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Abstract—Coffee is the world’s most consumed commodity
beverage, vital for the Brazilian market. Assessing coffee bean
quality through visual features is essential for market value.
However, human-based visual analysis has limitations. Deep neu-
ral networks, particularly CNNs, offer a promising solution by
automating this process. In this work, we propose an evaluation
of deep learning models and training strategies to classify green
coffee beans automatically. We evaluate four CNN architectures:
AlexNet, ResNet-50, MobileNet V3, and EfficientNet B4. After a
hyperparameter optimization step, the models were fine-tuned,
and we evaluated the impact of data augmentation strategies on
the classification performance through the USK-Coffee dataset.
EfficientNet B4 excels, achieving 0.8844 accuracy when trained
with data augmentation. Our findings showcase deep learning’s
potential for coffee quality assessment, aiding professionals in
classifying and guaranteeing coffee quality and value.

Index Terms—green coffee, coffee bean, deep learning, classi-
fication, data augmentation, optimization.

I. INTRODUCTION

Coffee is the most consumed commodity beverage world-
wide, and the demand for high-quality coffee is growing [1].
Brazil is the largest producer and exporter of green coffee
beans and the second largest consumer of the beverage in
the world, making coffee one of the main commodities in
the Brazilian market [2]. The commercialization of coffee
is a significant contributor to the income of many emerging
economies, and characteristics such as color, morphology,
shape, and size can be used to define the quality and market
value of a grain [1], [3].

Visual analysis of coffee beans, as well as other processes
that depend on visual analysis performed by human beings,
is subject to errors owing to the inherent subjectivity of the
problem and the fatigue imposed by the repetitive process.
One should also consider the problem of scale because there
is a limit on the samples that a human expert can analyze in
a time interval.

Deep neural networks such as Convolutional Neural Net-
work (CNN)s allow the hierarchical extraction of features
from images, establishing classification models that match or
surpass the accuracy of human experts in many tasks [4].
After the models are effectively trained, they can be used to

classify hundreds of samples at intervals of a few minutes. Its
training is complex, as it requires a large number of images
for training as well as adequate adjustments of hyperparame-
ters, regularization techniques, data augmentation procedures,
and transfer learning. These characteristics must be analyzed
through experiments to arrive at suitable models and training
strategies for each problem [5], [6].

This paper proposes a method for automatically classifying
coffee beans to enhance green coffee quality using Deep
Learning techniques. This work aims to analyze the perfor-
mance of CNN models to classify images of green coffee
beans. We analyzed AlexNet, ResNet-50, MobileNet V3, and
EfficientNet B4 architectures. We performed a grid-search-
based hyperparameter optimization and compared the impact
of a data augmentation strategy on the prediction performance.
Moreover, as far as we know, our result is the best obtained
for coffee bean classification using the dataset evaluated in this
study. We believe that our proposed method can contribute to
future research intended to help assess the final drink’s quality,
generating value for the product.

The remainder of this paper is organized as follows. Sec-
tion II presents related work. In Section III, we describe
the material and experiment design. Results are presented in
Section IV. In Section V, we expose conclusions and future
work.

II. RELATED WORK

Recently, several studies have been dedicated to evaluat-
ing the quality of coffee production using Computer Vision
techniques. Oliveira et al. [3] proposed a method for quantify-
ing the quality of green coffee beans by classifying images
of the beans using neural networks and a Bayes classifier
based on color characteristics obtained from the CIE L*a*b*.
Garcia et al. [1] employed the K-Nearest Neighbor method
to evaluate the quality of coffee beans and identify their
defects. They extracted different features from the images of
the beans, including area, circularity, damaged-area ratio, and
eccentricity. This method classifies coffee beans based on their
quality into four categories: very low, low, high, and very high.



Additionally, it categorizes them according to their defects as
normal, black, sour, broken, very long berry, and small.

Costa et al. [7] obtained colorimetric variables using the
RGB, CIE L*a*b*, and HSV models combined with the K-
means technique to classify coffee fruits. They reduced the
colorimetric variables using Principal Component Analysis.
However, this approach requires a greater computational load
and increases processing time.

Pradana-López et al. [8] applied a ResNet-34 CNN to
support the quality control and detection of adulteration of
Arabica and Robusta coffee with other foods, such as chicory
and barley. They considered ground coffee images and, owing
to dataset size limitations, applied a transfer learning technique
considering the weights from ImageNet.

Chang et al. [9] applied a CNN inspired by AlexNet to in-
spect defects in coffee beans. Five defects were classified: cut,
immature, partialsour, slight insect damage, and withered. The
method has demonstrated an improved generalization ability,
but its classification performance must also be evaluated for
distorted samples.

Wang et al. [10] proposed a model based on CNN to support
the automatic detection of defective coffee beans to guarantee
higher-quality coffees using knowledge distillation, a method
of transferring learning from a more complex machine to a
simpler one, to increase the lightness of the model.

Tamayo-Monsalve et al. [11] evaluated different CNN archi-
tectures to classify spectral images of coffee fruits in various
stages of ripening. However, using spectral images for coffee
fruit classification has challenges, such as resource-intensive
storage and processing, the need for specialized equipment,
and extensive computational resources for effective analysis.

Febriana et al. [12] proposed using ResNet-18 and Mo-
bileNetV2 to classify a large dataset of green coffee beans
categorized into four classes. However, the authors did not
explore different types of data augmentation or hyperparameter
adjustment strategies to improve classification performance.

In contrast to the previously mentioned studies, our study
adopts a novel approach to improve green coffee quality
assessment through images and deep learning. Unlike previ-
ous studies that focused on coffee bean classification using
multispectral imagery, traditional classifiers, or CNNs without
any optimization strategy, our study utilized deep learning
techniques combined with hyperparameter optimization and
data augmentation strategies. In addition, our study produces
superior classification performance, surpassing the results
achieved by previous approaches.

III. MATERIAL AND METHODS

A. Dataset

For the experiments, we used the USK-Coffee dataset
[12]1. The USK-Coffee comprises 8,000 images of green
coffee beans distributed in four classes: peaberry, longberry,
premium, and defect. The images have 256 × 256 pixels and
are equally distributed among the classes, with 2,000 images

1https://comvis.unsyiah.ac.id/usk-coffee/

for each. In Figure 1, we present four samples from each class,
randomly selected from the training set.

Fig. 1. Samples of each class in the USK-Coffee dataset.

B. Architectures
We evaluated four CNN architectures that were chosen

because of their success in previous image classification tasks
applied in agriculture [12] [13] [14].

AlexNet was proposed by Krizhevsky et al. [15] and was
the first CNN that win the ILSVRC competition in 2012.
AlexNet is composed of five convolutional layers with three
polling layers intercalated and three fully connected layers
before the output layer. Even with existing more modern CNN
architectures, we choose to train the AlexNet because of its
historical importance and as a baseline to compare with other
architectures.

ResNet, or Residual Network, introduced by He et al. [16]
addresses the gradient vanishing problem in deep networks
through residual connections. Each residual block contains a
sequence of convolutional layers, and skip connections enable
skipping some residual blocks and feeding the next block’s
input with the previous one’s output. ResNet-50 is a specific
variant that consists of fifty convolutional layers.

MobileNet is a family of CNNs designed to run on mobile
devices. The family starts with MobileNet V1 [17] with
introduced deth-wise convolutions to reduce the number of
parameters. MobileNet V2 [18] includes an inverted residual
structure with residual connections between bottleneck layers.
MobileNet V3, proposed by Howard et al. [19] extends Mo-
bileNet V2 with squeeze and excite operations in the residual
layers.

EfficientNet is a groundbreaking CNN architecture intro-
duced by Tan et al. [20]. It is designed to balance good image



classification performance with computational efficiency and
achieves this through compound scaling, efficient building
blocks, and global average pooling. EfficientNet offers variants
from B0 to B7 to accommodate various hardware and perfor-
mance needs. Its use of techniques like dropout normalization
enhances its versatility. EfficientNet has consistently delivered
state-of-the-art results in image classification, making it a
popular choice in computer vision applications. For this work,
we used the EfficientNet B4 variant.

C. Experiment design

The USK-Coffee dataset is provided with separate training,
validation, and test sets. Then, we use the same dataset division
to enable a fair comparison with the results reported in the
literature.

Using Adam optimizer with cross-entropy loss, we fine-
tuned models pre-trained with the ImageNet dataset [21]
with all layers unfrozen. During the training, we decreased
the learning rate after 10 epochs without the validation loss
improvement. We early stopped the training process after 21
epochs without validation loss improvement (two complete
cycles of learning rate decreasing without validation loss
improvement).

We optimized the hyperparameter batch size (BS) and initial
learning rate (LR) using a grid-search strategy with the search
spaces {16, 32, 64, 128} for BS and {0.01, 0.001, 0.0001,
0.00001} for LR. No data augmentation was applied during the
hyperparameter optimization step. The transformations applied
to training, validation, and test sets were random resized crop
and normalization using the ImageNet dataset statistics. After
the hyperparameter optimization, all models were trained with
and without data augmentation.

The data augmentation strategy applied consists of a random
horizontal flip, followed by random rotation (-15◦ to 15◦), ran-
dom resized crop (patches between 80% and 100% the original
size), color jittering (brightness, contrast, and saturation by a
factor randomly chosen from 0.8 to 1.2), and random erasing
(patches between 2% and 20% the original size). The images
were also normalized by the mean and standard deviation of
the ImageNet dataset. Image transformations for the validation
and test sets are the same as those used in hyperparameter
optimization.

D. Model evaluation

The validation accuracy was considered to select the best
hyperparameter set during the hyperparameter optimization.
To evaluate the final model, trained with and without data
augmentation, besides accuracy, we used precision, recall, and
F1-score for the validation and test sets. When comparing the
indexes between the validation and testing sets, it is possible to
access the capacity of the model to extrapolate the knowledge
learned during training to unknown data.

Accuracy is computed as Equation (1):

Accuracy =
TP + FP

TP + FP + TN + FN
(1)

Precision is calculated as Equation (2):

Precision =
TP

TP + FP
(2)

The recall is computed as Equation (3):

Recall =
TP

TP + FN
(3)

F1-Score is computed as Equation (4):

F1−Score =
2× TP

2× TP + FP + FN
(4)

where TP, TN, FP, and FN are true positive, true negative,
false positive, and false negative samples, respectively.

E. Computational environment

The experiments were conducted in a PC equipped with a
Core I5-4430 3.00 GHz CPU and 32 GB of RAM running
Linux Ubuntu 20.04 LTS, equipped with a GPU NVIDIA
GTX 1080 Ti. The experiments were developed using Python
3.9, PyTorch 2.0.1, torchvision 0.15.2 with CUDA Toolkit
10.1, Scikit-learn 1.2.2, and Matplotlib 3.7.1. The pre-trained
models were obtained from torchvision.

IV. RESULTS AND DISCUSSION

Table I shows the results of the hyperparameter optimization
performed through grid search, as described in Section III-C.
The table presents the set of parameters that resulted in the
best validation accuracy for each model.

TABLE I
OPTIMIZED HYPERPARAMETER VALUES FOR EACH ARCHITECTURE.

Architecture BS LR Acc. Val. Epochs
AlexNet 16 0.00001 0.9169 13
ResNet-50 64 0.0001 0.9475 21
MobileNet V3 128 0.001 0.9606 50
EfficientNet B4 16 0.001 0.9469 24

Considering the hyperparameter obtained through the grid
search optimization strategy and shown in Table I, we trained
the models again with and without data augmentation opera-
tions. Figure 2 shows the evolution of the loss and accuracy
curves during the training of these models for both training
(pink line) and validation sets (green line). The vertical red
line marks the epoch in which occurred the early stooping, i.e.,
we selected the model at this epoch to perform the predictions.

We visualized the accuracies through line charts to better
understand the results presented in Table II. In Figures 3
and 4, it is possible to compare the performance among
the trained models over the validation and test sets without
and with data augmentation, respectively. Considering the
test set, our best result when training the models without
data augmentation was achieved by AlexNet and ResNet-
50, with 0.8663 accuracy. When training the models using
data augmentation, EfficientNet B4 resulted in the best test
accuracy with 0.8844.
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Fig. 2. Each column from left to right represents the models: AlexNet, ResNet-50, MobileNet V3, and EfficientNet b4. The first row shows the curves for
training without data augmentation, and the second row shows the curves for training with a data augmentation strategy.

TABLE II
RESULTS OF THE EXPERIMENT WITH AND WITHOUT DATA AUGMENTATION.

VAL TEST
Strategy Architecture Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Epochs

W
ith

ou
t

D
A

AlexNet 0.9169 0.9172 0.9169 0.9165 0.8662 0.8660 0.8662 0.8650 13
ResNet-50 0.9475 0.9478 0.9475 0.9476 0.8662 0.8680 0.8662 0.8667 21
MobileNet V3 0.9606 0.9608 0.9606 0.9605 0.8506 0.8567 0.8506 0.8504 50
EfficientNet b4 0.9469 0.9478 0.9469 0.9466 0.8588 0.8628 0.8588 0.8594 24

W
ith

D
A

AlexNet 0.8788 0.8857 0.8787 0.8762 0.8581 0.8665 0.8581 0.8533 13
ResNet-50 0.9644 0.9651 0.9644 0.9642 0.8694 0.8782 0.8694 0.8665 41
MobileNet V3 0.9394 0.9425 0.9394 0.9391 0.8650 0.8705 0.8650 0.8620 16
EfficientNet b4 0.9563 0.9580 0.9563 0.9561 0.8844 0.8899 0.8844 0.8827 30

Another interesting information we can observe in Figures
3 and 4 is the capability of each model to generalize what it
learned during the training step to unsee data (test set). When
trained without data augmentation, MobileNet V3 achieved
an accuracy of 0.9606 in the validation set. Still, when we
presented the test set to the model, it achieved only 0.8506,
a difference of 0.11. But for AlexNet, the validation accuracy
was 0.9169, and the test accuracy was 0.8663, a distance of
0.0506, indicating a better generalization capability.

Figure 5 shows a bar chart that compares the test accuracy of
each model with and without data augmentation. In this figure,
it is possible to observe that AlexNet cannot take advantage of
data augmentation strategies. Still, all other models have their
accuracies improved when trained with data augmentation.
The best model for our problem was the EfficientNet B4 with a
test accuracy of 0.8844 when trained with data augmentation,
an increase of 0.0256 compared to training without data
augmentation. It is interesting to observe that EfficientNet B4
trained without data augmentation (0.8588) is the second worst
result above only MobileNet V3 (0.8506).

Finally, our findings indicate that the best result achieved
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Fig. 3. Visualization of accuracies of validation and test sets when trained
without data augmentation.
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Fig. 4. Visualization of accuracies of validation and test sets when trained
with data augmentation.
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Fig. 5. Comparisson between models trained with and without data augmen-
tation over the test set.

for the USK-Coffee dataset was 88.44% accuracy obtained
with EfficientNet B4 with data augmentation, surpassing the
performance of the previously published technique (88.31% in
Febriana et al. [12]) which was the best until now.

V. CONCLUSIONS

In this work, we compared different deep-learning archi-
tectures to classify coffee green beans according to their
quality based on digital images. We also compared the models’
performance with and without data augmentation strategies.
The models were fine-tuned over models pre-trained with
ImageNet, and we performed a hyperparameter optimization
step for each architecture.

AlexNet was the only model that did not take advantage of
training with data augmentation strategies. The other models
have improved results when trained with data augmentation.

We highlight EfficientNet B4, in which the data augmentation
is critical for good classification performance.

EfficientNet B4 achieved the best results over the test set
(0.8844 accuracy) when considering the data augmentation
procedure, but without performing data augmentation during
the training phase, EfficientNet B4 was only the third best
model, losing only MobileNet V3.

Our results demonstrate the viability of applying deep
learning methods to assess the quality of coffee drinks by
classifying green coffee bean images. This work paves the
way to develop accessible and efficient applications to help
professionals in classifying and selecting beans during the
coffee production chain.

Future works include testing more deep learning architec-
tures for image classification and other training strategies,
such as more data augmentation transformations. Training
and testing the models with other datasets to improve the
generalization capability of the models.
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[8] S. Pradana-López, A. M. Pérez-Calabuig, J. C. Cancilla, M. Ángel
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