the weakness, and proposing
future work.

II. RELATED WORKS

Ship hatch recognition is the first prerequisite for automat-
ing loading procedures [5]. The current studies have focused
on expensive equipment and complex solutions based on point
cloud data encoding algorithms.

Not long ago, studies have aimed using Mobile Laser
Scanners (MLS) to obtain point cloud data along with the
MLS trajectory. It became popular in the 3D reconstruction
of walls, corridors, open doors, terrain, and surfaces [6]. To
obtain relevant data, a laser scanner must perpendicularly
faces the ship’s surface with special cameras that capture the
concentration of those 3D points. An algorithm converts the
cloud points data into a 2D plane. Finally, other algorithms
obtain the cargo hold’s x and y coordinates and recreate the
ship’s deck and hatch edges [1], [7].

In the same sense of Laser Scanning or Laser Imaging
Detection and Ranging (LiDAR), Ziang et al. [7], Miao et
al. [8], and Mi et al. [9] use some form of point cloud

building 3D models of the ships, which demands the use of
expensive equipment and building costly infrastructure to hold
and maintain the lasers cannons.

In this context, this research suggests employing a con-
volutional neural network known as You Only Look Once
(YOLO) as a cost-effective and efficient alternative to replace
laser-based systems. To the best of our knowledge, no other
solutions are based on CNNs.

III. THE DATASET

Even though there exists datasets for maritime application,
most of them aim to detect the class of a ship, in which
the recognition can result in providing critical information to
maritime traffic, ship’s crew, ship owners, and shipping compa-
nies, including offices of the Maritime Safety Administration
(MSA) [10].

Additionally, an effort exists to consolidate datasets ded-
icated to the ship’s images for classification and detection;
however, the number of images is limited, and their resolution
varies. Table I [11] summarizes those image datasets.

TABLE I
SHIP IMAGE DATASETS

Dataset Total images/videos
MARVEL 239,622
VMI 3,750
Singapore Marine 19, 600
MarDCT Classification 6,743
ARGOS Boat Classification Benchmark 2,339
VAIS 3,000
ISH 190,00
VesselFinder 190,000

Most of those datasets contain images divided into 25 ship
classes or more. The image domain for this research will not
use all classes of vessels, i.e., we built a dataset using only
three ship types: general cargo, bulk carriers, and other ship
types. These categories have been chosen because those ships
maintain cargo holds. Furthermore, a careful selection was
made because not all images are suitable for our application;
considering that those datasets aim to classify ship types,
several images show the side hull, making it impossible to
identify the cargo hold.

Therefore, to compose the ideal dataset, it was necessary
to choose images from public datasets in angles showing all
the cargo-hold with the hatch opened or closed, especially
pictures in which the ship is docked. Preferably, we chose
images during loading and unloading operations, as illustrated
in Figure 2.

The final dataset was composed of the majority of public-
domain images. Due to the lack of specific images, we initially
gathered 417 images from different angles and bulk carriers’
models. A few images registered situations where hatches are
closed and opened in the same picture. To balance the dataset,
half of the images expose the cargo hold with the hatch open
and vice-versa.

Moreover, to submit the dataset to the YOLO training
process, each image needs annotations, meaning that for every



Fig. 2. Preferably images

single file, a text file with the same name as the image file, and
.txt extension is required. Each text file contains annotations
(numbers) for the corresponding image file, the class number
of the objects and a box constraint with x and y box center
coordinates followed by height and width. If the same image
has two or more object classes, the same number of box
coordinates need to be present in the annotation file.

Some public datasets offer images with annotations, but
all the annotations needed to be created or recreated for the
kind of images required for this research. The process of
creating annotations was assisted by software, being a time-
consuming part of the whole process that demands special
attention; otherwise, results can be inferior.

A. Data Augmentation

In order to improve the number of images for training and
testing the YOLO family architectures, we performed data
augmentation in two steps. The first uses the most common
augmentation methods, such as horizontal flip, vertical flip,
rotation, and translation. After all techniques were completed,
the data set increased from 417 to 4170, following parameters
presented in Table II and updating the annotation files.

In the second stage, we performed operations that transform
only the color and alpha channels in order to avoid labeling all
images again. The following operations were performed: color
light, color image saturation, color hue image, gaussian blur,
distortion averaging blur, distortion median blur, distortion
image erosion, distortion image dilatation, distortion image
opening, distortion image closing, distortion image morpho-
logical gradient, distortion top hat, distortion black hat, gray

TABLE II
DATA AUGMENTATION - STAGE I

Method Parameter
Horizontal flip -
Vertical flip -
Vert. and horiz. flip -
Rotation 45o,90o,270o

Translations 150, 150
Translations -150, 150
Translations 150, -150
Translations -150, -150

sharpen, gray emboss, gray edge, gray contrast, gray edge
canny image, and grayscale. These operations increase the
number of images to 27,213 in total.

IV. EXPERIMENTS

In this section, we detail the experiments that were car-
ried out. The first one used the first version of the dataset,
containing shape-based data augmentation with 4170 images,
presenting an accuracy of only 62%. Thus, the remaining
experiments in image results were based on the second-stage
data augmentation, composed of 27,213 images, as previously
mentioned. As stated earlier, this approach was chosen because
we do not need to annotate each image again. Thus, the first
set of experiments regards image recognition, while the second
one uses the resulting models in real-time video detection.

A. Setup and Metrics

In the training stage, the dataset was split into the rate 90/10.
The framework darknet was used for training YOLO v4 and
compiled in a Windows 11 operating system. The architecture
to train the CNNs was a notebook Acer Nitro Gamer i5, with
8G RAM and NVIDIA GFORCE GTX 1650. The code for
the video experiments was implemented in Python 3.9 with
OpenCV library.

Configurations for training YOLO and fast YOLO use the
same hyperparameters such as number of classes 2, batch size
64, decay 0.0005, learning rate of 0.001, max batches of 6000,
and steps [4800,5400].

The experiments were conducted using YOLO v4 and Fast
YOLO v4, and to evaluate the detection of both models, we
used the traditional metrics for machine learning algorithms:
accuracy, precision, recall, F1 score, mAP, True Positives (TP),
and False Positives (FP).

B. Image Results

Figure 3 presents the mAP metrics for YOLO V4 (left) and
Fast YOLO (right), respectively. Because mAP is a valuable
metric that takes into account precision and recall, we consider
it the main result for this dataset. As we can see, YOLO V4
presents a significantly better mAP than Fast YOLO, 92%
against 52%.

The good results presented in mAP for YOLO v4 are also
reflected in Table III, in which we can see that YOLO v4
clearly presents the best results.



Fig. 3. mAP for YOLO v4 (left) and Fast YOLO (right)

TABLE III
TRADITIONAL METRICS

CNN Accuracy Precision Recall F1-score
YOLO 0.92 0.81 0.90 0.80
Fast YOLO 0.59 0.73 0.53 0.62

An experiment was conducted to verify the behavior of the
algorithms through a k-fold method and check if the previous
results using the ratio 90/10 are not effects of randomness.
Tables IV and V show the outputs and the mean of each
metric for YOLO and FastYOLO, respectively, using a k-fold
experiment with k = 5. As we can see, YOLO consistently
presents significantly better results than FastYOLO in all
metrics, even when the randomly in the sample and the smaller
number of training images lead to a performance loss.

TABLE IV
TRADITIONAL METRICS - K-FOLD (K=5) - YOLO

Fold Accuracy Precision Recall F1-score
k = 1 0.83 0.65 0.79 0.72
k = 2 0.96 0.88 0.93 0.91
k = 3 0.94 0.87 0.93 0.90
k = 4 0.95 0.89 0.93 0.91
k = 5 0.85 0.65 0.77 0.71
mean 0.91 0.79 0.87 0.83

C. Video Results

YOLO v4 took about 18 hours to train, and fast YOLO only
5 hours in the previously mentioned computer configuration.
At the end of training, the YOLO accuracy was 92%, while
the fast YOLO accuracy was 59%, a significant difference
between the two CNN architectures.

TABLE V
TRADITIONAL METRICS - K-FOLD (K=5) - FASTYOLO

Fold Accuracy Precision Recall F1-score
k = 1 0.51 0.51 0.47 0.51
k = 2 0.67 0.77 0.61 0.68
k = 3 0.70 0.81 0.63 0.71
k = 4 0.69 0.78 0.65 0.71
k = 5 0.47 0.51 0.49 0.50
mean 0.59 0.68 0.57 0.62

Then, the trained YOLO architectures using the ratio 90/10
were tested in two different video conditions using OpenCV.
In the first one, the video changes the filming angle, making
the detection task for the CNNs challenging. Figure 4 shows
the first and last frames, in which we can realize that the
accuracy remains stable with some false positives and overlap
detection in some ship hatches. Moreover, the small hatches
tend to present false positives, especially the closed ones,
producing a lower accuracy than the large ones, which is a
YOLO’s limitation, according to Redmond et al. [3]. Also,
the movement caused double detection in some hatches, as
seen in the bottom picture, but the case is easy to treat.

However, even though the YOLO V4 presents promising
results, the prediction time becomes an issue because to predict
all objects in the video, the CNN takes 0.35 seconds. Such a
time reduces the frame rate to 2.86 frames per second, which
is far from acceptable. The same experiment was conducted
using the trained fast YOLO weights to solve the low frame
rate issue. As a result, the fast YOLO increased the frame rate
to 25 frames per second, making it a success in real-time video
recognition. On the other hand, individual object detection
accuracy decays considerably, as shown in Figure 5. Moreover,



Fig. 4. YOLO vs Fast Yolo: the upper photo is frame number 1 and the
bottom photo is last frame number 518

in the last frame, the number of missed classifications is higher
and presents double classification.

The second video is at night with bulk loading condition as
seen in Figure 6, in which we can see that the best performance
of YOLO at night in which all cargo holds were properly
detected. Nonetheless, the individual accuracy is higher in
spotlights. On the other hand, Fast YOLO just recognizes the
cargo hold in good light conditions.

V. CONCLUSIONS

In this investigation, we present the performance of YOLO
v4 and Fast YOLO in a pre-processed dataset, and the results
were applied in video experiments. In the dataset, YOLO
v4 reached much better metrics than Fast YOLO, in which
the regular YOLO reached an mAP of 92%, an accuracy
of 92%, precision of 81%, recall of 90%, and F1-Score of
80% outperforming Fast YOLO in 90/10 ratio experiment. A
k-fold with k = 5 presents similar results in the sense of
outperforming the FastYOLO with a mean of 91% in accuracy,
79% in precision, 87% in recall, and 83% in the F1-score.

Then, applying the obtained models in the 90/10 exper-
iment, the regular YOLO presented the best accuracy in
detecting the hatch in videos. On the other hand, fast YOLO
in real-time video outperformed expectations with a prediction
average time of 0.04 seconds versus 0.35 seconds in YOLO.
Thus, Table VI summarizes the main findings of this investi-
gation.

Fig. 5. Same video using Fast YOLO

Fig. 6. YOLO fast YOLO detection at night and conditions of bulk loading

Future work includes: (i) Improving the small YOLO ar-
chitecture with a large dataset to increase the accuracy, (ii)
Performing the same experiments on YOLO’s latest version,
(iii) Increasing the number of images in different angles and



TABLE VI
FINDINGS IN YOLO AND FAST YOLO

Results YOLO Fast YOLO
Detection accuracy and stability X
Multiple cargo hold detection X X
Camera and angle rotation detection X
Night and bulk loading operations detection X
Static video image detection X X
Fast detection time X
Best frame rate in real-time video X

night light conditions, and, (iv) Developing a system to treat
false positives and detect the transition of cargo hold status
like opened to closed and vice-versa.
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