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Abstract—Cancer is a severe disease that demands early
discovery to increase the chances of survival and the probability
of a cure. Its discovery is usually made through biopsy, a slow
process subject to fatigue and psychological effects. Building
intelligent computational visual tools to accelerate the diagnostic
process is crucial in this context. The problem is that tools based
on machine learning or deep learning, such as convolutional
neural networks, depend on datasets to train the algorithm
to create a proper model. Thus, this work proposes a dataset
using histopathological images and augmentation of data from
examinations of pets by the Laboratory of Veterinary Pathology.
Tumor samples were obtained at the Veterinary Hospital School
of the State University of Maranhão. Then, the dataset is used in
a case study using VGG16 along with double transfer learning
to demonstrate the applicability of the dataset. Results show that
double transfer learning improves VGG16 efficiency, increasing
metrics by around 5% using k-fold with k=5.

Index Terms—cancer detection, dataset, pets, convolutional
neural networks, VGG16.

I. INTRODUCTION

According to a report by Radar Pet, a survey carried out
in 2021 by the Companion Animal Commission (Comac) of
the National Union for the Industry of Products for Animal
Health (Sindan) found a substantial increase, reaching 30%
more adoptions of pets during the pandemic [1]. The survey
results also showed a growth in the percentage of tutors who
started to see their pets as family members and even as
children between 2019 and 2020. In contrast, the proportion
of individuals considering them only as companion animals
decreased [2]. These trends naturally contribute to improving
the life expectancy of pets because their tutors care more than
before.

Moreover, dogs and cats live longer than ever, with an
average lifespan almost doubled compared to previous years.
However, a side effect of this increase in life expectancy is that
these animals face an increased risk of developing cancer, a
chronic disease involving uncontrolled cell growth and tissue
invasion. This can lead to uncomfortable symptoms, disability,
and even death in humans and animals [3].

Despite the distinct biological categories, there are striking
parallels in cancer development between humans and animals.
Histopathologically, several forms of cancer exhibit substantial
similarities in dogs and humans. This convergence is visible,
for example, in cases of osteosarcoma, melanoma, lymphoma,
and mammary carcinoma, all types of cancer that can manifest
in both species [4]. Similarly, felines also show significant
correspondences with human conditions. Let us take as an
example the oral squamous cell carcinoma found in cats, which
bears analogies with head and neck cancers in humans and
cats. Furthermore, mammary tumors in cats show traits that
resemble the “triple negative” phenotype identified in human
breast cancers.

Thus, we can realize that the study of cancer in pets is as
crucial as the study in humans, considering that both species
share similarities in developing the disease. Particularly in
dogs, they are more predisposed to cancer, often leading
to poor prognosis and high mortality [5]. In the case of
pet animals, mammary tumors have the highest incidences
(16.8%) in females [6]. In unspayed female dogs, canine
mammary tumor is the most common malignancy with a
significantly higher mortality rate as compared to human breast
cancer [7]. Therefore, diagnosing cancer as early as possible is
crucial to increase the chances of cure or patient survival, and
computational tools can be particularly useful for this purpose.
Mainly because the diagnosis is made by incision biopsy
with subsequent histopathological analysis, a highly time-
consuming task that depends on the pathologist’s background
and is influenced by external factors such as fatigue and
decreased attention [8].

The problem is that datasets containing histopathological
images of pets are scarce. Therefore, this paper proposes the
creation of a database comprising histopathological images of
neoplasms in pets to serve as valuable tools for preventing
and controlling cancer in domestic animals. Additionally, we
present an experiment using the VGG16 [9] architecture,
both with and without double transfer learning, to establish



a baseline for pattern recognition systems.
In this context, this investigation is divided into the follow-

ing sections: Section II presents some related works; Section
III shows how the dataset was created and enhanced by
using data augmentation; Section IV shows some experiments
proving the applicability of the new dataset; finally, Section V
presents the conclusions of this work and future work.

II. RELATED WORKS

Histopathological datasets for human cancer detection are
readily available and can be easily found on platforms like
Kaggle. Many of these datasets are derived from well-known
sources like BreakHIS [8], a renowned dataset for breast
cancer detection in humans. In contrast, histopathological
datasets for pets are scarce, primarily because most research on
pets utilizes imaging techniques such as Magnetic Resonance
(MR) or Computer Tomographies (CT), as seen in studies like
Romeo et al. and Groheux, among others.

Additionally, research conducted by Michalski et al. [12]
utilizes histopathological images as auxiliary tools to assess
responses to treatments like chemotherapy. Similarly, Gamba
et al. [13] perform histopathological exams and immunohis-
tochemical staining assessments of invasive micro-papillary
mammary carcinoma in dogs. While both works utilize
histopathology, they lack comprehensive datasets dedicated to
this purpose.

To the best of our knowledge, Kumar et al. [14] are the
unique researchers to introduce a database specifically for ca-
nine mammary tumors, known as CMTHis. This dataset com-
prises 352 images from 44 clinical cases of canine mammary
tumors at the Referral Veterinary Polyclinics at ICAR–Indian
Veterinary Research Institute (IVRI), Izatnagar, India. In this
context, our work aims to complement this existing resource
by providing an additional tool for testing cancer detection
algorithms.

III. THE DATASET

Histology involves the detailed analysis of biopsy samples
through a microscopic examination [15], in which the sam-
ples are subjected to a processing and fixation process in
buffered formalin, diaphanization, embedded in paraffin and
sectioning in a rotating microtome resulting in thin layers
of tissue, stained with specific dyes and mounted on glass
slides. These slides, in turn, are prepared from macroscopic
sections of the biopsied tissue, which are treated with wax
and specific dyes. This staining is crucial since it enables
pathologists to differentiate the various cellular components,
allowing a detailed analysis of tissue structure and architecture
for diagnostic purposes. Through this procedure, it is possible
to explore the microscopic characteristics of tissues, revealing
views relevant to identifying diseases and anomalies.

In short, histopathological images are a fundamental visual
representation of biological tissues at the microscopic level
[15]. They are crucial in pathology, medical research, and
disease diagnosis. These images offer detailed insights into tis-
sues’ structure and cellular characteristics, allowing clinicians,

researchers, and scientists to analyze patterns and anomalies
that may be imperceptible to the naked eye. Figure 1 illustrates
a carcinoma with two magnitudes.

In this sense, the Laboratory of Veterinary Medicine of the
State University of Maranhão made the histopathological im-
ages available, totaling 82 colored images with a 1944×2592
resolution and three RGB channels with a depth of 8 bits
each. The images were divided into three classes: carcinomas,
carcinosarcomas, and normal breast, resulting in 62 malignant
and 20 non-cancer images comprising a small dataset. Table
I shows the number of images according to their zooming
magnitude.

TABLE I
NUMBER OF IMAGES PER MAGNITUDE

Magnitude Negative Positive Subtotal
4x 10 22 32

10x 10 21 31
40x 0 19 19

Total 20 62 82

Due to the low number of images, we built a binary dataset
composed of benign and malignant classes called PetHIS.

A. Data Augmentation

As previously shown in Table I, the number of images
is low; thus, we applied data augmentation in the images
to increase the number. We used some transformations, as
suggested by Hao et al. [16], such as rotations, mirroring,
cropping, and zooming, to expose the model to a broader range
of case possibilities. Consequently, increasing the model’s
ability to learn patterns reduces the risk of overfitting and
improves generalization.

In our dataset, the data augmentation process allowed to
multiply the number of neoplasm images by five and the
number of breast cancer by ten, totaling 372 malignant and
220 normal breast images, i.e., 592 images. To perform the
transformation, we used a software so-called Imgaug [17]
performing horizontal flip, vertical flip, and random cuts from
0 to 50 pixels as shown in Table II.

TABLE II
AUGMENTATION PARAMETERS

Transformation Parameter Value
Horizontal Flip 0.5

Vertical Flip 0.5
Random Crop px(0, 50)

Some transformations happen at runtime, creating variations
of original images without storing all possibilities in advance,
enriching the training set, and improving the model’s ability to
generalize unknown possibilities. These transformations were
carried out according to Table III.

IV. EXPERIMENTS

To assess the suitability of the dataset for training deep
learning algorithms, we evaluated using the VGG16 model.



Fig. 1. Carcinoma with magnitude 40X on the left and magnitude 10X on the right

TABLE III
AUGMENTATION PARAMETERS

Transformation Parameter Value
Rotation Range 20

Width Shift Range 0.2
High Shift Range 0.2
Horizontal Flip TRUE

This well-established model has demonstrated good perfor-
mance in biomedical image-based algorithms. Next, we pro-
vide details on the software and hardware configurations,
metrics employed, and the obtained results.

A. Double Transfer Learning

Transfer Learning is a technique in machine learning where
a pre-trained model in one task is used as a starting point
for a new related task. The idea is to take advantage of
the knowledge learned by the pre-trained model to improve
performance in the new task [19]. Generally, the initial layers
of the pre-trained model capture general, valuable features
such as edges and textures, while the final layers capture more
specific characteristics of the original task.

Double Transfer Learning is an advanced data processing
technique combining two transfer learning stages to improve
the performance of a machine learning or deep learning model.
In the first stage, a pre-trained model is tuned for a related
task, allowing it to capture general domain characteristics. The
model is tuned for the specific interest task in the second stage.
Matos et al. [20] proposed a dual transfer learning approach for
classifying breast cancer histopathological images, improving
classification accuracy from this perspective. In this context,
we applied double transfer learning as presented in Figure 2,
in which the VGG16 comes pre-trained with ImageNet, and
we performed a second pre-trained test using BreakHIS.

B. Setup

For the data augmentation of the initial dataset of
histopathological images of Pets, we used the Jupyter Lab,
which is an interactive development interface that extends
the functionality of the Jupyter Notebook, in which we use
Python 3.11.2 as programming language, OpenCV 4.7.0 for

Fig. 2. VGG16 and its double transfer learning

image manipulation and visualization, Imgaug 0.4.0 for data
augmentation, Numpy 1.23.5 for data manipulation and data
transformation and Matplotlib 3.7.1 for image viewing.

For evaluation, we used cross-validation with the K-Fold
technique. Cross-validation balances the assessment of model
performance by splitting the data into multiple parts, ensuring
that each fold contains mutually exclusive test sets. This tech-
nique improves experimental design, allowing a more com-
prehensive understanding of model performance and ensuring
that it works well across all classes, regardless of significant
imbalance in the data set. Furthermore, cross-validation can
maximize the efficiency of using limited data to obtain more
realistic estimations of the model’s generalizability.

We performed two tests using k-fold cross-validation, with
k=5 and k = 10, training a VGG16 model. Firstly, we used
regular transfer learning with the ImageNet [18] dataset. Next,
we utilized double transfer learning, employing a training stage
with the BreakHIS [8], a histopathological dataset for detecting
breast cancer in humans, before training the VGG16 with
PetHIS images. The model is compiled with Adam Optimizer



with a parameter equal to 0.001, a binary cross entropy loss
function (binary crossentropy), and a batch size equal to 32
with ten epochs.

C. Metrics

To evaluate the classification models, we used the traditional
metric for machine learning algorithms: Sensitivity (recall),
Specificity, Accuracy, Precision, f1 score, and AUC. Thus,
considering TP as the number of true positives, FP the number
of false positives, TN the number of true negatives, and FN the
number of false negatives, The five first metrics are obtained
by Equations 1 to 5.

recall =
TP

TP + FN
(1)

sensitivity =
TN

FP + TN
(2)

acc =
TP + TN

TP + TN + FN + FP
(3)

precision =
TP

TP + FP
(4)

f1 score =
2× precision× recall

precision+ recall
(5)

In this particular case, recall plays an essential role in the
model’s evaluation because it uses the false negatives in its
calculation, representing the worst-case scenario if the biopsy
results in a false negative, leading the beloved pet to a certain
death, a quick one depending on the cancer aggressiveness.
Consequently, f1 score can be used as a general performance
metric.

Finally, the area under the curve (AUC) is obtained by the
Receiver Operating Characteristic Curve (ROC) by consider-
ing the TP rate (recall) and the false positive rate, which is the
inverse of specificity (1− especificity). The closer the AUC
from 1, the better the model. In other words, the ROC curve
makes it possible to compare several classifiers and determine
which is superior based on different cutoff points. In practice,
when the curve approaches the top of the Y-axis (AUC = 1),
the classifier is more efficient.

D. Results

Table IV presents the mean metrics obtained through k-
fold cross-validation with k = 5 and their respective standard
deviations. It is evident from the table that the metrics exhibit
an improvement of about 5% when employing double transfer
learning. Moreover, the standard deviations remain relatively
low, underscoring the beneficial impact of training the model
with BreakHIS on overall performance.

In Figure 3, we notice the ROC curves for two distinct
approaches: regular transfer learning (utilizing ImageNet) on
the top and double transfer learning incorporating BreakHIS
on the bottom. The central curve highlighted in the graph
represents the mean, while the surrounding curves depict
individual ROC curves per fold.

TABLE IV
METRICS WITH REGULAR TRANSFER LEARNING AND DOUBLE TRANSFER

LEARNING WITH K = 5

Regular Double TLMetric mean± std mean± std
Accuracy 0.898± 0.042 0.946± 0.036
Precision 0.920± 0.022 0.947± 0.035

Recall 0.899± 0.041 0.892± 0.018
f1 score 0.900± 0.045 0.946± 0.036

Fig. 3. ROC curve with regular transfer learning and double transfer learning
with k = 5

A visual inspection immediately reveals that the mean
curve for double transfer learning tends towards a near-perfect
performance, even though when AUC are similar, the blue
curve with double transfer learning is closer to one than the
other one.

Table V shows the mean metrics reached through k-fold



cross-validation with k = 10, along with their respective
standard deviations. The improvements are lower than the
VGG with k = 5, probably because the test dataset is minor.
Nonetheless, the improvements are still toward double transfer
learning.

TABLE V
METRICS WITH REGULAR TRANSFER LEARNING AND DOUBLE TRANSFER

LEARNING WITH K = 10

Regular Double TLMetric mean± std mean± std
Accuracy 0.914± 0.029 0.929± 0.021
Precision 0.927± 0.020 0.934± 0.016

Recall 0.910± 0.028 0.924± 0.021
f1 score 0.910± 0.031 0.924± 0.023

In Figure 4, we still notice the ROC curves for regular
transfer learning (utilizing ImageNet) on the top and double
transfer learning incorporating BreakHIS on the bottom. The
central curve highlighted in the graph represents the mean,
while the surrounding curves depict individual ROC curves
per fold. Visually, the double transfer learning approach is
still closer to the ideal ROC curve.

V. CONCLUSIONS

This study introduced the development of a dataset com-
prising histopathological images aiming to serve as a tool
for training machine learning models to detect breast cancer
in canines. Data augmentation techniques were employed to
enhance the dataset’s diversity, resulting in a fivefold increase
in malignant cases and a tenfold increase in non-cancer
images. Next, we investigated the dataset’s applicability using
the VGG16 model with regular and double transfer learning.
The results revealed that double transfer learning can deliver
improvements in metrics around 5% in k-fold with k = 5.

In terms of future work, several options are being consid-
ered:
(i) Expanding the dataset’s size by acquiring additional

histopathological cases and applying data augmentation
techniques once again.

(ii) Assessing the dataset’s performance using other well-
known CNN architectures, employing regular and double
transfer learning methodologies.

(iii) Exploring the possibility of merging this dataset with the
one introduced in Kumar et al.’s study [14], followed by
testing various VGGs and ensemble CNN architectures
to enhance the detection capabilities further.

These proposed forthcoming steps aim to improve the
dataset’s robustness and applicability in canine breast cancer
detection, contributing to more effective diagnostic tools and
research in this domain. The dataset can be downloaded at
https://zenodo.org/records/8322517.
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